Dancing Fountain

Final Project Report
December 8, 2016
E155

Tess Despres and Hamza Khan

Abstract:

Visualizing music is interesting due to the complexity of different songs. This focus of this
project was visualizing the beat of a song using a water fixture. This was done using a water
fountain based oscillating metronome driven by a servo motor. The metronome fountain was
designed to follow the beat of the music. The user first uses a python script to convert a .wav file
to readable text. The system then takes in both the .wav file and .txt file and uses them to control
the servo motor and speakers, respectively. In this way, the project is able to turn the fountain in

beat with the music outputted from a speaker system.

Introduction:

This project used song data in order to create a water fountain metronome. In order to do this, the
Raspberry Pi took in a .wav song file. A python script then converted the .wav file to .txt format.
This information is then sent over SPI communication to an FPGA board. A 15 order low pass
FIR filter, written on the FPGA, then filters the data. The information is then sent back over SPI
to the Raspberry Pi. The Pi then uses a C algorithm to extract the beat from the filtered data set.

The Pi then actuates a servo motor in time to the beat and plays the song from a second

Raspberry Pi.
Servo Motor Raspbery P
it) raspi-hk _
Water Pump P '
FPGA
. Raspberry Pi
Speaker raspi-txd

Figure 1: Block Diagram

This project was partitioned as shown in Figure 1. The FPGA handled SPI communication and
FIR filtering. The Raspberry Pi did all other data processing and servo control. The Pi also

handled communication using ssh to the second Pi which played the sound file.

New hardware:

This project incorporated three new hardware components. The first of these components is the
servo motor. The motor used was a standard Hitec HS-311 motor with a 4.8V to 6.0V voltage
range. This allowed the Pi to power and control the motor. This motor was controlled using the
built in pulse width modulation peripheral. The peripheral used GPIO pin 18 to communicate

with the motor.

The second hardware component incorporated was the water pump. The pump used was a
SonglLong SL-381 submersible pump with a flow rate of 80 GPH. This compact pump pushed
water from a tupperware tank into the tubing connected to the servo motor. The water stream

was oscillated back and forth by the servo motor.

The final extra hardware component that was included was external speakers. These speakers
connected to both the aux plug on the second Raspberry Pi and a wall socket. This allowed the
second Pi to play the song while the servo motor moved to the beat.

Schematics:

v Posa Suﬁ»(s
Voo
)

-\
e soapi- bk NI Mo | p)

w0 Moy - R po g U
Pwm18 sue gy Sur |07

Figure 2: Overall System Schematic

The overall system schematic shows the electrical and physical connections in the
system. Raspi-hk is the raspberry pi used to input the .wav file into the FPGA over SPI. This pi is
also used to actuate the servo motor to oscillate 45 degrees off center to display the beat of the
song. The servo motor is connected to a water tube which is shown on the schematic as a set of

dashed lines. This raspberry pi also makes a secure shell connection with the other raspberry pi

(raspi-txd). This link is represented with a dashed line surrounded by 2 solid lines. The system

uses the aux output of raspi-txd to play the song on a speaker.

Raspberry Pi Design:

The Raspberry Pi performed a number of tasks. These consisted of parsing the .wav files into .txt
files, data processing. servo motor control, SPI communication protocol, ssh communication, and
aux output. These tasks were spread out over two Raspberry Pi’s. The first Raspberry Pi,
raspi-hk, performed the conversion from .wav to .txt data on the song file, data processing, servo
control, SPI communication, and sshed into the other Pi. The other Pi, raspi-txd, played the song

out using the aux output.

In order to switch from .wav data to .txt data the Raspberry Pi ran a python script. This script
parsed the data into array form using the wave python library. The data was converted by
performing a 128 offset on the values greater than 64. The script then wrote this data into a .txt
file.

The data processing performed on the Raspberry Pi occurred after the low pass processing on the
FPGA. From the low passed data, it was evident, that beats occurred at large spikes with a
magnitude of 65. Therefore, the algorithm took the numerical derivative using a current value
pointer and previous value pointer. When the difference between these dereferenced values
exceeded 60, the algorithm triggered a beat. In order to handle false positives in the data set, the
algorithm also implemented a counter. It counts to 5000 which accounts for extra noise in the

data set after the beat spike occurs.

The servo motor was controlled using pulse width modulation. The modulation used the built in
pulse width modulation peripheral in the Raspberry Pi over GPIO 18. EasyPIO.h was used to
initialize the peripherals. Additionally, a motor control and frequency function were written to
control the pulses. The motor control function calls setPWM from EasyPIO.h in order to set the
frequency to 50 Hz and duty cycle to 0.075. The frequency function controls the frequency of the
servo motor oscillations by inputting a time delay of the period during each sweep of the motor.
The time delay allows a maximum deflection of 45 degrees off center. If the period is too short
to allow for a full sweep the servo motor will follow a shorter sweep due to switching direction

more frequently.

SPI communication between the two Pi’s was done using the sendrecieve function implemented
in the library EasyPIO.h listed in Appendix C . The settings used to initialize the SPI transfer on
the Pi for this system are such that the phase of the MOSI and MISO are aligned and data is
transferred when SCLK is positive. Thus the settings input to initialize the SPI in the spilnit

function is 0. The frequency used for the data transfer was 1kHz.

Ssh communication between the two Pi’s were enabled using rsa encryption keys generated by
raspi-hk. The main function in the C code, uses a system call to ssh into raspi-txd and plays the
song. The built in function aplay was also called to play the song over the aux output. The aux

output was connected to speakers which output the song. By using a fork call to start a new

process the code was able to run both the servo control and song output code in parallel.

FPGA Design:

The FPGA was used to implement a low pass filter of cutoff frequency 20Hz. This was done to
eliminate high frequency instruments and melodies in the song. Communication between the
FPGA and the Raspberry Pi was done using SPI. The low pass filter implemented in the final
project was a 15th order FIR filter. To calculate the coefficients for this filter, Matlab’s FDATool
was used to try different low pass filters. These coefficients were then scaled and rounded to fit

the size of a signed byte because the input music signal also has a bit width of a byte.

The low pass filter was implemented as an FIR filter using D Flip-Flops to delay the signal by 15
time steps. These values were multiplied by their respective coefficients and added to get the
filtered signal. The bit width of this output was truncated to a byte. The truncation was done by
getting the 7 least significant bits and the most significant bit to keep the sign of the output. SPI
communication was used to transfer the unfiltered and filtered song data back and forth. The SPI
module started reading SPI after slave select was driven to low. The song data was input from
the raspberry pi on the positive edge of the SPI clock and the filtered data was updated on the
negative edge of the SPI clock. Therefore making the value correct when SPI reads it on the
positive edge of the clock. The SPI module used was from Chapter 9 of the book Digital Design
and Computer Architecture by Sarah L. Harris and David Money Harris. The low pass filter was
running on the clock on the uMudd Mark IV board and the SPI transfer is running of the SCLK.
To combine these 2 systems synchronizers are used and every byte of MISO and MOSI data is
stored in a RAM. The resulting hardware of can be seen in Appendix A.

A filter recommended for future use is a 147 order low pass filter which gave better results in
simulation. This low pass filter gives a steeper bode plot because of the higher order, making the
frequency cutoff sharper. This filter was implemented in hardware using Altera’s megafunction.
Although this megafunction hardware worked in modelsim because the output file matched the
results we expected from Matlab Simulations, it wasn’t implemented in hardware with success

and so a 15th order low pass filter was used instead.

Results:

The FIR low pass filter took in data over SPI to output a low pass filtered signal. The output
from the 15th order FIR from the FPGA is not the same as the result from previously conducted
Matlab simulations. This maybe because of the truncation to the low passed signal to a byte
because currently the algorithm takes in the 7 least significant bits along with the most
significant bit for the getting the correct sign. The output signal does however create pulses
which correlate to the beat of the song when a derivative of the filtered signal is taken to extract

the change in impulses.

The C algorithm was successful in finding the correct frequency most of the time. The algorithm
was tested on five different songs Laudamus Te by Antonio Vivaldi, Africa by Toto, When I'm
Sixty Four by The Beatles, Paradise City by Guns and Roses, and Born in the USA by Bruce
Springsteen. The algorithm had the most success with Laudamus Te outputting an average
frequency of 1.98 Hz while the actual beat is 1.93 Hz. The actual beat of these song are
compared with the algorithms average output in Table 1. For most of the songs, the beat was
followed even though shifts in frequency in When I’m Sixty Four and Paradise City. From the
table it is clear that in, In Born in the USA the beat wasn’t followed correctly. When listening to
the song, however, it can be observed that the servo motor is keeping in time to the drum hits.
The drums hits occur at approximately 2.02 Hz. This higher beat is likely the reason for the
algorithm outputting a high frequency.

The servo motor outputted the correct frequency generated by the code. After a full song's
length, there was some noticeable drifting in the starting position. This is due to our oscillation
lengths being set by time and not position. Since this time varied with each updated frequency,
this introduced some unknown error into the position. This was fixed by resetting the motor
position on each run. In the future this would be something to take into consideration when

implementing the oscillating servo motor code.

Song Actual Frequency (Hz) Algorithm Average
Frequency (Hz)

Born in the USA 0.98 1.96

Africa 1.53 1.97

Paradise City 1.67-3.2 1.99

Vivaldi 1.93 1.98

When I’m Sixty Four 1.17-2.34 1.91

Table 1: Algorithm Output Frequencies

References:

EaspyPIO from Prof. Spencer’s page: http://pages.hmc.edu/mspencer/fal5/el155/files/EasyPIO.h
Servo Motor Data Sheet: http://users.ece.utexas.edu/~valvano/Datasheets/ServoHS311.pdf
Chapter 9 from Digital Design and Computer Architecture by Sarah L. Harris and David Money
Harris: http://pages.hmc.edu/harris/class/e155/09 _Ch%2009_online.pdf

http://pages.hmc.edu/mspencer/fa15/e155/files/EasyPIO.h
http://users.ece.utexas.edu/~valvano/Datasheets/ServoHS311.pdf
http://pages.hmc.edu/harris/class/e155/09_Ch%2009_online.pdf

Parts List:

Quantity

Part

2

Raspberry Pi 3

Hitec HS-311 motor

SongLong SL-381

uMudd Mark IV

Water Tubing

Plumbing L-Joints

Speaker

Appendix A: Hardware Design

spi_slave:spicom
sck [
> miso
testMnFirtst ramimisomem L
ramemosimem . |
mosi > . T'h0 adefo.g D d7..01
syncsyne 1'h0 2dr[0..9 Byte[7.0] ck| dout[7.0] _L
outf7.0] | $n[7.0 symiceme
| = -
r ke [0..0]

reset [| 1'h0 gfo.g

k[syncisyncl | v

cli| qf0.0] led[1]~not
on d[0..4]

Figure 3: Top-level Hardware Schematic

spi_slave:spicom

Equal0
A[31..0] J

ouT
nt2.0] 3-[32'h0 B[31..0

qdelayed

q[0]~reg[7..0]

q7.

Figure 4: SPI Module

Figure 5: FIR Filter Module

flipFlopR:testfir3

q[7..0]

flipFlopR:testfir4

k|

d[7..0]

g[7..0]

en

8'hfb A[7..0
B[7.0

Mult3
QUT[15..0

Figure 5: Zoomed-in view of the FIR filter

10

Appendix B: Verilog Code

/Itop level directory for SPI and FIR integration

module FinalTop(input logic clk,
input logic sclk,
input logic ss,
input logic reset,
input logic mosi,
output logic miso,
output logic clk2,
output logic[7:0] led);
assign clk2 = clk;
logic [7:0] mosiByte, syncMosi, misoByte, memMosi;
logic byteUpdate, firEn, syncByteUpdate, syncSS, delayedSyncSS, mosiEn;
logic tempReset;
LEDs for testing
assign led[0] = reset;
assign led[1] = ~syncSS;
//SPI data transfer module
spi_slave spicom(sclk, mosi, miso, reset, misoByte, mosiByte);

// Synchronizing the input signals

sync #(1) syncl(clk, ss, syncSS);

sync #(1) sync2(clk, byteUpdate, syncByteUpdate);
sync #(8) sync3(clk, mosiByte, syncMosi);

// Flip flop to time when the FIR module needs to be enabled
flipFlopR #(1)flops(clk, reset, 1, syncSS, delayedSyncSS);
assign firEn = delayedSyncSS&(~syncSS);

assign mosiEn = (~delayedSyncSS)&syncSS;

// Storing the MOSI value
ram #(1,8) mosimem(clk, mosi, 0, syncMosi, memMosi);

endmodule

// 15th order low pass filter module
testMinFir tst(clk, reset, firEn, memMosi, tempMiso);

//Storing the MISO value
ram #(1,8) misomem(clk, firEn, 0, tempMiso, misoByte);

logic delaySS;

// 15th order low pass filter module

module testMinFir(input logic clk, reset, en,

input logic[7:0] syncMosi,
output logic[7:0] misoByte);

logic[7:0] 90, q1, 92, 93, 94,95, 96, 47, 48, 99, q10, q11, 12, q13, q14;
//Flip Flops to delay the input by a timestep so the signal can be multiplied to the

coefficients for low pass filtering

flipFlopR #(8)testfir1(clk, reset, en, syncMosi, q0);
flipFlopR #(8)testfir2(clk, reset, en, q0, q1);
flipFlopR #(8)testfirrand(clk, reset, en, ql, q2);
flipFlopR #(8)testfir3(clk, reset, en, q2, q3);
flipFlopR #(8)testfir4(clk, reset, en, q3, q4);
flipFlopR #(8)testfir5(clk, reset, en, g4 ,q5);
flipFlopR #(8)testfir6(clk, reset, en, q5, q6);
flipFlopR #(8)testfir7(clk, reset, en, q6, q7);
flipFlopR #(8)testfirrand2(clk, reset, en, q7, q8);
flipFlopR #(8)testfir8(clk, reset, en, 98, q9);
flipFlopR #(8)testfir9(clk, reset, en, q9, q10);
flipFlopR #(8)testfir1 0(clk, reset, en, q10, q11);
flipFlopR #(8)testfirl 1(clk, reset, en, q11, q12);
flipFlopR #(8)testfir12(clk, reset, en, q12, q13);
flipFlopR #(8)testfir13(clk, reset, en, q13, q14);
flipFlopR #(8)testfir14(clk, reset, en, q14, q15);

12

logic[7:0] coef0,
coefl,coef2,coef3,coefd,coefs5,coefb,coef7,coef8,coef9,coefl10,coefl 1,coefl2,coefl3,coefl4,coef
15;

// Coeficients used for the low pass filtering

assign coefl = 8'shfe;

assign coefl = 8'sh00;

assign coef2 = 8'sh03;

assign coef3 = 8'sh00;

assign coef4 = 8'shtb;

assign coef5 = 8'sh00;

assign coef6 = 8'sh10;

assign coef7 = 8'sh1A;

assign coef8 = 8'sh10;

assign coef9 = 8'sh00;

assign coefl10 = 8'shfb;

assign coefl1 = 8'sh00;

assign coefl2 = 8'sh03;

assign coefl3 = 8'sh00;

assign coefl4 = §8'shfe;

logic[27:0] tempSum,;

logic[17:0] resultl, result2, result3, result4;

assign tempSum = (coefl*syncMosi) + (coef2*q0) + (coef3*ql) + (coefd*q2) +
(coef5*q3) + (coef6*q4) + (coef7*q5) + (coef8*q6) + (coef9*q7) + (coef10*q8) + (coefl1*q9) +
(coef12*q10) + (coefl3*ql1) + (coefl4*ql2);

assign misoByte = {tempSum[27], tempSum[6:0]};

endmodule

// ' The following code was from Chapter 9 of Digital Design and Computer Architecture by Sarah
L. Harris and David Money Harris

module spi_slave(input logic sck, / From master

13

endmodule

input logic mosi, / From master
output logic miso, // To master
input logic reset, / System reset
input logic [7:0] d, // Data to send
output logic [7:0] q); / Data received
logic [2:0] cnt;
logic qdelayed;
// 3-bit counter tracks when full byte is transmitted
always_ff @(negedge sck, posedge reset)
if (reset) cnt = 0;
else cnt = cnt + 3'bl;

// Loadable shift register

// Loads d at the start, shifts mosi into bottom on each step
always_ff @(posedge sck)

q <= (cnt ==0) ? {d[6:0], mosi} : {q[6:0], mosi};

// Align miso to falling edge of sck

// Load d at the start

always_ff @(negedge sck)

qdelayed = q[7];

assign miso = (cnt == 0) ? d[7] : qdelayed;

14

Appendix C: Raspberry Pi code

Python converter from .wav to .txt

#converter.py
#python function for converting a .wav file to a text file which can be sent via spi

#Hamza Khan and Tess Despres - Microps Final Project

import wave
import math

import struct

#file to import

fileName = "paradiseCity.wav'

#open file and get number of frames
f = wave.open(fileName, 'r")

fileLength = f.getnframes()

#read frames and build array map
waveFile = f.readframes(fileLength)

waveFileArray = map(ord,list(waveFile))

#tix format
frame =[0]*fileLength
for i in range(fileLength) :
frame[i] = waveFileArray[i]
if (frame[i] > 64) :
frame[i] = frame[i] - 128
elif frame[i] == 128:

frame[i] =0
else:
frame[i] = frame[i]
#build string
waveString ="

15

for i in range(fileLength):
waveString += str(frame[i])

waveString +="\n '

#output values to .txt file
textFileName = fileName[:-3] + 'txt'
textFile = open(textFileName, 'w')
textFile.write(waveString)
textFile.close()

f.close()

C code

// finalProjectSPI.c

/I hkhan@hmc.edu, tdespres@hmc.edu 21 November 2016
/l

/I Send wav file to the FPGA over SPI

// recieve data from FPGA over SPI

// control servo and aux out

I
// #includes
I

#include <stdio.h>
#include <stdlib.h>
#include "EasyPI1O.h"

#include <math.h>

i
// Function Prototypes
i

void testLowPassSPI(char*, char®, char*, char*, char*, char*, char*);

void print16(char*);

16

void printall(char*, char*, char®, char*, char*, char*, char*);

void motorControl(float);
void initialize();

void update (int , int);
float thesholding ();

#define LOAD PIN 23
#define DONE_PIN 24
#define songLength 2000000

//initialize global variables

signed char numberArray[songlength];
int buffer[windowLength];

float frequencyBuffer[songLength];
float lowpass[songLength];

int* currentValuePointer;

int* previousValuePointer;

int* indexPointer;

int* newSongInputPointer;

float average;

float stdDev;

float variance;

float deviationFactor;

int trigger;

int counter;

int fullCount;

int counterDelay;

Vs
// Main Function
Vs

void main() {

//initialize frequency variable

float frequency;

17

//load the song into an array
loadSong();

//initialize a buffer to load 0's

initializeWindowZeroes();

//initialize SPI
piolnit();
spilnit(244000, 0);

// Load and done pins
pinMode(LOAD_ PIN, OUTPUT);
pinMode(DONE_PIN, INPUT);

//initialize counter for while loop

inti=0;

//give initial values to the counters that are used for thresholding
deviationFactor = 3.3;

trigger = 0;

counter = 0;

counterDelay = 5000;

while (1) {
//SPI control
SPIOCSbits. TA = 1;
signed char tempNew = spiSendReceive(numberArray[i));
SPIOCSbits. TA = 0;

//lupdate new and old values
signed int new = (signed int) tempNew;
new = new”4;
int old = *indexPointer;

update (old, new);

18

//load current frequency
frequency = thesholding();

//ill freq buffer and add freq bounds
if ((i % 22050) == 0) {
if (frequency < 0.6) {
frequencyBuffer[1/22050] = 0.6;
} else if (frequency > 10.0) {
frequencyBuffer[1/22050] = 10.0;
} else {
frequencyBuffer[1/22050] = frequency;

//break out of while at end of song
if (i > (songLength-1)) {
break;

i++;

//calculate mean frequency

int indexFreq;

int freqCounter = 0;

for (indexFreq = 0; indexFreq < (songLength/22050); indexFreq++) {
freqCounter += frequencyBuffer[indexFreq];

float mean = ((float)freqCounter)/((float)(songLength/22050));

if (Ifork()) {

//enable song playing on raspi-txd

system("sshpass -p tesspi ssh pi@172.28.70.172 aplay sixtyfour.wav");
} else {

/Iplay frequency's and delay for speaker output to start

delayMillis(2000)

int j;

for (j =0; j < (songLength/22050); j++) {
motorControl(frequencyBuffer[j]);

I
// Windowing Functions
T

void initializeWindow () {
//point to initial values
currentValuePointer = &buffer[windowLength/2];
previousValuePointer = &buffer[(windowLength/2)-1];
indexPointer = &buffer[0];

int initializeWindowZeroes () {
//point to initial values
currentValuePointer = &buffer[windowLength/2];
previousValuePointer = &buffer[(windowLength/2)-1];
indexPointer = &buffer[0];

return 0;

void update (int old, int new) {
int* endPointer = &buffer[windowLength-1];

//move index pointer

20

if (indexPointer == endPointer) {
indexPointer = &buffer[0];
} else {
indexPointer++;

//move middle pointer

if (currentValuePointer == endPointer) {
currentValuePointer = &buffer[0];
previousValuePointer = endPointer;

} else {
previousValuePointer = currentValuePointer;

currentValuePointer++;

//update average

float fnew = (float)new;

float fold = (float)old;

float deltaOld = fold/((float)windowLength);
float deltaNew = fnew/((float)windowLength);
float oldAverage = average;

average += (fnew-fold)/(float)windowLength;

*indexPointer = new;

float thesholding () {

//if derivative is > 60 trigger signal
float diff = *currentValuePointer - *previousValuePointer;
if(diff > 60.0) {
trigger = 1;
}
else{

trigger = 0;

21

//perform counting delay

if (counter == 0 && trigger == 1) {
counter = counter +1;
trigger = 0;

}

else if (counter > counterDelay && trigger == 1) {
fullCount = counter;
counter = 1;
trigger = 0;

}

else if (counter > 0) {

counter = counter + 1;

//reset if counter exceeds or output frequency
if (fullCount == 0) {
return 0;
} else {
return 11025.0/(float)fullCount;

T
// Function to load the song
T
int loadSong()

{
FILE *myFile;

myFile = fopen("sixtyfour.txt", "r");

//read file into array

nt i;

if (myFile == NULL)

22

{
printf("Error Reading File\n");

exit (0);
}

for (1 = 0; i <songLength; i++)

{
fscanf(myFile, "%hi\n,", &numberArray[i]);

fclose(myFile);

return 0;

I
// Servo Motor Control Functions
I

int freq(float frequency, int pin) {

//initialize counter variable

nt i;

//calculate period

float period = 1.0/frequency;

//delay oscillations by period length
float cycleTime = period*1000.0; //convert from seconds to milliseconds

//initialize number of cycles
int numCycles;

//always do at least one cycle
if (cycleTime > 2000.0) {

23

numCycles = 1;
//else do 2 seconds of cycles
} else {
numCycles = 2000.0/cycleTime;

//oscillate for 2 seconds
for(i = 0; 1 < numCycles; i++) {
setPWM(50, 0.05);
delayMillis(cycleTime);
setPWM(50, 0.1);
delayMillis(cycleTime);

return 0;

void motorControl(float frequency) {
//set up pwm
float pwmFreq = 50;
//initialize i0 and pwm
piolnit();
pwmlnit();

//set pwm to center motor

setPWM(50, 0.075);

//call frequency function to oscillate motor
freq(frequency, 18);

I
// SPI read functions

24

T

void spiRead() {
printf("Reached main\n");
char filteredMidAF[16];
char filteredHighAF[16];
char filteredLowAF[16];
char filteredAF[16];

piolnit();

printf(""Past piolnit\n");
spilnit(244000, 0);
printf(""Past spilnit\n");

// Load and done pins
pinMode(LOAD_ PIN, OUTPUT);
pinMode(DONE_PIN, INPUT);
printf(""Past pinmodes\n");

testLowPassSPI(midAF, highAF, lowAF, filteredMidAF, filteredHighAF, filteredLowAF,
filteredAF);

printf("MidAF: \n");

printall(midAF, highAF, lowAF, filteredMidAF, filteredHighAF, filteredLowAF, filteredAF);

return;

I
// Functions
I

void printall(char *midAF, char *highAF, char *lowAF, char *filteredMidAF, char
*filteredHighAF, char *filteredLowAF, char *filteredAF) {
printf("MidAF: "); printl6(midAF); printf("\n");

25

printf("FilteredMidAF: "); printl6(filteredMidAF); printf("\n");

printf("HighAF: "); print16(highAF); printf("\n");
printf("FilteredHighAF: "); printl6(filteredHighAF); printf("\n");
printf("LowAF: "); printl6(lowAF); printf("\n");

printf("FilteredLowAF: "); printl6(filteredLowAF); printf("\n");
printf("FilteredLast: "); printl6(filteredAF); printf("\n");

void testLowPassSPI(char *midAF, char *highAF, char *lowAF, char *filteredMidAF, char
*filteredHighAF, char *filteredLowAF, char *filteredAF) {

printf("Reached main\n");

nt i;

int ready;

digitalWrite(LOAD_ PIN, 1);
printf("Reached main\n");

for(i=0;1<16;i++) {
filteredMidAF[i] = spiSendReceive(midAF[i]);
}

for(i=0;1<16;i++) {
filteredHighAF[i] = spiSendReceive(highAF[i]);
}

for(i=0;1<16;i++) {
filteredLowAF[i] = spiSendReceive(lowAF[i]);
H

printf("Reached main\n");

digitalWrite(LOAD_PIN, 0);

void print16(char *text) {

nt i;

for(i=0; i< 16; i++) {
printf("%02x " text[i]);
}
printf("\n");
}

/* EasyPIO.h

* Created:
*

Joshua Vasquez@hmec.edu
* Last Modified:

*

Joshua Vasquez@hmec.edu
* 15 August 2014

8 October 2013
Sarah Lichtman@hmc.edu &

5 April 2014
Sarah Lichtman@hmc.edu &

* David_Harris@hmc.edu (simplify pinMode)

*

* Library to simplify memory access on Raspberry Pi (Broadcom BCM2835).

* Must be run with root permissions using sudo.

*/

#ifndef EASY PIO H
#define EASY PIO H

// Include statements
#include <sys/mman.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>

#include <unistd.h>

27

I
// Constants
I

// GPIO FSEL Types
#define INPUT 0
#define OUTPUT 1
#define ALTO 4
#define ALTI
#define ALT2
#define ALT3
#define ALT4
#define ALTS

D W g9 O W

/I Clock Manager Bitfield offsets:

#define PWM_CLK PASSWORD 0x5a000000
#define PWM_MASH 9

#define PWM_KILL 5

#define PWM_ENAB 4

#define PWM_SRC 0

// PWM Constants

#define PLL FREQUENCY 500000000 // default PLLD value is 500 [MHz]
#define CM_FREQUENCY 25000000 // max pwm clk is 25 [MHz]

#define PLL_CLOCK_DIVISOR (PLL_FREQUENCY / CM_FREQUENCY)

I g
// Memory Map
TN

// These #define values are specific to the BCM2835, taken from "BCM2835 ARM Peripherals"
//#define BCM2835 PERI BASE 0x20000000

// Updated to BCM2836 for Raspberry Pi 2.0 Fall 2015 dmh

#define BCM2835 PERI BASE 0x3F000000

28

#idefine GPIO_BASE (BCM2835 PERI BASE + 0x200000)

#define UART BASE (BCM2835 PERI_BASE + 0x201000)
#define SPI0_BASE (BCM2835_PERI_BASE + 0x204000)
#define PWM_BASE (BCM2835 PERI BASE + 0x20c000)
#define SYS_TIMER BASE (BCM2835 PERI BASE + 0x3000)
#define ARM_TIMER BASE (BCM2835 PERI BASE + 0xB000)
#define CM_PWM _BASE (BCM2835_PERI_BASE + 0x101000)

#define BLOCK_SIZE (4*1024)

// Pointers that will be memory mapped when piolnit() is called
volatile unsigned int *gpio; //pointer to base of gpio
volatile unsigned int *spi; //pointer to base of spi registers

volatile unsigned int *pwm;

volatile unsigned int *sys_timer;

volatile unsigned int *arm_timer; // pointer to base of arm timer registers

volatile unsigned int *uart;

volatile unsigned int *cm_pwm;

I g
/I GPIO Registers
I g

// Function Select
#define GPFSEL ((volatile unsigned int *) (gpio + 0))
typedef struct
{
unsigned FSELO
unsigned FSEL1
unsigned FSEL2
unsigned FSEL3
unsigned FSEL4

“

“

“

W W W W W

29

unsigned FSELS
unsigned FSEL6
unsigned FSEL7
unsigned FSELS
unsigned FSEL9
unsigned 2 2;

} gpfselObits;

#define GPFSELODbits (*(volatile gpfselObits*) (gpio + 0))

#define GPFSELO (*(volatile unsigned int*) (gpio + 0))

“

“

“

W W W W W

typedef struct

{
unsigned FSEL10
unsigned FSELI11
unsigned FSEL12
unsigned FSEL13
unsigned FSEL14
unsigned FSEL15
unsigned FSEL16
unsigned FSEL17
unsigned FSEL18
unsigned FSEL19
unsigned 2 2;

}+ gpfsellbits;

#define GPFSEL1bits (*(volatile gpfsellbits*) (gpio + 1))

#define GPFSEL1 (*(volatile unsigned int*) (gpio + 1))

o . o . o . o . o . o . o . o . o .

W W W W W W W W W W

o .

typedef struct

{
unsigned FSEL20
unsigned FSEL21
unsigned FSEL22
unsigned FSEL23
unsigned FSEL24
unsigned FSEL25
unsigned FSEL26

o .

o .

o .

W W W W W W W

unsigned FSEL27 : 3;

unsigned FSEL28 : 3;

unsigned FSEL29 : 3;

unsigned 2 2;
} gpfsel2bits;
#define GPFSEL2bits (* (volatile gpfsel2bits*) (gpio + 2))
#define GPFSEL2 (* (volatile unsigned int *) (gpio + 2))

typedef struct

{
unsigned FSEL30
unsigned FSEL31
unsigned FSEL32
unsigned FSEL33
unsigned FSEL34
unsigned FSEL35
unsigned FSEL36
unsigned FSEL37
unsigned FSEL38
unsigned FSEL39
unsigned 2 2;

} gpfsel3bits;

#define GPFSEL3bits (* (volatile gpfsel3bits*) (gpio + 3))

#define GPFSEL3 (* (volatile unsigned int *) (gpio + 3))

o . o . o .

o .

o . o . o . o .

W W W W W W W W W W

o .

typedef struct

{
unsigned FSEL40
unsigned FSEL41
unsigned FSEL42
unsigned FSEL43
unsigned FSEL44
unsigned FSEL45
unsigned FSEL46
unsigned FSEL47

o . o . o . o . o . o . o .

W W W W W W W W

o .

31

unsigned FSEL48 : 3;

unsigned FSEL49 : 3;

unsigned 2 2;
} gpfsel4bits;
#define GPFSEL4bits (* (volatile gpfseldbits*) (gpio + 4))
#define GPFSEL4 (* (volatile unsigned int *) (gpio + 4))

typedef struct

{
unsigned FSEL50
unsigned FSEL51
unsigned FSEL52
unsigned FSEL53
unsigned : 20;

} gpfselSbits;

#define GPFSELS5bits (* (volatile gpfselSbits*) (gpio + 5))

#define GPFSELS (* (volatile unsigned int *) (gpio + 5))

o .

W W W W

// Pin Output Select

#define GPSET ((volatile unsigned int *) (gpio + 7))

typedef struct

{
unsigned SETO
unsigned SET1
unsigned SET2
unsigned SET3
unsigned SET4
unsigned SET5
unsigned SET6
unsigned SET7
unsigned SETS
unsigned SET9
unsigned SET10
unsigned SET11
unsigned SET12
unsigned SET13

[S— [S— [S— [S— [S— [S— [S— [S— [S— [S—
M M M o . o . o . o . o . o . o . o . o . o .

—_— =

[

unsigned SET14
unsigned SET15
unsigned SET16
unsigned SET17
unsigned SET18
unsigned SET19
unsigned SET20
unsigned SET21
unsigned SET22
unsigned SET23
unsigned SET24
unsigned SET25
unsigned SET26
unsigned SET27
unsigned SET28
unsigned SET29
unsigned SET30
unsigned SET31
} gpsetObits;
#define GPSETObits (* (volatile gpsetObits*) (gpio + 7))
#define GPSETO (* (volatile unsigned int *) (gpio + 7))

[[“ . “ . “ . “ . “ . “ . “ . “ . “ . “ . “ . “ . “ . “ . “ .

— = e e e e e e e e e e e e ek e e

[

typedef struct

{
unsigned SET32
unsigned SET33
unsigned SET34
unsigned SET35
unsigned SET36
unsigned SET37
unsigned SET38
unsigned SET39
unsigned SET40
unsigned SET41
unsigned SET42
unsigned SET43

unsigned SET44 1
unsigned SET45 1
unsigned SET46 1
unsigned SET47 1
unsigned SET48 1
unsigned SET49 1
unsigned SET50 1
unsigned SET51 1
unsigned SET52 1
unsigned SET53 1
unsigned : 10;

} gpsetlbits;

#define GPSET 1bits (* (volatile gpsetlbits*) (gpio + 8))
#define GPSET1 (* (volatile unsigned int *) (gpio + 8))

// Pin Output Clear

#define GPCLR ((volatile unsigned int *) (gpio + 10))

typedef struct

{
unsigned CLRO
unsigned CLR1
unsigned CLR2
unsigned CLR3
unsigned CLR4
unsigned CLR5
unsigned CLR6
unsigned CLR7
unsigned CLR8
unsigned CLR9
unsigned CLR10 1
unsigned CLR11 1
unsigned CLR12 :1
unsigned CLR13 : 1;
unsigned CLR14 1
unsigned CLR15 1
unsigned CLR16 1

unsigned CLR17
unsigned CLR18
unsigned CLR19
unsigned CLR20
unsigned CLR21
unsigned CLR22
unsigned CLR23
unsigned CLR24
unsigned CLR25
unsigned CLR26
unsigned CLR27
unsigned CLR28
unsigned CLR29
unsigned CLR30
unsigned CLR31
} gpelrObits;
#define GPCLRObits (* (volatile gpclrObits*) (gpio + 10))
#define GPCLRO (* (volatile unsigned int *) (gpio + 10))

“ . “ . “ . “ . “ . “ .

“ .

“ . “ . “ . “ . “ . “ .

— — — — — — — — — — — — — — —
“ .

“ .

typedef struct

{
unsigned CLR32
unsigned CLR33
unsigned CLR34
unsigned CLR35
unsigned CLR36
unsigned CLR37
unsigned CLR38
unsigned CLR39
unsigned CLR40
unsigned CLR41
unsigned CLR42
unsigned CLR43
unsigned CLR44
unsigned CLR45
unsigned CLR46

- . - . - . - . - . - .

“ .

“ . “ . “ . “ . “ . “ .

—_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_—
“ .

“ .

unsigned CLR47 1
unsigned CLR48 1
unsigned CLR49 01
unsigned CLR50 1
unsigned CLR51 1
unsigned CLR52 1
unsigned CLR53 1
unsigned : 10;

tgpclrlbits;

#define GPCLR 1bits (* (volatile gpclrlbits*) (gpio + 11))
#define GPCLRI1 (* (volatile unsigned int *) (gpio + 11))

// Pin Level

#define GPLEV ((volatile unsigned int *) (gpio + 13))

typedef struct

{
unsigned LEVO0
unsigned LEV1
unsigned LEV2
unsigned LEV3
unsigned LEV4
unsigned LEVS5
unsigned LEV6
unsigned LEV7
unsigned LEV8
unsigned LEV9
unsigned LEV10
unsigned LEV11
unsigned LEV12
unsigned LEV13
unsigned LEV14
unsigned LEV15
unsigned LEV16
unsigned LEV17
unsigned LEV18
unsigned LEV19

[a—y [a—y [a—y [a—y [a—y [a—y [a—y [a—y [a—y [a—y
o . o . o . o . o . o . o . o . o . o .
o . o . o . o . o . o . o . o . o .

) pm e e e e e e e

o .

unsigned LEV20
unsigned LEV21
unsigned LEV22
unsigned LEV23
unsigned LEV24
unsigned LEV25
unsigned LEV26
unsigned LEV27
unsigned LEV28
unsigned LEV29
unsigned LEV30
unsigned LEV31
}gplevObits;
#define GPLEVObits (* (volatile gplevObits*) (gpio + 13))
#define GPLEVO (* (volatile unsigned int *) (gpio + 13))

o . o . o . o . o . o . o . o . o . o . o .

—t e e e e e ek e e e e e

o .

typedef struct

{
unsigned LEV32
unsigned LEV33
unsigned LEV34
unsigned LEV35
unsigned LEV36
unsigned LEV37
unsigned LEV38
unsigned LEV39
unsigned LEV40
unsigned LEV41
unsigned LEV42
unsigned LEV43
unsigned LEV44
unsigned LEV45
unsigned LEV46
unsigned LEV47
unsigned LEV48

o . o . o . o . o . o . o .

- .

- . o . o . o . o . o . - .

[a—y [a—y [a—y [a—y [a—y [a—y [a—y [a—y [a—y [a—y [a—y [a—y [a—y [a—y [a—y [a—y [a—y
- .

- .

unsigned LEV49 1
unsigned LEV50 1
unsigned LEV51 1
unsigned LEV52 1
unsigned LEV53 1
unsigned : 10;

}gplevlbits;

#define GPLEV 1bits (* (volatile gplev1bits*) (gpio + 14))

#define GPLEV1 (* (volatile unsigned int *) (gpio + 14))

T g
// SPI Registers
TN

typedef struct
{
unsigned CS :2;
unsigned CPHA
unsigned CPOL
unsigned CLEAR
unsigned CSPOL
unsigned TA 1
unsigned DMAEN 1
unsigned INTD 1
unsigned INTR 1
unsigned ADCS :1
unsigned REN 1
1
1
1
1

“ . “ .

—_— N = =
-

unsigned LEN

unsigned LMONO
unsigned TE_EN
unsigned DONE
unsigned RXD 1
unsigned TXD :1;
unsigned RXR 1
unsigned RXF 1
unsigned CSPOLO :1;

unsigned CSPOL1 :1;
unsigned CSPOL2 :1;
unsigned DMA_LEN :1;

unsigned LEN LONG 1
unsigned :6;
}spiOcsbits;

#define SPIOCSbits (* (volatile spiOcsbits*) (spi + 0))
#define SPIOCS (* (volatile unsigned int *) (spi + 0))

#define SPIOFIFO (* (volatile unsigned int *) (spi + 1))
#define SPIOCLK (* (volatile unsigned int *) (spi + 2))
#define SPIODLEN (* (volatile unsigned int *) (spi + 3))

I
// System Timer Registers
T

typedef struct
{
unsigned MO 1
unsigned M1 :1;
unsigned M2 :1;
unsigned M3 :1;
unsigned :28;
}sys_timer csbits;
#define SYS TIMER CSbits (*(volatile sys_timer csbits*) (sys_timer + 0))
#define SYS TIMER CS (* (volatile unsigned int*)(sys_timer + 0))

#define SYS TIMER CLO (* (volatile unsigned int*)(sys_timer + 1))
#define SYS TIMER CHI (* (volatile unsigned int*)(sys_timer + 2))

#define SYS TIMER CO (* (volatile unsigned int*)(sys_timer + 3))
#define SYS TIMER C1 (* (volatile unsigned int*)(sys_timer + 4))
#define SYS TIMER C2 (* (volatile unsigned int*)(sys_timer + 5))
#define SYS TIMER C3 (* (volatile unsigned int*)(sys_timer + 6))

T g

// ARM Interrupt Registers
I

#define IRQ PENDING_ BASIC (* (volatile unsigned int *) (arm_timer + 128))
#define IRQ_PENDINGTI (* (volatile unsigned int *) (arm_timer + 129))
#define IRQ_PENDING?2 (* (volatile unsigned int *) (arm_timer + 130))

#define IRQ_ENABLE]1 (* (volatile unsigned int *) (arm_timer + 132))
#define IRQ_ENABLE2 (* (volatile unsigned int *) (arm_timer + 133))
#define IRQ_ENABLE BASIC (* (volatile unsigned int *) (arm_timer + 134))
#define IRQ_DISABLEL1 (* (volatile unsigned int *) (arm_timer + 135))
#define IRQ_DISABLE2 (* (volatile unsigned int *) (arm_timer + 136))
#define IRQ _DISABLE BASIC (* (volatile unsigned int *) (arm_timer + 137))

s
// ARM Timer Registers
T g

#define ARM_TIMER LOAD (* (volatile unsigned int *) (arm_timer + 256))
//TODO: make timer control struct

#define ARM_TIMER CONTROL (* (volatile unsigned int *) (arm_timer + 258))
#define ARM_TIMER IRQCLR (* (volatile unsigned int*) (arm_timer + 259))
#define ARM_TIMER RAWIRQ (* (volatile unsigned int *) (arm_timer + 260))
#define ARM_TIMER RELOAD (* (volatile unsigned int *) (arm_timer + 262))
#define ARM_TIMER DIV (* (volatile unsigned int *) (arm_timer + 263))

I g
// UART Registers
T

typedef struct

{
unsigned DATA : 8;
unsigned FE 21
unsigned PE 21
unsigned BE 01

40

unsigned OE 1

unsigned : 20;
} vart_drbits;
#define UART DRbits (* (volatile uvart_drbits*) (uart + 0))
#define UART DR (*(volatile unsigned int *) (uart + 0))

typedef struct

{
unsigned int CTS o1
unsigned int DSR 1
unsigned int DCD 1
unsigned int BUSY 1
unsigned int RXFE 1
unsigned int TXFF 01
unsigned int RXFF 1
unsigned int TXFE 1
unsigned int RI 1
unsigned int : 24,

} vart_frbits;

#define UART FRbits (*(volatile uart_frbits*) (uart + 6))

#define UART FR (*(volatile unsigned int *) (uart + 6))

typedef struct
{
unsigned int IBRD : 16;
unsigned int : 16;
} vart_ibrdbits;
#define UART IBRDbits (*(volatile uart ibrdbits*) (uart + 9))
#define UART IBRD (*(volatile unsigned int *) (uart + 9))

typedef struct
{
unsigned int FBRD : 6;
unsigned int : 26;
} uart_fbrdbits;
#define UART FBRDbits (*(volatile uart_fbrdbits*) (uart + 10))

#define UART _FBRD (*(volatile unsigned int *) (uart + 10))

typedef struct
{
unsigned int BRK 01
unsigned int PEN 1
unsigned int EPS 1
unsigned int STP2 1
unsigned int FEN 1
unsigned int WLEN 1 2;
unsigned int SPS 21
unsigned int : 24,
} vart_lcrhbits;
#define UART_ LCRHbits (* (volatile uart_lcrhbits*) (uart + 11))
#define UART LCRH (*(volatile unsigned int *) (uart + 11))

typedef struct

{
unsigned int UARTEN : 1;
unsigned int SIREN : 1;
unsigned int SIRLP : 1;
unsigned int 2 4;
unsigned int LBE 1
unsigned int TXE 1
unsigned int RXE 1
unsigned int DTR 1
unsigned int RTS 1
unsigned int OUT1
unsigned int OUT2
unsigned int RTSEN
unsigned int CTSEN
unsigned int : 16;

} uart_crbits;

#define UART_CRbits (* (volatile uart_crbits*) (uart + 12))

#define UART _CR (*(volatile unsigned int *) (uart + 12))

typedef struct
{
unsigned int RIRMIS : 1;
unsigned int CTSRMIS : 1;
unsigned int DCDRMIS : 1;
unsigned int DSRRMIS : 1;
unsigned int RXRIS : 1;
unsigned int TXRIS

b

unsigned int RTRIS
unsigned int FERIS
unsigned int PERIS
unsigned int BERIS
unsigned int OERIS

unsigned int :21;

M 3

1
1
o1
11
11
1:

b

} vart_risbits;
#define UART RISbits (* (volatile uart_risbits*) (uart + 15))
#define UART RIS (*(volatile unsigned int *) (uart + 15))

g
// PWM Registers
g

typedef struct

{
unsigned PWEN1 :1;
unsigned MODE1 :1;
unsigned RPTL1 :1;
unsigned SBIT1 :1;
unsigned POLA1 :1;
unsigned USEF1 :1;
unsigned CLRF1 :1;
unsigned MSEN1 1
unsigned PWEN2 :1;
unsigned MODE2 :1
unsigned RPTL2 :1;

unsigned SBIT2 :1;
unsigned POLA2 :1;
unsigned USEF2 :1;

unsigned :1;
unsigned MSEN2 :1;
unsigned :16;

} pwm_ctlbits;
#define PWM_CTLbits (* (volatile pwm_ ctlbits *) (pwm + 0))
#define PWM_CTL (*(volatile unsigned int *) (pwm + 0))

#define PWM_RNGTI (*(volatile unsigned int *) (pwm + 4))
#define PWM_DATI (*(volatile unsigned int *)(pwm + 5))

I
/I Clock Manager Registers
T

typedef struct
{
unsigned SRC 4;
unsigned ENAB :1;
unsigned KILL :1;
unsigned :1;
unsigned BUSY :1;
unsigned FLIP :1;
unsigned MASH :2;
unsigned :13;
unsigned PASSWD :8§;
jcm_pwmctl bits;
#define CM_PWMCTLbits (* (volatile cm_pwmctl_bits *) (cm_pwm + 40))
#define CM_PWMCTL (* (volatile unsigned int*) (cm_pwm + 40))

typedef struct

{
unsigned DIVF :12;
unsigned DIVI 112;

44

unsigned PASSWD :8§;
} cm_pwmdivbits;
#define CM_PWMDIVbits (* (volatile cm_pwmdivbits *) (cm_pwm + 41))
#define CM_PWMDIV (*(volatile unsigned int *)(cm_pwm + 41))

I
// General Functions
I

// TODO: return error code instead of printing (mem_fd, reg_map)
void piolnit() {
int mem_fd;

void *reg_map;

// /dev/mem is a psuedo-driver for accessing memory in the Linux filesystem
if ((mem_fd = open("/dev/mem", O RDWR|O SYNC)) <0) {

printf("can't open /dev/mem \n");

exit(-1);

reg_map = mmap(
NULL, //Address at which to start local mapping (null means don't-care)
BLOCK SIZE, //Size of mapped memory block
PROT READ|PROT WRITE,// Enable both reading and writing to the mapped memory
MAP SHARED, // This program does not have exclusive access to this memory
mem_fd, // Map to /dev/mem
GPIO_BASE); // Offset to GPIO peripheral

if (reg_map == MAP_FAILED) {
printf(""gpio mmap error %d\n", (int)reg_map);
close(mem_fd);
exit(-1);

}

gpio = (volatile unsigned *)reg_map;

45

reg_map = mmap(
NULL, //Address at which to start local mapping (null means don't-care)
BLOCK SIZE, //Size of mapped memory block
PROT READ|PROT WRITE,// Enable both reading and writing to the mapped memory
MAP SHARED, // This program does not have exclusive access to this memory
mem_fd, // Map to /dev/mem
SPI0O BASE); // Offset to SPI peripheral

if (reg_ map == MAP_FAILED) {
printf(""spi mmap error %d\n", (int)reg_map);
close(mem_fd);
exit(-1);

}
spi = (volatile unsigned *)reg_map;

reg_map = mmap(
NULL, //Address at which to start local mapping (null means don't-care)
BLOCK SIZE, //Size of mapped memory block
PROT READ|PROT WRITE,// Enable both reading and writing to the mapped memory
MAP SHARED, // This program does not have exclusive access to this memory
mem_fd, // Map to /dev/mem
PWM BASE); // Offset to PWM peripheral

if (reg_map == MAP_FAILED) {
printf("pwm mmap error %d\n", (int)reg_map);
close(mem_fd);
exit(-1);

}

pwm = (volatile unsigned *)reg map;

reg_map = mmap(
NULL, //Address at which to start local mapping (null means don't-care)
BLOCK SIZE, //Size of mapped memory block
PROT READ|PROT WRITE,// Enable both reading and writing to the mapped memory

46

MAP SHARED, // This program does not have exclusive access to this memory
mem_fd, // Map to /dev/mem
SYS TIMER BASE); // Offset to Timer peripheral

if (reg_ map == MAP_FAILED) {
printf("'sys timer mmap error %d\n", (int)reg_map);
close(mem_fd);
exit(-1);

}
sys_timer = (volatile unsigned *)reg_map;

reg_map = mmap(
NULL, //Address at which to start local mapping (null means don't-care)
BLOCK SIZE, //Size of mapped memory block
PROT READ|PROT WRITE,// Enable both reading and writing to the mapped memory
MAP SHARED, // This program does not have exclusive access to this memory
mem_fd, // Map to /dev/mem
ARM TIMER BASE); // Offset to interrupts

if (reg_ map == MAP_FAILED) {
printf("arm timer mmap error %d\n", (int)reg_map);
close(mem_fd);
exit(-1);

}
arm_timer = (volatile unsigned *)reg map;

reg_map = mmap(
NULL, //Address at which to start local mapping (null means don't-care)
BLOCK SIZE, //Size of mapped memory block
PROT READ|PROT WRITE,// Enable both reading and writing to the mapped memory
MAP SHARED, // This program does not have exclusive access to this memory
mem_fd, // Map to /dev/mem
UART BASE); // Offset to UART peripheral

47

if (reg_ map == MAP_FAILED) {
printf(""uart mmap error %d\n", (int)reg_map);
close(mem_fd);
exit(-1);

}

uart = (volatile unsigned *)reg_map;

reg_map = mmap(
NULL, //Address at which to start local mapping (null means don't-care)
BLOCK SIZE, //Size of mapped memory block
PROT READ|PROT WRITE,// Enable both reading and writing to the mapped memory
MAP SHARED, // This program does not have exclusive access to this memory
mem_fd, // Map to /dev/mem
CM_PWM BASE); // Offset to ARM timer peripheral

if (reg_ map == MAP_FAILED) {
printf("cm_pwm mmap error %d\n", (int)reg_map);
close(mem_fd);
exit(-1);

}

cm_pwm = (volatile unsigned *)reg map;

close(mem_fd);

I i
// Interrupt Functions
I i

int irq1, irq2, irgbasic;
void nolnterrupts(void) {

//save current interrupts
irql =IRQ_ENABLEI;

48

irq2 = IRQ_ENABLEZ2;
irgbasic = IRQ_ENABLE BASIC;

//disable interrupts

IRQ DISABLEI1 =irql;

IRQ DISABLE2 =irq2;

IRQ DISABLE BASIC = irgbasic;

void interrupts(void) {
if(IRQ_ENABLE1 == 0){ // if interrupts are disabled
//restore interrupts
IRQ ENABLEI1 =irql;
IRQ ENABLE2 =irq2;
IRQ ENABLE BASIC = irgbasic;

I
// GPIO Functions
I

void pinMode(int pin, int function) {
intreg = pin/10;
int offset = (pin%10)*3;
GPFSEL[reg] &= ~((0b111 & ~function) << offset);
GPFSEL[reg] |= ((Obl111 & function) << offset);

void digital Write(int pin, int val) {
int reg = pin / 32;
int offset = pin % 32;

if (val) GPSET[reg] = 1 << offset;
else GPCLR[reg] = 1 << offset;

49

int digitalRead(int pin) {
int reg = pin / 32;
int offset = pin % 32;

return (GPLEV[reg] >> offset) & 0x00000001;

void pinsMode(int pins[], int numPins, int fxn) {
nt i;
for(i=0; i<numPins; ++i) {
pinMode(pins[i], fxn);
}

void digital Writes(int pins[], int numPins, int val) {
nt i;
for(i=0; i<numPins; i++) {
digital Write(pins[i], (val & 0x00000001));

val = val >> 1;

int digitalReads(int pins[], int numPins) {
int 1, val = digitalRead(pins[0]);

for(i=1; i<numPins; i++) {
val = (digitalRead(pins[i]) << 1i);
b

return val;

0170171011711
// Timer Functions

T T

50

// RP1 timer peripheral clock is IMHz.
// MO and M3 are used by the GPU, so we must use M1 or M2

void delayMicros(int micros) {
SYS TIMER CI1 =SYS TIMER CLO + micros; //setthe compare register
// 1000 clocks per millisecond
SYS TIMER CSbits.MI1 = 1; // reset match flag to 0
while(SYS TIMER CSbits.M1 == 0); // wait until the match flag is set

void delayMillis(int millis) {
delayMicros(millis*1000); // 1000 microseconds per millisecond

I
// SPI Functions
I

void spilnit(int freq, int settings) {
//set GPIO 8 (CE), 9 (MISO), 10 (MOSI), 11 (SCLK) alt fxn 0 (SPI0)
pinMode(8, ALTO);
pinMode(9, ALTO);
pinMode(10, ALTO);
pinMode(11, ALTO);

//Note: clock divisor will be rounded to the nearest power of 2
SPIOCLK = 250000000/freq; // set SPI clock to 250MHz / freq
SPIOCS = settings;

SPIOCSbits.TA =1; // turn SPI on with the "transfer active" bit

char spiSendReceive(char send){
SPIOFIFO = send; // send data to slave
while(!SPIOCSbits.DONE); // wait until SPI transmission complete
return SPIOFIFO; // return received data

51

short spiSendReceivel6(short send) {
short rec;
SPIOCSbits.TA =1; // turn SPI on with the "transfer active" bit
rec = spiSendReceive((send & 0xFF00) >> 8); // send data MSB first
rec = (rec << 8) | spiSendReceive(send & 0xFF);
SPIOCSbits. TA = 0; // turn off SPI

return rec;

I
// UART Functions
I

void uartlnit(int baud) {
uint fb = 12000000/baud; // 3 MHz UART clock

pinMode(14, ALTO);

pinMode(15, ALTO);

UART IBRD = fb >> 6; // 6 Fract, 16 Int bits of BRD

UART FBRD = fb & 63;

UART_ LCRHbits. WLEN =3; // 8 Data, 1 Stop, 0 Parity, no FIFO, no Flow
UART CRbits.UARTEN =1; // Enable uart.

char getCharSerial(void) {
while (UART FRbits.RXFE); // Wait until data is available.
return UART DRbits.DATA; // Return char from serial port.

void putCharSerial(char c) {
while ('UART FRbits. TXFE);
UART DRbits.DATA =c;

}

52

I
// Pulse Width Modulation Functions
I

void pwmlnit() {
pinMode(18, ALTYS);

// Configure the clock manager to generate a 25 MHz PWM clock.

// Documentation on the clock manager is missing in the datasheet

// but found in "BCM2835 Audio and PWM Clocks" by G.J. van Loo 6 Feb 2013.
// Maximum operating frequency of PWM clock is 25 MHz.

// ' Writes to the clock manager registers require simultaneous writing

//'a "password" of 5A to the top bits to reduce the risk of accidental writes.

CM_PWMCTL = 0; // Turn off PWM before changing

CM_PWMCTL = PWM_CLK PASSWORD|0x20; // Turn off clock generator

while(CM_PWMCTLDbits.BUSY); // Wait for generator to stop

CM_PWMCTL =PWM_CLK PASSWORDI|0x206; // Src = unfiltered 500 MHz CLKD

CM_PWMDIV =PWM _CLK PASSWORD|(PLL CLOCK DIVISOR << 12); // PWM Freq
=25 MHz

CM_PWMCTL =CM_PWMCTLPWM_CLK PASSWORDI0x10; // Enable PWM clock

while (!CM_PWMCTLbits.BUSY); // Wait for generator to start

PWM CTLbits. MSENT1 = 1; // Channel 1 in mark/space mode

PWM CTLbits. PWENI1 = 1; // Enable pwm

/**
* dut is a value between 0 and 1
* freq is pwm frequency in Hz
*/
void setPWM(float freq, float dut) {
PWM_RNGI = (int)(CM_FREQUENCY / freq);
PWM_DATI = (int)(dut * (CM_FREQUENCY / freq));

void analogWrite(int val) {

53

#endif

setPWM(78125, val/255.0);

54

