Color Recognizer

Final Project Report
December 11, 2009
E155
Benyue Liu and Raquel Robinson

Abstract

Color is an essential feature of an object. Certain circumstances, for example, lost of sight, color
blindless, poorly illuminated environment, or obstructed view, would restrict people’s perception of
color. This project aims at providing a basic solution to this problem, through a color recognizer. A
webcam is interfaced with MATLAB and used to capture the image. MATLAB transmits color information
to the microcontroller via a USART connection. The microcontroller identifies color and sends
appropriate combination of allophones to the Speaklet Chip. At the same time, the microcontroller
generates a zero-padded 3-bit encoding, which is passed to FPGA via parallel connection. The FPGA
utilizes a finite state machine to display the name of the color in a LCD. The device is partially
functional. However, the finicky webcam introduces unstable RGB space color values. In the future, a
Hue color space can be utilized to recognize the color more reliably.

Introduction

For people cannot perceive color correctly, a device that recognizes colors and verbally
and visually communicates the color would be useful. Inspired by this subject, this project has
designed a device to recognize the color of an object and implement it in the hardware. The
goal of the project is to verbally communicate the color through a speech chip, and visually
display the name of the color in a text based LCD.

Speaklet Speech chip is controlled by the microcontroller and an LCD interfaces with
FPGA. A built-in webcam in a laptop is used to capture the image through MATLAB commands.
Color RGB values are sent to the microcontroller by serial communication by Bluetooth. The
microcontroller recognizes the color and sends the color encoding to both Speaklet Speech
Chip and FPGA. FPGA will interpret the color and send coding to the display. Figure 1 is the
overall flow diagram.

WEBCAM

Digital Image

Bluetooth
module

=
Serialized RGE Data
e

Send Color Encoding
FPGA

Serialized

Allophgnes

Figure 1. Overall Flow Diagram

New Hardware

The project utilizes two pieces of hardware not used previously in E155. These are the
Speaklet speech chip (see Figure 2) and the Crystalfontz (CFAH2002A-NYG-JP) LCD (see Figure
3).

Figure 2: Picture of Speakjet chip

The Speaklet chip contains 72 preconfigured allophones which can be combined to
produce complete English words. These allophones can be found on page 8 of the SpeaklJet’s
datasheet. There are two mean of controlling the Speaklet: 1) Simultaneous logic changes on
any one of its eight event input lines; or 2) by a serial line of data. This project utilizes the
second method. Data is passed to the Speaklet from via a serial data line, using the built in
USART on the PIC microcontroller.

The Speaklet is connected to the PIC by a single serial connection on PORTC. The
transceiver pin on the PIC is directly tied to the serial input pin of the speech chip (RCX). The
Speaklet has a default baud rate of 9600 bauds, and a default configuration of 8 data bits, no
parity and 1 stop bit. Consequently the PIC is configured and initialized accordingly to ensure
that a successful interface is achieved (see function void main void in Appendix V).

The PIC also needs to receive data serially from the Bluetooth module (BlueSmirf) which
has a similar configuration to the Speaklet but which utilizes a different baud rate of
115.2kbauds. Consequently, SPGRH is toggled between 10 and 129 when talking to the
Bluetooth module versus talking to the SpeaklJet respectively.

Another area of concern with the Speaklet is it outputs only a small current of 25ma.
This is insufficient to power an 8 ohm speaker. This can be resolved by using the Op Amp
LM386N audio amplifier to amplify the sound.

The LCD we used in the project is a text based Crystalfontz (CFAH2002A-NYG-JP) LCD. It
can display 2 lines and 20 characters. The pin assignment can be found in Appendix I.

Figure 3: LCD Picture.

The LCD’s instruction table can be found in Appendix Ill. When writing instruction, many
instructions need time for it to finish execution. When programming the FPGA, the execution
time has to be taken into consideration. Before writing letter to the display, it has to be
initialized first. The initialization sequence can be found in Appendix IV.

Writing data to a LCD requires sending the 8-bit encoding. Each letter encoding can be
found in the data sheet (Appendix Il).

When putting together LCD on the breadboard, pin 2 needs 5 volts, whereas Pin 3 is a
variable voltage. The project connects it to ground to provide contrast.

MATLAB Design

MATLAB is used to interface with webcam because it is difficult to design a USB protocol
for PIC within a short time. MATLAB’s Image Data Acquisition Toolbox is used to interface with
webcam and manipulate the data. A function capture_sPort.m (Appendix VIl) is written to
open the video object, preview the video, wait for certain time for the webcam to stabilize and
get a snapshot. It also writes to the PIC using fprint. A timer is set to trigger the function
continuously.

The serial port is setup before calling the function capturedTimer_sPort.m(Appendix
VII). After examining the channel of the Bluetooth, the serial port object is set up with this
specific outgoing port and a baudrate of 9600.

The RGB values are calculated using the average value of the pixels in the middle of the
image. The RGB values are sent as characters with a carriage return in the end. This is crucial
because the microcontroller is set to terminate receiving data until a carriage return is entered.

Microcontroller Design

The overall function of the PIC in this project is to obtain and store the image data sent
serially from MATLAB via the Bluetooth module, translate this ASCI data into integer values
corresponding to R G B values, use these R G B values to identify the correct color, and send the
appropriate allophones and encoding to the Speaklet and FPGA respectively.

The PIC completes the following sequence to achieve this function:

1) Initialization and configuration of the USART in void main (void). The variables
TXSTA, SPBRG, TRISC, RCSTA are given the appropriate values (see Appendix V)

2) In char getcharserial(void) the PIC waits for receive a character from the serial port
and then returns it. Interrupt flag, RCIF, indicates when data is ready and can be
returned from RCREG.

3) The PIC then utilizes the function void getstrserial(char *origstring) to store the
entirety of the data sent from MATLAB via the serial port as a string. It achieves this
by calling getcharserial() until a carriage return is detected.

4) The string Origstring is then parsed and converted in void split(void) into three
integers which corresponding to the R G B values which contain the color
information.

5) The function int color_identifier(void) essentially utilizes the integer R G B values to
identify the correct color. It does this by checking what preset range combination
these values fall into. Upon identifying the correct color, the baud rate is set to the
Speaklet default of 9600 bauds and a series of printf statements is then used to send
the correct allophone combination of the color word to the Speaklet. Printf writes
data to the serial transceiver port on the USART. At the same time the PIC generates
a zero padded 3 bit encoding specific to the color identified and passes this to the
FPGA by writing this encoding to the LSB’s of PORTA which the FPGA captures as an
input.

FPGA Design

In this project, FPGA is used to receive data from the PIC microcontroller and send the 8-
bit letter encoding of the color name to the text-based Crystalfontz (CFAH2002A-NYG-JP) LCD.

In the FPGA design, a slow clock is generated to accommodate the slow execution time
(Appendix VI). At every slow clock edge, the color encoding is sent to the FPGA. Getcolor.vhd
(Appendix VI) translates the color encoding to 48-bit color encoding using the datasheet
(Appendix Il). The 48 bit represents 6 characters. In this project, six colors are blue, red, black,
yellow, green and white. The most number of letters in the spelling is yellow, so the letter
encoding is set to 8%6=48 bits, with empty spaces appended after the spelling if they are not 6
characters long. The main LCD finite state machine includes the initialization stages and writing
the sequence of the 6 letter encoding. The state transition diagram can be found in (Figure 4).
The verilog code can be found in (Appendix VI).

Figure

FunctionSet1
(state: FS1)
RS=0 RW=0

DB=00111000

FunctionSet2
(state: FS2)
RS=0 RW=0

DB=00111000

FunctionSet3
(state: FS3)
RS=0 RW=0

DB=00111000

FunctionSet4
(state: FS4)
RS=0 RW=0

DB=00111000

Display OFF
(state:dispoff)
RS=0 RW=0
DB=00001000

4. State

Transition

Clear Display
(state: clrdisp)
RS=0 RW=0
DB=00111000

Entry Mode
(state:
entmod)
RS=0 RW=0
DB=00000110

Display On
(state:
dispctrl)
RS=0 RW=0
DB=00001100

Diagram

WriteDatal
(state:
wdatal)

for

RS=1 RW=0
DB=
data[47:40]

WriteData2
(state:
wdata2)
RS=1 RW=0
DB=
data[39:32]

WriteData3
(state:
wdata3)
RS=1 RW=0
DB=
data[31:24]

WriteData4d
(state:
wdata4)
RS=1 RW=0
DB=
data[23:16]

WriteData5
(state:
wdatab)

RS=1 RW=0
DB=
data[15:8]

FPGA LCDstatemachine.v

WriteData6
(state:
wdatab)
RS=1 RW=0
DB=
data[7:0]

ReturnHome
(state:
rtnhome)
RS=0 RW=0
DB=10000000

module(Appendix

Vi)

bliu
Typewritten Text

Figure 4. State Transition Diagram for FPGA LCDstatemachine.v module(Appendix VI)

Overall Schematic

Figure 5 shows the overall schematic.

1Kohm g1 WF
N Op Amp
LM386N
1 8
2 7
E7/RCL Vout ‘ 3 6
E6/RCO DO/Ready 4 5 Py
E5 D1/Speaking
E4 D2/Buffer half-full
GND V+
E3 MO
E2 M1 p— —T—10 pH
El Reset —
EO RCX
TRonmT
0.02 pF
SpeakJet
390 ohm
3.3
Votls 5 Volts —_—
Blue Smirf vin)
Harris Board
cTS-1
Vec RC6/P89
GND PC7/P90
TX-0 —RAO
RX-1 —|RAL
RTS-0—— RA2
LEDO/RDO/P97
LED1/RD1/P98
LED2/RD2/P99
LED3/RD3/P100
LED4/RD4/P102
LCD LED5/RD5/P103
LED6/RD6/P104
LED7/RD7/P105
cc P1
(Analog OV to 5V)VO P10
(Register Select)RS] —— P23 pic_color
(Write 0)RW — P24 pic_color
(Enable Read/Write)E| P25 pic_color
(LSB)DBO
DB1
DB:
DB:
DB4
DB5|
DB6|
DB7
(Optional)A
(Optional)K
>

Figure 5. Overall Schematic of the System.

Results

The initial goal of this project was to build a device that would recognize color using
solely a webcam, MATLAB, the Bluetooth Module the FPGA and the Speakjet chip. The plan was
to utilize MATLAB to capture image from a webcam, transmit this RGB image data to the PIC via
the BlueSMIRF wireless module, identify the color and send image encoding from the PIC to the
FPGA. The FPGA would then generate the correct allophone combination and serially transmit
this to the RCX pin on the SpeaklJet. We were able to successfully allow MATLAB to capture the
image using a webcam and sends information to the PIC via the Bluetooth Module. However
our initial attempt at creating a Universal Serial Asynchronous Transmitter (USAT) on the FPGA
proved unsuccessful. To achieve this we needed to generate a slowed clock on the FPGA that
would match the default baud rate (9600 bauds) of the Speakjet. We would then have to use a
state machine and output logic to organize the data in 10 bit packets (8 data bits and 1 start
and 1 stop bit) which the FPGA would then send to the Speaklet. Though this sounds relatively
basic in theory we ran into some issues in our implementation. Consequently, we decided to
instead utilize the FPGA to write the color on an LCD screen and have the PIC send the correct
allophone combination to the Speaklet since it has a USART readily available. Implementing the
LCD proved to be difficult as well. Before anything can be written to the screen it has to be
initialized as discussed in the FPGA section above. The difficulty with this was primarily due to
timing and wiring. The LCD executes the 8 bit instruction passed to it on the negative edge of
its slowed clock input and consequently it is essential for the data to be passed at the positive
clock edge so that the is stable by the negative edge. After redefining our scope we were able
to complete our design with marginal failures in functionality due to a underperforming digital
camera.

Our final design achieves the following: MATLAB successfully sends color information
(RGB values) to the PIC. The PIC successfully acquires these values and uses them to identify the
color using ranges specified in the code. The correct allophone combination of color identified
is successfully passed to the Speaklet and a correct zero padded 3 bit encoding is passed to the
FPGA. If the PIC cannot find a match for the values received it sends out the message “LO” to
the Speaklet. When the FPGA receives the right encoding successfully write the color on the
display. However, at the moment, the reliability of the device is very low. The image acquisition
toolbox on MATLAB seems to be aliasing the color that the webcam actually picks up. At the
moment the camera is finicky and sees different colors based on the lighting of the
surroundings. Consequently at times it confuses lighter colors such as yellow, green and white.

Future Work

To fix our current reliability issues, we believe that instead of using RGB color model
values as the primary means of color characterization hue saturation brightness (HSB) color
model could be used. This is a much more accurate means of differentiating color and is
unaffected by light intensity. This can be done by simply having MATLAB return HSB values
instead of RGB values and manipulating our PIC code to check HSB ranges instead as well. Once
this issue is corrected identifying the colors of specific objects within it background can be
investigated. It should then be possible to explore adding a memory chip to this device to
interface with the PIC so that identifying object shapes and pattern matching can be explored.

Parts List
PART SOURCE VENDOR PRICE
Speaklet Natural Speech & E155 Cabinet Magnevation FREE
Complex Sound Synthesizer
OP AMP LM386N
E155 Cabinet FREE
LCD (CFAH2002A-NYG-JP)
E155 Cabinet Crystalfontz FREE
Speaker E155 Cabinet FREE
BlueSMIRF wireless module E155 Cabinet FREE

Appendix l. Interface Pin Functions

Pin No.| Symbol Level Description
1 Vss ov Ground
2 Vbbp 5.0V Supply Voltage for logic
3 VO (Variable) |Operating voltage for LCD
4 RS H/L H: DATA, L: Instruction code
S R/W H/L " |H: Read(MPU— Module) L: Write(MPU- Module)
6 E HH- [|Chip enable signal
7 DBO0 H/L Data bit 0
8 DBI H/L Data bit 1
9 DB2 H/L Data bit 2
10 DB3 H/L Data bit 3
11 DB4 H/L Data bit 4
12 DBS H/L Data bit 5
13 DB6 H/L Data bit 6
14 DB7 H/L Data bit 7
15 A i} LED +
16 K - LED -

H [1] [[{L{]1]]] L[]} [1] [LI] [L111] L] n L] L | nn L] [LLL]]]] o [1]] [L111] L] [11]
[] [] L I] an [] L |] []] [] [] [] |] [1111} L I | I] | I an | I | [] [11]
T
[] []] [] an [] |]] [] L I] [] [] |] [] | I] [111]] LI | [11]] L [11]
] []] [] an [] L | n [1] [] [] L [111]] L I | I] | I [[]1]] | I | [] [11]
T
H [1] L[]} [1] [LI] [11]] [1] [1] L] L] [| | n [111} [] L] L] [L111] L]
L amon [111} nn |] [[11]] N [1] [[11]]] L] L] L] [L1}
[1] [N aEn | | |] L] nnn | | |] L] L I L] [111} § EEEEEEN L I | L] [I |
T
nn nEn ann nmn L] o | | L] L] L I [[1]] | | |] nn [L1]1]] nEn [I |
H L] L] [N aEn nmn L] L] n nn L] nn L] L] L] L] L I | AEEEEEN N
H [1] n nn [1] [L1]]]] [(]} n |] L] an [1] an [L111]]
H | amnm un "N | am | EEEEEN [1] [1] | EEEEEN EEEN am
| B B | | | I | L I | | I | EEEEEE | B | | L I | | EEEEN | | | |] | | | | |
m | I B | | | | | | L I | | | | | | B | | L I | n |] EEEEEN | | |] |] | | [1 1]
| B B | | | L I | EEEEN EEEEEEN | | | B | |] L I | | | | | | | | | | | | I |
H [1] | L I | |] | B | | | EEEN EEEER EEEEEN EEEEER aEn | | | | [1 1]
L mEEEE u EEEN | | u n [1] u |] EEEN | | u EEEN am - am mEn
L u [1] u n u L I] |] u u n L I I] L L I | EEEEN u | | n - u u u | | L I |
L I | n EEEEN mnnm n H EEEEm - AEEEE u u |] | | AN EEEN n u | n - u u EEEEEEN | | u
T
an 1 L I] n nnm u EEEEEEN n n u n L I I] u [] u | | u - u [] u | | []
H 1 | | I | EENR | | n n u |] [] u u EEEE EEEEEN | | u u [1] | |
H u aEn u EEEN u u u EEEEN | B EEEn u EEEEEN u mEnm am u [1] [] EEEN
H u | | |] u u |] | | n EEEEEEN u u L B u |] EEEEN u u EEEEN u L I B) L B | [] u
L u o EEEN AEEEN am u EEEEEN L I] u EEEEEEN |] u u u u u u [] u [] u u [] u
u u u u u u u u u EEEEEN | B m u [1] u u EEEE u . n u [] u EEEEEN u u
H | |] | aEN |] | | | | | I | | | | | | "N | |] | | [1]
L | EEEN m aER | | | an |] [1 0]
H | [I I | | I | | | | | | EEEEN | I | AEEN EEEEN |
amnm EEEN EEEnE | []] "N | | | | EEEnE []] |] aEEN m n | | [I I | LI B |
L | I | | L] []] | B | | | L] L] | | | | "N EEEEN | | [I I |
jas) 1L 1] n] " n [] 1 [I | [I | L] [[B B] [1]
o
—
—
T
—
—
—
e
| EEEEN | n EEEER aEn AEEN] | EEEN |] | |
L I | L B L I I] u u u [] L B | L B | [1] u u u u aEn u
=
| I | "N | I B | L] | | | | |] | B | | I I | AN EN EEEEEER AN EN | I I | | I B |
H L I | nn L I I] EEEEEN u u [] L B | L B | u [1] u u u u aEn
L EEEEN | | L] u [] EEEE aEn EEEN u u am u u u u
L aEEn | | EEEEEEN un | EEEEN aEEn aEEn EEEn [1]
| | | I B | | | | | | | | I B | | | | | I | [] | A EEEnN | |] |]] | | | |
H] | I B | | | n |] | I I | | |] | | I | | @ EEEEN | | | "N EEEEEERN m | | | |
| | I B | | | | |] | | I B | EEEEEN | | I | | | | |] | | | | | | | | |
o
L | [] amn [1]] m AEEEEEN | AEEEEEN EEEEN EEEEN [1 0]
H EEEE N |] [1] | EEEEEN EEEEN EEEEEN [1] (1] aEn an |] | I B | | |]
L u u [] L] u u u | | [] . n | | L I | u u n N n EEEEEEN u u
] | I | | | | | | EEEEEEN] |] [1 1] L] |] | | [] EEEEN | | | [] | |
H | |] |] |] | |] "N | | | L I | EEEEEEN LI B | | | | | | |
L EEEER am | | [1] [1] RN n am | I B | | | |
L EEEEEN u |] aEm EEEEEEN [] u u n EEEEEEN EEEEEEN EEEEN
L n [] L] u u [] u u u AEEEEN n [] u [] u u u
n [] L] u n u u EEEEEEN [] |] L I] u [1] u u u
H u [] L] u n u u n n u n u [] u u u
L EEEEEN EEEEN EEEEEEN EEEEEEN - EEEEEEN EEEEEEN EEEEEEN EEEEEEN EEEEN
H |] [1]] AN ER EEER L I | | [1]
[| L1 B | | EEEEEEN | | | [| |] L I | | | | L I | | B | | |
H EEEEEEN | I | | | | | | | | [| | | | AN EN N EN | [| L I | | | | | I |
L [] [] n [] | I | |] [] [] [] [] [] an mN Em m [B | L I | [] L] []
L | | | | L 1} uE EE L 1} [] L I] u
L | I | | | | B | |] | |
H amn AEEEEEN [I I | | | | [1] | | [] [] |
EEEnR | | I | AEEEEEEN | |] | | EEEEN AEEEN [1] | un |
L aEn AEEEEEN [I I | nEn] |] | | L I | | un L]
— "] [] [] n n []
e
-
-
—
-
= =~ _ - _ P — P —_ P P _ —_ — —_ —_ P
2.5 _ an | s = s | ey
&34 .| 3 = = = - = = = - I T = - . T T
=7¢s 3 - 5 5 = = = T - - - 3 = = T =
S~ — — — — — - — - as) jas) as) jas) jan) jas)) jas)

Table.2

Appendix ll.Character Generator ROM Pattern

Appendix lll.Instruction Table

Instruction Code
Inst ti D inti Execution time
nstruction escription (fose=270Khz)
RS [R/'W |DB7(DB6|DB5|DB4|DB3(DB2|DB1|(DB0
) Write “00H” to DDRAM and set

ClearDisplay | 0 | 0 [0 | 0 | 0| 0| 0| 0] 0| I |DDRAM address to “00H” from 1.53ms
AC
Set DDRAM address to “00H”
from AC and return cursor to its

Return Home ofofofofofofof|o 1 - |original position if shifted. The 1.53ms
contents of DDRAM are not
changed.
Assign cursor moving direction

Entry ModeSetf O | O | O | O | O | O | O 1 [I/D | SH |and enable the shift of entire 39u s
display.

Display Set display (D), cursor (C), and

ON/OFF ofofofoOfO0]|O 1 | D| C | B [|blinking of cursor (B) on/off 39u s

Control control bit.
Set cursor moving and display

Cursor or shift control bit, and the direction,

pisplay shie | 0 | O | O O)01 SIC|RILY - - without changing of DDRAM 39U
data.
Set interface data length
(DL:8-bit/4-bit), numbers of

Function Set ololol o 1 IpLI N F - _ |display line (N:2-line/1-line)and, 39y s
display font type (F:5%11 dots/5%
8 dots)

SHCORAM 1o | 0 | 0 | 1 |Acs|ac4|ac3|ac2|act|aco Set CGRAM address in address 394 s
counter.

SADDRAM | o | o | 1 |ac6|acs|acs|acs|acz|act|aco|Set PPDRAM addressinaddress | 50
counter.
Whether during internal operation

Read Busy Flag or not can be known by reading

and Addross 0 1 | BF |[AC6|AC5[{AC4|AC3|AC2|ACI|ACO BF. The contents of address (1T
counter can also be read.

Write Data to Write data into internal RAM

RAM 1 0 |D7|D6|D5|D4|D3|D2|DI|DO0 (DDRAM/CGRAM). 434 s

Read Data from Read data from internal RAM

RAM 1 1 |D7|D6|D5|D4|D3|D2|DI1|DO0 (DDRAM/CGRAM). 434 s

: don’t care

Appendix IV.Initializing of LCM

< Power on >

Wait for more than 15 ms after Vccrisesto 4.5V

BF can not be checked before this instruction.

RS
0

R/W
0

DB7 DB6 DB5
0 0 1

DB4 DB3 DB2 DB1 DBO

1 * * * %

Function set (Interface is 8 bits long.)

Wait for more than 4.1 ms

BF can not be checked before this instruction.

0

RS R/W DB7 DB6 DBS

0

DB4 DB3 DB2 DB1 DBO0
0 0 1 1 * * * *

Function set (Interface is 8 bits long.)

Wait for more than 100 ps

BF can not be checked before this instruction.

RS R/W DB7 DB6 DB5

DB4 DB3 DB2 DB1 DBO

Function set (Interface is 8 bits long.)

BF can be checked after the following instructions.
When BF is not checked , the waiting time between
instructions is longer than execution instruction time.

0 0 0 0 1 1 * * * *

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO0
0 0 0 0 1 1 N F * *
0 0 0 0 0 0 1 0 0 (U
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 /D S+

J—>Functi0n set (Interface is 8 bits long. Specify
the number of display lines and font.)

Initialization ends

8-Bit Ineterface

The number of display lines and character font
can not be changed after this point.
Display off

Display clear
Entry mode set

bliu
Typewritten Text

Appendix V. PIC Microcontroller Code
//Color recognizer. ¢

// Raguel Robinson and Benyue Liu (Emma)
// 12/06/09

// Color recognizer

// Color allophones for reference

//char red[3]={0x94,0xB0,0x00};

//char green[4]= {OxAB,0x94,0x80,0x00};
//char yellow[4]={0x9E, 0x92,0x89,0x00};
//char black[5]={ OxAB,0x91,0x84,0xC5,0x00};
//char blue[4]={ OxAb,0x91,0x8B,0x00};
//char white[4]={ 0xB9,0x9D,0xBF,0x00};
//char none[2]= {0x00,0x00};

#include <p18f4520.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

// Global Variables
char origstring[15] ; // stores the string sent over the serial port

int a; // Rvalue (first number)

int b; // G value (second number)

int c; // Bvalue (third number)

int color; // stores the one hot 8 bit encoding for received data for testing

// Fuction Prototypes

void main(void);

char getcharserial(void);

void getstrserial (char *origstring);
int color_indentifier(void);

void split(void);

char getcharserial(void)
//waits to receive a character from the serial port, then it returns it
{
while (PIR1bits.RCIF == 0)
{
}
if (PIR1bits.RCIF == 1)
{
return RCREG;
PIR1bits.RCIF =0;

}
}

void getstrserial(char *origstring)

//receives a string over the serial port by callin getcharserial
//until a carriage return is received
{

charinput;

inti;

i=0;

input = getcharserial();

while (input != 0x0D)

{
origstring[i] = input;
i++;
input = getcharserial();
}

origstring[i] = NULL;
}

void split(void)
// splits up the preceeding string and coverts it into 3 integers
//corresponding to R, G, B values
{
inti;
i= 0;

0;
0.
0;

o 9
Il

~

(@]
I}

/* the upcoming loop will go through the string origstring one char at at time
if the char is not a space it will check if it is between 0 and 9,

if it is then it will multiply int a by 10 and add the char-48(convert it

from ASCI to dec) to int a after it hits a space it will then jump to do the
same thing for the second integer int b*/

while (!(origstring[i] >47 && origstring[i] <58))

{
i++;
}
while (origstring([i] != 32 && origstring[i] >47 && origstring[i]<58)
{
a = (a*10) + (origstring|[i]-48);
i++;
!
i++;
while (origstring([i] != 32 && origstring[i] >47 && origstring[i]<58)
{

b = (b*10) + (origstring[i]-48);
i++;

’

}

i++;
while (origstring][i] = 32 && origstring[i] >47 && origstring[i]<58)
{
c =(c*10) + (origstring[i]-48);
i++;
!
i=0;

/*The following function checks the RGB values from the serial port sets the baudrate to 9600 bauds
and
sends the right allophones as serial output to the speech chip writes the encoding to PORTA*/
int color_identifier(void){
if (a <=250 && a>=190 && b>=80 && b<=110 && c<=120 && c>=80) //red RGB Value Upper and
Lower Bounds
{
color= 0b00000010;
PORTA = 0b00000010;
SPBRG = 129;
printf("%c", 0x94);
printf("%c", 0x96);
printf("%c", 0xB0);
printf("%c", OxOE);
printf("%c", OXAE);
printf("%c", 0x00);
return color;

}

else if (a<=120 && a>=95 && b>=130 && b<=150 && c<=110 && c>=80) //Green RGB Value Upper
and Lower Bounds
{
color =0b00000110;
PORTA = 0b00000110;
SPBRG =129;

printf("%c", OxAB);
printf("%c", 0x94);
printf("%c", 0x80);
printf("%c", 0x00);
return color;

}

else if (a<=190 && a>=110 && b>=110 && b<=190 && c<=100 && c>=70)
//Yellow GRB Value Upper and Lower Bounds
{
color= 0b00000001;
PORTA = 0b00000001;

SPBRG = 129;

printf("%c", Ox9E);
printf("%c", 0x92);
printf("%c", 0x89);
printf("%c", 0x00);
return color;
}
else if (a<=50 && a>=0 && b>=0 && b<=50 && c<=50 && c>=0)
//black RGB Value Upper and Lower Bounds
{
color= 0b00000100;
PORTA = 0b00000100;
SPBRG = 129;
printf("%c", OxAB);
printf("%c", 0x91);
printf("%c", 0x84);
printf("%c", 0xC5);
printf("%c", 0x00);

return color;

else if (a<=185 && a>=140 && b>=150 && b<=190 && c<=160 && c>=120) //white RGB Value Upper
and Lower Bounds
{

color = 0b00000101;

PORTA = 0b00000101;
SPBRG =129;
printf("%c", 0xB9);
printf("%c", 0x9D);
printf("%c", OxBF);
printf("%c", 0x00);
return color;

else

color = 0b00000000;
PORTA = 0b00000000;
SPBRG = 129;

printf("%c", 0x92);
printf("%c", 0x92);
printf("%c", 0x92);
printf("%c", 0x00);

return color;

}

void main (void){

TRISA = 0b00000000; // Initializes PORTA as an output port
PORTA = 0b00000000; // PORTA has value 0
TXSTA = 0b00100110; //sets up the the transmit status and control register
TRISC = 0b10000000; // configure rc6/tx and rc7/rx set bit 7 and clear bit6.

/*

bit7 0
bité 0
bit5 1
bit4 0
bit3 0
bit2 1
bitl 1
bit0 0

*/

CSRC: Dont care

TX9: 8 bit transmition

TXEN: Transmit enabled

SYNC: Asynchronous mode enable receiver
UNIMPLEMENTED: Dont care

BRGH: High speed baud rate

TRMT: TSR full

TX9D: Dont care

RCSTA = 0b10010000; //0x90;// configure receive status and control register

/*

bit7 1
bit6 0
bit5 0
bit4 1
bit3 0
bit2 0
bitl O
bit0 O

*/

SPEN: Serial Port Enabled
RX9: 8 bit reception
SREN: DONT CARE
CREN: Asynchronous mode enable receiver
ADDEN: Dont care
FERR: Dont care
ODERR: Dont care
RX9D Dont care

SPBRG = 0b00001010; // sets the baudrate to receive from bluesmirf Ox0A

while(1){

getstrserial (origstring);

split();

color_identifier();
SPBRG= 0x0A; // reset the buadrate to get data from bluesmirf

}

Appendix VI. FPGA Modules

module mainlcd(
input clk,
input reset,
input [2:0]pic_color,
output [7:0]instr,
output RS,
output RW,
output lcdclk);

wire [47:0]lcdcolor;

LCDclock newclk(clk, reset, Icdclk);

getcolor testcolor (pic_color, clk, reset, Icdcolor);

LCDstatemachine test(lcdclk, reset, Icdcolor, RS, RW,instr);
endmodule

module LCDclock(
input clk,
input reset,
output lcdclk);

reg [18:0] count;
always @(posedge clk or posedge reset)
if (reset)
count<=1'b0;
else
count <= count+1'b1;
assign lcdclk = count[18];
endmodule

module getcolor(

input [2:0]pic_color,
input clk,

input reset,

output reg [47:0] Icdcolor

);

parameter none =3'b000;

parameter yellow = 3'b001;

parameter red =3'b010;

parameter blue =3'b011;

parameter black =3'b100;

parameter white =6'b101;

parameter green =6'b110;

always@(*)

case(pic_color)

yellow: if(~reset)lcdcolor <=
48'p0101_1001_0100_0101_0100_1100_0100_1100_0100_1111_0101_0111;

red: if(~reset)lcdcolor <=
48'b0101_0010_0100_0101_0100_0100_0001_0000_0001_0000_0001_0000;

blue: if(~reset)lcdcolor <=
48'b0100_0010_0100_1100_0101_0101_0100_0101_0001_0000_0001_0000;

black: if(~reset)lcdcolor <=
48'b0100_0010_0100_1100_0100_0001_0100_0011_0100_1011_0001_0000;

white: if(~reset)lcdcolor <=
48'b0101_0111_0100_1000_0100_1001_0101_0100_0100_0101_0001_0000;

green: if(~reset)lcdcolor <=
48'b0100_0111_0101_0010_0100_0101_0100_0101_0100_1110_0001_0000;

none: if(~reset)lcdcolor <=
48'b0001_0000_0001_0000_0001_0000_0001_0000_0001_0000_0001_0000;

default: if(~reset)lcdcolor <=
48'b0001_0000_0001_0000_0001_0000_0001_0000_0001_0000_0001_0000;//none

endcase
endmodule

module LCDstatemachine(
input clk,
input reset,
input [47:0]data,
output reg RS,
output reg RW,
output reg[7:0]instr
);

reg [3:0] state, nextstate;

parameter FS1 =4'b0000;
parameter FS2 =4'b0001;
parameter FS3 =4'b0010;
parameter FS4 =4'b0011;

parameter clrdisp = 4'b0100;
parameter dispctrl= 4'b0101;
parameter entmod =4'b0110;
parameter wdatal =4'b0111; //W
parameter wdata2 =4'b1000; //O
parameter wdata3 =4'b1001;// L
parameter wdata4 =4'b1010;//L
parameter wdata5 =4'b1011;//E
parameter wdata6 =4'b1100; //Y
parameter rtnhome = 4'b1101;
parameter dispoff = 4'b1110;

// state register
always@(posedge clk)

if (reset) state <=FS1;

else state<=nextstate;

always @(*)
case(state)

FS1:

if (clk)

begin

RW <= 1'b0;

RS <= 1'b0;

instr <= 8'b00111000;
nextstate <= FS2;

end

FS2:
if (clk)

begin

RW <= 1'b0;

RS <= 1'b0;

instr <= 8'b00111000;
nextstate <= FS3;

end

FS3:

if (clk)

begin

RW <= 1'b0;

RS <= 1'b0;

instr <= 8'b00111000;
nextstate <= FS4;

end

FS4:

if (clk)

begin

RW <= 1'b0;
RS <= 1'b0;

instr <= 8'b00111000;
nextstate <= dispoff;
end

dispoff:

if (clk)

begin

RW<= 1'b0;

RS<= 1'b0;
instr<=8'b00001000;
nextstate<=clrdisp;
end

clrdisp:

if (clk)

begin

RW <= 1'b0;

RS <= 1'b0;

instr <=8'b00000001;
nextstate <= entmod;
end

entmod:

if (clk)

begin

RW <= 1'b0;
RS <= 1'bO0;

instr <= 8'b00000110;
nextstate <=dispctrl;
end

dispctrl:

if (clk)

begin

RW <= 1'b0;

RS <= 1'b0;

instr <=8'b00001100;
nextstate <= wdatal,;
end

wdatal:

if (clk)

begin

RW <= 1'b0;

RS <= 1'b1;

instr <= data[47:40];
nextstate <=wdata2;
end

wdata2:

if (clk)

begin

RW <= 1'b0;

RS <=1'b1;

instr <= data[39:32];
nextstate <=wdata3;
end

wdata3:

if (clk)

begin

RW <= 1'b0;

RS <=1'b1;

instr <= data[31:24];
nextstate <=wdata4;
end

wdatad:

if (clk)

begin

RW <= 1'b0;

RS <=1'b1;

instr <= data[23:16];

endcase
endmodule

nextstate <=wdata5;
end

wdatab:

if (clk)

begin

RW <= 1'b0;
RS <= 1'b1;
instr <= data[15:8];
nextstate <=wdata6;
end

wdata6:

if (clk)

begin

RW <= 1'b0;
RS <=1'b1;
instr <= data[7:0];
nextstate <=rtnhome;
end

rtnhome:
if (clk)

begin

RW <=1'b0;

RS <=1'b0;

instr <= 8'b10000000;
nextstate <=wdatal;
end

default:
if (clk)
nextstate <= FS1;

Appendix VII. Matlab Code

function [R,G,B]=capture_sPort (sPort)
% this program requires setting up a serial port called sPort with Baudrate
% at 9600. and the serial port should be connected using command fopen.

%open video object
vid = videoinput ('winvideo',1);

% set the image space rgb

set (vid,'ReturnedColorSpace’,'rgb');

preview (vid);

% wait for the camera to stablize.
pause(10);

% gettiing a snapshot of the video

snapshot=getsnapshot (vid);

stoppreview (vid);
delete (vid);
clear vid;

imshow (snapshot);

% get the Red Value

R=round (mean (mean (snapshot (470:490,630:650,1))));
% get the Green Value

G=round (mean (mean (snapshot (470:490,630:650,2))));
% get the Blue Value

B=round (mean (mean (snapshot (470:490,630:650,3))));

% send the R,G,B value to the microcontroller
% change R to a string
Rcolorinfo= int2str (R)
% change G to a string
Gceolorinfo= int2str (G)
% change B to a string
Bcolorinfo= int2str (B)
% combine the RGB with space in between and carriage return at the end.
%Carriage return is important for the microcontroller to realize it is the
% end of the message.
colorinfo=[Rcolorinfo char (32) Gcolorinfo char (32) Bcolorinfo char (13)]
% sending it to microcontroller
fprintf (sPort,'% c',colorinfo);

function CaptureTimer_sPort ()

t=timer;
% set the timer to run capture.m
set (t,'TimerFcn','[R,G,B]=capture_sPort (sPort)');

% set the timer running at a fixedRate
set (t,'ExecutionMode’,'fixedRate');
start (t);

	LiuRobinson Final.pdf
	LiuRobinson.pdf
	Final report draftdocx.pdf
	Datasheet Selection from LCD.pdf
	CFAH2002ANYGJP.pdf

	Appendix IV. PIC code - Color recognizer.pdf
	Appendix VII.pdf

	final report diagram.pdf
	Slide Number 1
	Slide Number 2

	LiuRobinson.pdf
	Final report draftdocx.pdf
	Datasheet Selection from LCD.pdf
	CFAH2002ANYGJP.pdf

	Appendix IV. PIC code - Color recognizer.pdf
	Appendix VII.pdf

	LiuRobinson Final.pdf
	LiuRobinson.pdf
	Final report draftdocx.pdf
	Datasheet Selection from LCD.pdf
	CFAH2002ANYGJP.pdf

	Appendix IV. PIC code - Color recognizer.pdf
	Appendix VII.pdf

	final report diagram.pdf
	Slide Number 1
	Slide Number 2

	LiuRobinson.pdf
	Final report draftdocx.pdf
	Datasheet Selection from LCD.pdf
	CFAH2002ANYGJP.pdf

	Appendix IV. PIC code - Color recognizer.pdf
	Appendix VII.pdf

