
1

Collectorbot
Kramer STRAUBE & Nadia M’TARRAH

E115 Final Project Report

December 11th, 2009

ABSTRACT

This project was to build a robot by using a Radio-Controlled (RC) car which was
controllable through either an autonomous or a radio control mode. This robot could drive
around, detect walls with a distance sensor and avoid them in autonomous mode. In radio control
mode, the user could bump and object to grab it and deposit it into a container located on the
back of the RC car, provided the object met certain weight and size criteria. This prototype was
using the PIC, FPGA, two H-Bridges, a EZTEC Silverado 1:15 RC Car, one LEGO light sensor
which was used for two functions : an ambient light and a distance sensor, one LEGO touch
sensor, and two LEGO motors to actuate the two axes of the claw.

2

INTRODUCTION

Radio-Controlled cars provide a cheap and widespread platform for robotic applications

but they generally begin with only the low level capabilities of movement via radio control. We

sought to add new features to the commercial RC car to demonstrate its worth as part of a robotic

platform. The central added feature was the ability of the RC car to grab objects and deposit

them into a container located on the top of the RC car. Another feature was to illuminate LEDs

on the car body when the ambient lighting was sufficiently lacking. Lastly, the RC car was to be

capable of moving autonomously using a distance sensor.

A LEGO light sensor is multiplexed as both an ambient light sensor and as a distance

sensor (in conjunction with an LED in the sensor). The distance sensor operates by shining an

LED on the objects and measuring the reflected light. This method only works well for very

short distances (<30 centimeters) and has differing outputs based on the reflectivity of the object.

When the distance sensor measures a certain threshold of reflected light in autonomous mode,

the robot is programmed to turn. The ambient light sensor connects to the PIC so that when the

ambient light is low enough, a control bit is sent to the FPGA which illuminates the LEDs.

A LEGO touch sensor is used to determine when the robot bumped into an object during

radio control mode and activates the claw. The claw activation is controlled by the PIC and

consists of four stages: closing the claw to grab the object, lifting the claw and object, opening

the claw to drop the object in the container and dropping the claw back down into its original

position.

PIC Design

3

The PIC (PIC p18f452) is used for various functions in this project. First, the PIC takes in

directional inputs and a stop input and uses simple logic to determine which RC Car motors to

drive. The motors are driven through an H-Bridge SN 754410 to step up the voltage from 3.3 V

out of the PIC to 6 V needed to properly drive the motors. The PIC also took a collection input

that indicated that the claw collection routine should begin. When this input is high, the PIC uses

a series of timer values and interrupts involving TMR0 to accurately perform the four stages of

collection.

Another use for the PIC is to perform A/D conversions on the input from the analog

LEGO light sensor. The LEGO light sensor is multiplexed as an ambient light sensor and a

distance sensor by having the PIC control the LED on the LEGO light sensor. Then, the analog

input to the PIC is converted to digital bits. These digital bits are either analyzed to determine

whether the lighting is sufficient or the eight lowest bits are inverted and sent to the FPGA.

FPGA Design

The FPGA is used to control mode selection, RC input, sensor analysis, and the

autonomous mode. The FPGA takes in the input from a LEGO touch sensor to determine when

an object is bumped and sends the appropriate signal to the PIC to initiate the collection routine.

The FPGA controls which mode is being used (radio control or autonomous) by reading a value

from one of the DIP switches on the HarrisBoard.

The radio control receiver module drives several inputs on the FPGA. The FPGA reads

these values to determine appropriate actions. When in autonomous mode, if the ‘up’ radio

control input is high, then the stop output is powered to make the car completely stop moving. In

4

radio control mode, the radio control receiver inputs are passed directly through to the PIC as

directions.

The FPGA interprets the information sent to it by the PIC to decode what the sensors

imply. The PIC drives one input on the FPGA which indicates whether there is sufficient

ambient light. When there is not and the robot is in radio control mode, the FPGA illuminates

LEDs on the robot. When the robot is in autonomous mode, the LEDs are always lit as an

indicator of the autonomous mode. The PIC sends the distance information from the LEGO light

sensor to the FPGA. If the value is considered to be low enough and the robot is in autonomous

mode then FPGA will send the PIC the signal to turn the car for a given duration to avoid the

wall.

The autonomous mode is controlled by the FPGA. The FPGA uses the distance inputs

from the PIC to control when to turn. When the distance is large enough, the robot will just go

forward. This makes for a simple left-turn algorithm.

The FPGA is used to run the autonomous mode of which the mode of selection is

controlled by one of the dip switches on the board. Then the FPGA will output signals indicating

the directions (forward, backwards, left and right) to move and the PIC will control the motors

appropriately.

New Hardware

5

Six new pieces of hardware are used in the design and implementation of this robot: the

radio-control receiver, the RC car motors, the LEGO motors, the LEGO touch sensor, the LEGO

light sensor and the H-Bridge.

The radio-control receiver is treated as an input bus to the FPGA. These inputs need to be

connected to pull-down resistors to prevent charge from staying on the wire and holding inputs

high. The power for all of the hardware except the LEGO motors comes from the 6 V of AA

batteries in the RC car body and is pulled from a pin on the radio-control receiver.

The RC car motors are controlled through an H-Bridge to step up the voltages from the

3.3 V output from the PIC to the 6 V required. These motors are 6 V DC motors. The RC car

motors only need to be connected at the two terminals for forward voltage and reverse voltage.

They are controlled at either full forward voltage, full reverse voltage or no voltage. The

direction and magnitude of the voltage applied control the direction and magnitude of the speed

of the wheel.

The LEGO motors are driven by an output from the PIC that runs through an H-Bridge to

step the voltage up from 3.3 V to 9 V needed to run the motors. The LEGO motors are PWM

motors with shaft encoders but in this design are only connected at the two voltage terminals.

Like the DC motors, the direction and magnitude of the voltage applied control the direction and

magnitude of the speed of the driveshaft. In this design, the LEGO motors are only run at full

voltage, in forward or reverse, or at no voltage.

6

The LEGO touch sensor acts like a switch and is connected in a voltage divider circuit to

the PIC. When the sensor is depressed, the switch is connected and the PIC input is high.

Otherwise, the input is low.

The LEGO light sensor is connected with a ground, a 4.3 V logic input, an analog output

with a 10 kOhm pull-up resistor and an input pin to control the light. The 4.3 V logic input is

used to determine whether the input pin is high or low. The input pin is connected to a PIC

output. When this pin is high, the light is on. Otherwise, the light is off. The analog output is

connected to the PIC on pin RA0 where an A/D conversion occurs inside the PIC. This output is

larger when the light sensor gets less light and smaller in the absence of light.

The H-Bridge is a more complicated piece of hardware. The H-bridge controls up to 4

outputs based on one input per output and one enable per two outputs. The H-Bridge also takes

two voltages in: 6 V, to use for logic comparisons with the inputs and enables, and 6 V or 9 V

depending on which H-Bridge is under inspections. The 6 V source is used to draw more current

from the batteries so the PIC does not directly drive the motors at its lesser voltage and lower

current capabilities. The 9 V source is used to drive the LEGO motors. The 3.3 V outputs from

the PIC are read as high values on the H-Bridge with a logic voltage of 6 V. The specific H-

Bridge in use is the SN754410. When the enable is high, the output will equal the input.

However, the enable and input are considered high at the logic voltage (VCC1) while the output

is driven high at the output voltage (VCC2). Now since the motors are connected with a voltage

terminal on two different H-Bridge outputs, the output pairs can cause specific behaviors. If both

outputs are low, then the motor can freely spin. If one output is high and the other is low, the

7

motor spins based on that output. If both outputs are high, then the motor resists any movement,

effectively acting like a brake.

Mechanical Design

The mechanical design of the robot proved quite difficult. Two different sensors burnt out

during the construction (the Sharp GP2D12 and the Kemo B045 Photo Sensor Kit). This forced

us to use the LEGO light sensor and to multiplex it. Further difficulties were found when

constructing the claw. The claw needed the ability to apply large forces on the inside of the claw

and to be lifted effectively. It also needed to be able to grip objects. The claw was made from

LEGOs but was connected in key places many times over to ensure rigidity. The inside of the

claw was covered with sandpaper to provide grip. The container was simply the aesthetic plastic

car shape, which we removed from the RC car, turned over and connected to the car body. Many

pull-down resistors were added because they removed many issues with motors such as

continues inputs or H-Bridge inputs being forced a voltage when they were off.

Results

The entire design functioned on the bench over many test runs. However, once the pieces

were combined on the car body, the PIC did not function properly and seemed to enter an endless

loop when placed into a ‘run’ mode. When in an ‘animate’ mode, the PIC would run but

interrupts and loading timer values did not work. Since this began

8

Schematics/Block Diagram

 The schematic is very hectic due to the large number of inputs and outputs. The inputs

and outputs are labeled on the HarrisBoard and other larger hardware pieces.

RC Car

Motor Motor

Right

Left

Forward

Backward

RC out
Right

RC out
Left

Receiving
Antenna

RC out
Forward

RC out
Backward

Vin
GND
+3.3V

Harris Board

RA0 – Analog Light Sensor Input

PIC 18f4520
Microcontroller

RA2 – RC Motor Forward

RA5 – Light sensor LED

RE0 – Ambient Light pin out from PIC

RA3 – RC Motor Backwards

RE1/P79 – RC Motor Left

RB0 – LEGO Claw Left

RB5 – RC Rear Motor Enable
RB3 – LEGO Arm Left
RB2 – LEGO Arm Right
RB1 LEGO Claw Right

RC2/P84
RC3/P85

RC0/P82
RC1/P83

RC4/P85 – Stop to PIC
RC5/P86 – Claw to PIC

RE2/P80 – RC Motor Right

P8
P7
P6
P5

P10 – light LED

6V

6V

6V

9V (batteries)

6V

6V

6V

SN754410

SN754410

1

1

9

98

8

1,2EN

1,2EN

1A

1A

1Y

1Y

2Y

2Y

2A

2A

VCC2

VCC2

VCC1

VCC1

4Y

4Y

4A

4A

3Y

3Y

3A

3A

3,4EN

3,4EN

HEAT SINK
AND

GROUND

HEAT SINK
AND

GROUND

HEAT SINK
AND

GROUND

HEAT SINK
AND

GROUND

6VDistance sensor

Potentiometer
1kΩ

6V

6V

Claw

Arm Motor

Touch Sensor 9V (batteries)

390 Ω

390 Ω

390 Ω

1 kΩ

1 kΩ

1 kΩ

1 kΩ

1 kΩ

1 kΩ

1 kΩ

1 kΩ

1 kΩ

1 kΩ

120 Ω

390 Ω

390 Ω

10 MΩ

Left
motor
input

Right
motor
input

Right
motor
input

Left
motor
input

10 kΩ

390 Ω

GND

GND

Figure 1. Schematics of the breadboard

330 Ω

P1 - LEGO Touch Sensor

RC Receiver
Inputs

P2 - photosensor

RD – Distance Data to FPGA

Directions
to PIC

9

References

Sn754410. (n.d.). Retrieved from http://www3.hmc.edu/~harris/class/e155/sn754410.pdf

Mindstorms. (n.d.). Retrieved from http://mindstorms.lego.com/en-us/Default.aspx

Evans, Tony and James Steele. “Radio-Controlled Tank” Retrieved from
http://www3.hmc.edu/~sharris/class/e155/Projects_2007/RCTank.pdf

10

Parts List

Item Name Source Cost

1 EZTEC Chevy Silverado
1:19 RC (Blue) (Model #:
21119)

Radioshack $19.99

2 LEGO Motors + cables Stockroom -
2 H-Bridges (SN754410) Lab -
1 LEGO NXT Distance/Light
Sensor Stockroom -

1 HarrisBoard (PIC 18F4520) Lab -
1 Operational Amplifier
(UA471) Lab -

1 LEGO NXT pieces kit Stockroom -
7 LEDs Lab -

1 LEGO touch sensor + cable Stockroom -

11 Resistors of 1kΩ Lab -
7 Resistors of 390Ω Lab -
1 Resistor of 10MΩ Lab -
1 Resistor of 30kΩ Lab -
1 Resistor of 46kΩ Lab -
1 Resistor of 7kΩ Lab -
1 Potentiometer 1kΩ Lab -
Duct Tape Kramer Straube -
Cable Ties Kramer Straube -

11

Appendix

PIC Code

#include <p18f452.h>

 /**
 Kramer Straube and Nadia M'Tarrah
 MicroP's Final Project PIC code
 12/8/2009

 Function: This code takes in inputs from the FPGA and interprets those
 into appropriate motor movements. It also performs A/D conversion
 on a light sensor which is also used with a light as a distance sensor.

 Notes:
 TMR0 values were found through testing and readjusting
 Interrupts likely failing due to RF interference (also causes claw to fail)
 Only works in Animate in Debug mode in nearly all functionality
 Run allows for RC car motor running but not much else
 **/
/** method prototypes **/
void main(void);
void claw(void);
void isr(void);
void setupAD1(void);
void setupAD2(void);
char stage;
char ADsource;

#pragma code high_vector = 0x08
void high_interrupt(void){
_asm
GOTO isr
_endasm
}

#pragma code
#pragma interrupt isr

12

 void isr(void){ //handles all the interrupts
 INTCONbits.GIE = 1; //reset the global interrupt
 if (INTCONbits.TMR0IF == 1){
 INTCONbits.TMR0IF = 0; //clear the flag
 //based on cycle number set the outputs accordingly
 if (stage == 1){
 TMR0H = 0x5A;
 PORTBbits.RB0 = 0; //stop closing claw
 PORTBbits.RB2 = 1; //raise arm
 TMR0L = 0x97; //set tmr0 value
 }
 if (stage == 2){
 TMR0H = 0xE8;
 PORTBbits.RB2 = 0; //turn off raise arm
 PORTBbits.RB1 = 1; //open claw
 TMR0L = 0x97; //set tmr0 value
 }

 if (stage == 3){
 TMR0H = 0x5A;
 PORTBbits.RB1 = 0; //turn off the open claw
 PORTBbits.RB3 = 1; //drop the arm down
 TMR0L = 0x97; //set tmr0 value
 }
 if (stage == 4){

 PORTB= 0; //clear portB
 }
 TMR0H = 0xFF;
 TMR0L = 0xFF;
 stage = stage +1; //increment the stage
 }

 if (PIR1bits.ADIF == 1){
 PIR1bits.ADIF = 0; //clear the flag
 if (ADsource){
 //move the A/D bits needed to the PIC output pins
 PORTD = 0xFF-ADRESL; //output the distance value to PORTD
 ADsource = 0; //set to ambient light mode
 PORTAbits.RA1 = 0; //turn off the light

13

 }
 else{
 if(ADRESL<0xF0){
 PORTEbits.RE0 = 0;
 }
 else{
 PORTEbits.RE0 = 1;
 }
 //PORTEbits.RE0 = !(); //output whether the light is sufficient or not
 PORTEbits.RE0 = ((&ADRESH)[6]||(&ADRESH)[7]);//send an ADbit to FPGA
 ADsource = 1; //set the mode to distance sensor
 PORTAbits.RA1 = 1; //turn on the light
 //setupAD1();
 }
 //ADCON0bits.GO = 1; //turn A/D back on
 }
}

#pragma code
void main(void){
 TRISB = 0; //Preparing all of the ports
 TRISD = 0; //prepare PORTD
 PORTD = 0; //clear PORTD
 TRISC = 0xFF;
 TRISA = 1;
 TRISE = 0;
 PORTB = 0;
 LATB = 0;
 INTCON = 0; //clear this first because we had problems setting it
 T0CON = 0b11000111; //need to set this first to enable 16 bit

 PIR1 = 0b00000000; //all zeroes to clear all peripheral flags
 PIE1 = 0b01000000; //0 (interrupt not needed), 1 (A/D interrupt set)
 IPR1 = 0b01000000; //the only one is making the A/D interrupt priority
high
 RCONbits.IPEN = 1; //Allows low priority interrupts (just in case)
 INTCON = 0xE0; //111 (GIE, PEIE,TMR0IE) set interrupts up, rest 0
 INTCON2 = 0xF4; //1(PORTB pullups off), 111(interrupts on rising
edge),
 //0(NC),1(TMR0 interrupt high priority),

14

 //00 (NC, No PORTB interrupt poriority)

 T0CON = 0b10000111; //This sets up a 16bit TMR0 with a 256 prescale
 setupAD1(); //setup the A/D Controls
 ADsource = 0; //start with the ambient light sensor
 stage = 5; //make the stage beyond what I care about in case
 //it goes through the isr for the A/D
 //ADCON0bits.GO = 1; //Start the A/D
 //FPGA comes in on PORTC
 //A/D in is RA0
 while (1){
 if (PORTCbits.RC4 == 0){ //stop bit implemented
 //swap pins
 PORTBbits.RB5 = 1; //enable these motors
 PORTAbits.RA2 = PORTCbits.RC0; //drive the RCcar motors
 PORTEbits.RE1 = PORTCbits.RC1;
 PORTEbits.RE2 = PORTCbits.RC3;
 PORTAbits.RA5 = PORTCbits.RC2;}
 else{
 //drive motors = 0;
 PORTAbits.RA2 = 0; //Stop motors
 PORTEbits.RE1 = 0;
 PORTEbits.RE2 = 0;
 PORTAbits.RA5 = 0;
 }

 if (ADCON0bits.GO == 0){
 ADCON0bits.GO = 1;
 }
 //ADCON0bits.GO = 1; //make sure A/D is still running
 if(PORTCbits.RC5){ //if I am told to collect
 claw(); //run the claw
 }

 if (PIR1bits.ADIF == 1){
 isr(); //catch failing interrupts...
 }
 }
}

15

//subroutine to control the claw lifting motion and timing
void claw(void){
 INTCONbits.TMR0IF = 0;
 TMR0H = 0xE8;
 //load and run timer0
 stage = 1; //set the stage number
 TMR0L = 0x97;
 //TMR0H = 0xCA;
 T0CONbits.TMR0ON = 1; //makes usre the timer is on
 //set initial outputs for LEGO motors
 PORTBbits.RB0 = 1; //start closing the claw
 while(stage<5){ //after the 4 stages the claw actuation is done
 //wait as interrupts do the work detailed below
 if(INTCONbits.TMR0IF == 1){ //extra catch because interrupts don't seem to
work well
 isr();
 }
 }
 //T0CONbits.TMR0ON = 0;
 PORTB = 0; //clear portB afterwards
 //PORTBbits.RB5 = 0;
}

//sets up the A/D control registers
void setupAD1(void){
 ADCON0 = 0b11000001; //11(use F rc), 000 (use RA0), 001(no GO, NC,
Power on)
 ADCON1 = 0b10001110; //1(right justify),0(use F rc),00(NC),
 //1110 (RA0 is only analog input and V+ = Vcc, V- = Gnd,
 // rest of PORTA is digital I/O)
}

16

FPGA Code:

`timescale 1ns / 1ps
//
// Company:
// Engineer: Kramer Straube and Nadia M'Tarrah
//
// Create Date: 22:00:57 12/04/2009
// Design Name:
// Module Name: code_ks
// Project Name:
// Target Devices:
// Tool versions:
// Description: This code takes in some sensor data from both switches, sensors,
// the RC controller and the PIC. It outputs the appropriate directions to move
// to the PIC along with a stop bit (for stop overrides) and a claw collection
// bit. It also illuminates LEDs when appropriate.
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
module code_ks(
 input clk,
 input [7:0] distance,
 input [3:0] rccommands,
 input aiSwitch,
 input dark,
 input bump,
 input fakeAI,
 output reg [3:0] directions,
 output reg stop,
 output reg leds,
 output reg collect
);

17

reg [7:0] turningCounter; //8 bit counter to help with
 //turning for a certain time

always @(*) //combinational logic for
 //collection,the stop command from remote
 //and non-AI movement
begin
if (aiSwitch)
 begin
 //directions = 4b'1001; //to be fixed for AI
 //leds = 1;
 leds = dark; //when I get the dark indicator
 //from the PIC, turn on the LEDS
 if (rccommands[0]) //if a specific RC command is read
 stop = 1; //make the PIC stop driving
 //the RCcar motors
 else
 stop = 0; //else just let it go

 if (bump) //if the touch sensor is not hit
 collect = 0; //send the PIC a 0 for claw
 else
 collect = 1; //otherwise tell it to pick the item up

 end
else
 begin
 stop = 0; //don't send a stop bit
 leds = dark; //when I get the dark indicator
 //from the PIC,
 //turn on the LEDS
 if (bump) //if the touch sensor is not hit
 collect = 0; //send the PIC a 0 for claw
 else
 collect = 1; //otherwise tell it to pick
 //the item up
 end

end

18

always @(posedge clk) //use sequential for AI
 //movement logic
 begin
 if (aiSwitch) //if I am in AImode
 begin
 //simple turn-left before walls AI
 if (distance > 8'h08 || fakeAI) //if my distance sensor sees a
 //wall (or the fake input is used)
 begin
 turningCounter = 8'hFF; //setup counter for turning time
 //(may need to adjust)
 directions = 4'b1001; //turn left
 end
 else
 begin
 if (turningCounter == 0) //if I am not turning
 begin
 turningCounter = 0; //make sure the counter stays @ 0
 directions = 4'b0001; //just go forward
 end
 else
 begin
 turningCounter = turningCounter -1; //decrement the counter
 directions = 4'b1001; //keep turning left to assure
 //no wall side scrapes (kinda)
 end
 end
 end
 else
 begin
 directions = rccommands; //otherwise pass the commands
 //through
 end
 end
endmodule

