
A Simple Drum Loop Recorder and Sequencer

Dmitriy Yakovlev and Chris Koo

December 11, 2009

Abstract

Many electronic drum kits allow the operator to load use various nonstandard drum samples to produce

a unique beat. In a similar vein, loop stations allow the operator to record a short sound sequence and play

it back repeatedly for use as a backing sound to other music. These two ideas were combined together

to create a multi-channel drum loop recorder and sequencer as a final project. This drum machine

plays six different drum sounds corresponding to six different buttons. It can record and replay looped

sequences of the drum sounds from three different channels. The PIC handles button presses and records

the sequences while relaying information to the FPGA. The FPGA accepts the given input triggers and

synthesizes 12-bit digital combinations of different beeps and whirrs that act as drum sounds, which it

outputs in parallel fashion to a DAC and an amplification stage, which plays the amplified sound through

a speaker. Analogous, albeit more complex, devices include the Korg Micromoog and the Roland drum

synth series produced in the 1970s.

1

1 Introduction

Our drum machine is a multi-channel recorder and sequencer specifically tailored to recording, storing and

playing back multiple looped drum beats. It is thus the synthesis of several different ideas: a multi-track

recorder, a loop station, and a drum machine.

The drum machine has two modes: a record mode and a play mode. In record mode, the user picks one

of 99 storage channels via channel selection buttons and presses the start/stop button to begin recording

a sequence. Then, the user can put in any drum sequence they choose by pressing buttons corresponding

to different drum samples at the times they want those samples to be played back. The sound of the

corresponding sample is played as the user presses each drum button. By pressing the start/stop button

again, the recording is terminated and can be played back by entering play mode.

In play mode, the user picks a channel in similar fashion to record mode, and presses the start/stop

button to start looped playback of the sequence stored in that channel. At any time, they can press

the start/stop button again to stop playback, and the channel up/down buttons to move to a different

channel, which will also stop playback until the start/stop button is pressed again.

We have implemented this machine in hardware using the microcontroller resources available on the

Harrisboard, namely the PIC and the FPGA, as well as various hardware and integrated circuits external

to the Harrisboard. By implementing this design in hardware, we have gained a deep appreciation for

the art of Digital Sound Processing and efficient data storage both on the PIC and the FPGA.

2

2 Design

PIC FPGA

Playback Control
and Recording

Digital Sound
Generation

Input Hardware
Sound Decoding
and Amplification

Digital 12-bit
audio signals

Sound triggersBinary input
information

User Inputs

Sound Output

Figure 1: Overall information flow through the design.

There are four major components in our system: the input hardware, the PIC, the FPGA, and the

output hardware. The overall system design is dictated by the responsibilities of each major component,

as well as the one-way direction flow throughout the entire system. The input hardware consists of an

array of buttons that lead to weak-low input pins on the PIC. Six of these buttons control the drum

sounds, and the rest control channels and playback as well as switching between record and playback

modes.

The PIC functions mainly as an input and playback processor as well as storage for the recorded

sequences. It interacts intimately with the input hardware, monitoring the input lines to detect button

presses and interact accordingly. The FPGA functions primarily as a sound generator, controlled by inputs

from either the PIC or external stimulus. It interacts intricately with the output hardware, putting out

more than 44 thousand samples per second to a digital-to-analog converter, which sends the converted

analog voltage to an amplifier and eventually to a pair of speakers.

2.1 Input Stage Design

The input hardware design is relatively simple. It consists of nine normally-open pushbuttons and a SPST

switch. All nine input channels are held low, which is achieved by 44KOhm pulldown resistors on the

input lines. Six of these nine inputs correspond to the previously mentioned drum buttons. Two more

are a ”channel up” and a ”channel down” button, and are used to go between sequence channels on the

PIC. One momentary button is used as the Start/Stop button, and controls the starting and stopping of

playback or recording. The PIC’s mode is toggled between playback and recording by the SPST switch.

Two LEDs on the input side of things are actually output status indicators. One lights up red to signify

entry into record mode, and the other lights up green to signify that playback or recording is currently

occurring.

To get a picture of the overall input circuit, consult Appendix 4.3.1.

3

2.2 PIC Design

The PIC functions as an input and output controller. It takes in external interrupts from the start/stop

button and channel up/down buttons. When the interrupts occur, the interrupts are handled based on

the flags that are raised. When the start button is pressed, an interrupt event occurs and sets a global

variable, Start, high. When the toggle is in play mode, the main function will recognize the Start variable

as high and start accessing the memory in order to relay the necessary drum sequence information to the

FPGA.

The information the PIC stores for each drum hit is the DrumID and timer, which respectively

correspond to the identification number of the drum buttons pressed and the amount of time that has

passed since the last button press. The drum IDs in the global structure array will be sent to the FPGA

until the stop button is pressed or the pointer reaches the end of the sequence within the channel, at

which point it will loop back to the beginning of that sequence and play it again.

When the play versus record toggle is set to the record mode, an interrupt will occur which will

cause the pointer to go to the beginning of the sequence in the channel and wait for the start button

to be pressed. Once the start button is pressed, the PIC starts accessing the data storage and stores

the timer and drum identification values each time a button is pressed or multiple buttons are pressed

simultaneously. Recording will continue until the limit of the data allocated in the channel is reached or

the stop button is pressed.

Interrupts will occur when the channel up or down buttons are pressed. When the channel buttons

are pressed, regardless of the current processes in the PIC, the PIC will drop all current work and switch

to the channels by moving the pointer around and clearing the timer and start variable.

The PIC’s operation can be fairly simply explained in the form of a finite state machine. See Appendix

4.3.2 for that representation.

2.3 FPGA Design

The FPGA has been designed to support one main functionality requirement: to synthesize and output

drum sound samples based on stored data and received controls. Currently, it synthesizes various beep

sound samples, although drum-like noises can currently be implemented without a lot of work.

The FPGA modules have been written to support a fairly classical DSP arrangement. A 44100Hz

output sample clock has been defined, and controls the output sample speed of the entire circuit. The

rest of the FPGA is dedicated to six synthesizer channels which are added together at the end to produce

a combined sound sample.

Each synthesizer channel (referred to as synth) contains three things: a sample generator, a numerically-

controlled ADSR filter, and a multiplier with playback controls. Each channel is usually arranged like

the block diagram in Figure 2.

In this structure, the sample generator actually contains the waveform that will be played back, in

an internal ROM. At every 44.1KHz clock cycle, the sample generator moves to the next 12-bit sample,

rolling back to the start when it gets to the end. The samples stored in the generator are in a 12-bit

signed format and can generally be anything stored as an uncompressed sequence of amplitudes. For the

purposes of testing and experimental sound generation, we loaded our sample generators with sine wave

samples generated by the Perl script attached at Appendix 4.4.3.

The ADSR numerically-controlled filter is an envelope filter with configurable rates of Attack, Decay,

Sustain, and Release. It is generally used to simulate a lot of different audio events, because the ADSR

pattern is highly representative of impact-based noises - it starts with a jump up to a very high amplitude,

decays, and stays at the same amplitude coefficient for a while before finally decaying to zero. It is

implemented using a finite state machine, which controls which phase the NCF is in at any given point

4

*

Trigger

Sample Waveform
 Generator

ADSR Filter

EN

Result Sample

Figure 2: Block-level Channel Structure.

in time, as well as handling trigger/mute input control. At every clock cycle, the NCF returns a signed

12-bit coefficient to the synth module. When this coefficient decreases to zero, the sample stops playing.

The main synth component, seen surrounding the ADSR NCF, contains a multiplier and some combi-

national logic to control the states of its internal FSM, which controls whether a sample should be played

back from the channel or not. The way this logic works necessitates that a single trigger pulse is sent

on the input trigger line. This will start sample playback, which will continue until a mute signal is sent

or the ADSR filter’s coefficient decreases to zero. At every time step, the synth takes a sample from the

generator, a coefficient from the ADSR, and multiplies them to get the resultant sample, which is then

put out. This works to scale the amplitude of the generated sound because both the sample and the

coefficient are returned as signed 12-bit numbers, and the SG samples are centered around zero, which

makes multiplying by a strictly-positive coefficient produce mathematically correct waveforms.

2.4 Output Stage Design

The output stage of the design is very simple. The FPGA takes the 12-bit digital sound output from pins

P10-P24 and feeds it directly into a Maxim MAX507 12-bit DAC. This DAC has two latches on the input,

presumably for capturing fluctuating digital input, but it has been configured to leave both transparent,

which allows the use of an internal register to buffer the output inside the FPGA instead of doing it in

hardware. The DAC is configured to output a voltage from 0 to 5V depending on the binary input, and

this output voltage represents the output signal if the input is varied at a constant update frequency.

The output analog signal is sent through a 6 KHz cutoff low-pass filter and into one half of a 12W

stereo power amp called the TDA7263. The low-pass filter is necessary to reduce the amount of digital

and analog hum due to power supply noise and FPGA output gate instability. This amp outputs the

sound into a pair of 40W 5’1/4” speakers designed for automotive audio. The TDA7263 is configured

for variable gain to allow at least some control of volume level. Consult Appendix 4.3.1 for the amplifier

hookup configuration used.

5

3 Results

The project currently successfully functions as a multi-channel drum sound recorder and sequencer.

However, due to implementation difficulties, some parts of the specification had to be worked around to

produce a functional result.

The PIC has all of the functionality stated in the design; however, the access to the ROM was difficult

in C. In one version of the PIC code, the ROM is accessed and data is stored in the ROM, but the ROM

pointer of the array would not move. The PIC would create an array large enough to fit 99 channels, but

the pointer could not access the array other than the zero point of the array. The PIC had to be reverted

to storing sequences in the RAM, which could only store up to three channels due to its relatively small

size.

The FPGA has all the stated functionality as well, but we did not have time to find nice drum clips to

distill into repeatable waveforms to store in the sound generator ROMs. As a result, it currently outputs

various frequencies of sine wave, with various envelopes applied to them to produce a range of sounds

from a chirp to a low, deep grunt. None of those are technically drum noises, but they were sufficient to

test the device’s sound synthesis capabilities.

6

4 Additional Information and Appendices

4.1 Parts List

Quantity Part Comment Price (total)

10 PBNO pushbutton From stockroom -

2 MAXIM MAX507 12-bit parallel DAC, from stockroom -

1 STMicroelectronics TDA7263 497-3958-5-ND Dual op-amp, Digikey $3.04

4 47 uF capacitor P5156-ND Digikey $0.44

4 1000 uF capacitor P13458-ND Digikey $2.32

2 Sony XPLOD 5.25 speaker On loan from Dmitriys supplies -

4.2 References

• http://www.maxim-ic.com/quick_view2.cfm/qv_pk/1543 - DAC information

• http://www.datasheetcatalog.com/datasheets_pdf/T/D/A/7/TDA7263.shtml - Power Amp infor-

mation

• http://en.wikipedia.org/wiki/Low_pass_filter - Low Pass Filter Reference

• http://www.dspguide.com/ - DSP information

7

4.3 Schematics

4.3.1 Breadboard

Play/Record

GND

44kΩ

44kΩ

44kΩ

44kΩ

44kΩ

44kΩ

44kΩ

44kΩ

44kΩ

44kΩ

GND

Start/Stop

Drum Button 1

Button 2

Button 3

Button 4

Button 5

Button 6

Channel up

Channel down

PIC

Reset

44kΩ

INPUT LATCH

DAC LATCH

12

D0 D11

VOUT

R
D

F
S

RFB

CLR
CS

WR

LDAC

V
D

D

R
E

F
O

U
T

DGND

AGND

-

+

VSS
DAC

CONTROL

LOGIC

FPGA

0.1uF

-

+

RA0

RA1

RA2

RA3

RA4

RA5

R
B

3

R
B

0
 /
 I

N
T

0

R
B

1
/
IN

T
1

R
B

2
/
IN

T
2

R
C

0

R
C

1

R
C

2

R
C

3

R
C

4

R
C

5

P10

P11

P12

P13

P14

R
C

0

R
C

1

R
C

2

R
C

3

R
C

4

R
C

5

P25
10uF

100nF

1KΩ

100nF
27KΩ47uF

47Ω

0.1uF

4.7Ω

1000uF

GND

GND

1KΩ

3.3V

3.3V

3.3V

Corresponding

Buttons 0-5

65Ω

P15

P17

P18

P20

P21

P23

P24

1KΩ

/ dac_out[0]

/ dac_out[1]

/ dac_out[2]

/ dac_out[3]

/ dac_out[4]

/ dac_out[5]

/ dac_out[6]

/ dac_out[7]

/ dac_out[8]

/ dac_out[9]

/ dac_out[10]

/ dac_out[11]

/ reset

tr
ig

g
e

r[
0
]
/

tr
ig

g
e

r[
1
]
/

tr
ig

g
e

r[
2
]
/

tr
ig

g
e

r[
3
]
/

tr
ig

g
e

r[
4
]
/

tr
ig

g
e

r[
5
]
/

R
E

0

R
E

1

Start

Indicator
Record

Indicator

390Ω390Ω

TDA7263

MAX507

8

4.3.2 PIC

Finite State Machine Representation of Control Flow

Play State Playing Sequence

Record State
Recording

Sequence

Initial State Toggle

Start

Button

Pressed

Start

Button

Pressed

Waiting to

Record

Waiting to

Play
End of Sequence

End of Sequence

Finish

Finish

Stop Button

Channel

Change or

State

Toggle

Channel

Change or

State

Toggle

Stop Button

9

Routines

PIC

Drummer.h

Drummer.c

Struct

FPGA_Command

isr

 (interrupt)

Main

INTCON 1,2,3

FPGA_Command

Global Array

Global Variables

Channel

Start

DrumID

Timer

TRIS A,B,C

Start/Stop

 (INT0)

Channel Up

 (INT1)

Channel Down

 (INT2)

While(1)

(Polling)

INT0IE

INT1IE

INT2IE

RBIE

TMR0IE

TIMER0

TMR0

 Register

10

4.3.3 FPGA

11

4.4 Code Listing

4.4.1 PIC C Code

Listing 1: drummer.h

/∗
E155 Final Pro jec t − Drummer

PIC C18 header code .

Chris Koo bckoo9@gmail . com

Dmitriy Yakovlev dyakovlev@hmc . edu

∗/

// data types used f o r s to rage

struct fpga command

{
unsigned int t imer ;

unsigned char DrumID ;

} ;

// Function Prototypes

void main (void) ;

void i s r (void) ;

Listing 2: drummer.c

/∗
E155 Final Pro jec t − Drummer

PIC C18 code . Handles sequence recording , s torage , and p layback con t ro l .

Chris Koo bckoo9@gmail . com

Dmitriy Yakovlev dyakovlev@hmc . edu

input p ins

RA0−5: drums

RB0: s t a r t / s top PBNO

RB1: channel up PBNO

RB2: channel down PBNO

RB3: p lay / record swi tch − 1 = Play , 0 = Record

output p ins

RC0−5: FPGA drum con t ro l

RD0: on in record mode , o f f in p lay mode

RD1: on when p lay ing , o f f when stopped

∗/

#include <p18f4520 . h>

#include <de lays . h>

#include <t imers . h>

#include <usar t . h>

#include ”drummer . h”

12

// g l o b a l vars and s to rage

f a r struct fpga command Command [7 5] ;

f a r struct fpga command ∗ po in t e r ;

int Start , Channel ;

// The #pragma t e l l s the compi ler to s t a r t a code sec t ion , named

// h i g h v e c t o r at the program memory address o f 0x08 . This i s

// the i n t e r r up t vec to r address .

#pragma code h i gh vec to r = 0x08

void h i gh i n t e r r up t (void) {
asm GOTO i s r endasm

}

// Now s t a r t the main code s e c t i on .

#pragma code

void main (void)

{
unsigned char l a s t bu t t on s ;

unsigned char playback ;

// note − use LATx ins t ead o f PORTx fo r wr i t i n g to output p ins

LATA = 0x00 ; // c l e a r PORTA

LATB = 0x00 ; // c l e a r PORTB

LATC = 0x00 ; // c l e a r PORTC

LATE = 0x00 ;

ADCON0bits .ADON = 0 ; // ADC o f f

ADCON1 = 0x0F ; // d i g i t a l IO , not analog reads

// con f i g IO d i r e c t i o n s

TRISA = 0b00111111 ; // A <−
TRISB = 0b00001111 ; // B[3 : 0] <−
TRISC = 0b00000000 ; // C −>
TRISE = 0b00000000 ; // E −>

// con f i g i n t e r na l and e x t e rna l i n t e r r u p t s

INTCON = 0b11110000 ; // I n i t i n t e r r u p t s f o r g l o ba l , pe r iphera l , and INT0

INTCON2 = 0b11110100 ; // I n i t p r i o r i t y o f RB in t e r rup t s , a l l ow in t e r r up t

INTCON3 = 0b11011000 ; // Set p r i o r i t y f o r INT1+INT2 , enab le e x t e rna l i n t s

T0CON = 0b10000111 ; // Set up Timer 0 fo r eve ry th ing

po in t e r = &Command [0] ; // current p layback / record ing po s i t i on

Star t = 0 ; // 1 when s t a r t has been pressed

Channel = 0 ; // current channel #

l a s t bu t t on s = 0 ; // used fo r remembering but ton pre s s e s

playback = PORTBbits .RB3;

// Do the f o l l ow i n g f o r e v e r

while (1) {
// i f we j u s t swi tched between p layback and record ,

// s top and r e s e t po in t e r to beg inning o f channel

i f (playback != PORTBbits .RB3) {

13

Delay10KTCYx (1) ; // 10 ,000 c y c l e s at 20 mhz ˜ 8ms

PORTC = 0 ;

po in t e r = &Command [0] + Channel ∗25 ;

S ta r t = 0 ;

playback = PORTBbits .RB3;

}

// i f we shou ld be doing anything (i f ! p lay , nothing happens)

i f (Sta r t) {
LATEbits .LATE0 = 1 ;

// I f we are in p layback mode

i f (PORTBbits .RB3){
LATEbits .LATE1 = 0 ; // p layback mode

// i f we ’ re at the end o f the channel , loop back to s t a r t

i f (po in t e r > (&Command[0]+ Channel ∗25+24)) {
LATC = 0 ; // zero output

po in t e r = &Command[0]+ Channel ∗25 ;

}
// i f a l l i s OK and we shou ld advance in the sequence , do so

else i f (ReadTimer0 () >= (∗ po in t e r) . t imer) {
LATC = (∗ po in t e r) . DrumID ; // which drums to s t a r t p l ay ing

po in t e r++; // advance to the next command

WriteTimer0 (0) ; // r e s e t the t imer

// ho ld input h igh f o r a wh i l e

Delay10KTCYx (1) ; // 10 ,000 c y c l e s at 20 mhz ˜ 8ms

}
// i f we haven ’ t reached the time fo r the next sequence , wai t

else {
LATC = 0 ;

}
}

// i f we ’ re in record mode

else {
LATEbits .LATE1 = 1 ; // record mode

// i f we have run out o f channel to record in to

i f (po in t e r > (&Command[0]+ Channel ∗25+24)){
LATC = 0 ;

Sta r t = 0 ;

po in t e r = &Command[0]+ Channel ∗25 ;

}
else {

// s t i l l r ecord ing . . . i s a but ton pressed ?

i f (PORTA==0 && la s t bu t t on s ==0); // no but tons pressed

else i f (l a s t bu t t on s==0 && PORTA!=0){ // bu t tons pressed

Delay10KTCYx (1) ; // 10 ,000 c y c l e s at 20 mhz ˜ 8ms

LATC=PORTA;

l a s t bu t t on s=PORTA;

(∗ po in t e r) . DrumID=PORTA;

14

(∗ po in t e r) . t imer= ReadTimer0 () ;

po in t e r++;

WriteTimer0 (0) ;

}
else i f (PORTA==0 && la s t bu t t on s !=0){ // bu t tons pressed

l a s t bu t t on s =0;

LATC = 0 ;

}
}

}
}
else {

LATEbits .LATE0 = 0 ; // o f f when not p l ay ing

i f (PORTBbits .RB3) LATEbits .LATE1 = 0 ; // p layback mode

else LATEbits .LATE1 = 1 ; // record mode

LATC = PORTA;

Delay10KTCYx (1) ; // 10 ,000 c y c l e s at 20 mhz ˜ 8ms

}
}

}

// The #pragma l e t s compi ler know i s r () i s an i n t e r r up t

// handler .

#pragma i n t e r r up t i s r

void i s r (void)

{
Delay10KTCYx (1) ; // 10 ,000 c y c l e s at 20 mhz ˜ 8ms

i f (INTCONbits . INT0IF) { // In t e r rup t s t a r t s top

INTCONbits . INT0IF=0;

WriteTimer0 (0) ;

i f (Sta r t) {
Star t =0;

po in t e r=&Command[0]+ Channel ∗25 ;

}
else {

Star t =1;

// i f we ’ re in record mode , c l e a r the channel

i f (! PORTBbits .RB3)

{
while (po in t e r <= &Command[0]+ Channel∗25+24)

{
(∗ po in t e r) . t imer =0;

(∗ po in t e r) . DrumID=0;

po in t e r++;

}
po in t e r = &Command[0]+ Channel ∗25 ;

}
}

15

}
else i f (INTCON3bits . INT1IF) { // In t e r rup t channel up

INTCON3bits . INT1IF=0;

i f (Channel==2)

Channel=0;

else

Channel++;

Star t =0;

po in t e r=&Command[0]+ Channel ∗24 ;

LATD = Channel ;

}
else i f (INTCON3bits . INT2IF) { // In t e r rup t channel down

INTCON3bits . INT2IF=0;

i f (Channel==0)

Channel=2;

else

Channel−−;

S ta r t =0;

po in t e r=&Command[0]+ Channel ∗24 ;

LATD = Channel ;

}
else i f (INTCONbits .TMR0IF) { // In t e r rup t t imer over f l ow

INTCONbits .TMR0IF=0;

i f (! PORTBbits .RB3){
(∗ po in t e r) . t imer=0xFFFF;

(∗ po in t e r) . DrumID=0x00 ;

po in t e r++;

WriteTimer0 (0) ;

}
else

{
WriteTimer0 (0) ;

po in t e r++;

}
}

}

16

4.4.2 FPGA Code

Listing 3: controller.v

/∗
E155 Final Pro jec t − Drummer

Xi l inx Spartan3 FPGA Code . Handles sound s yn t h e s i s and 44.1KHz output .

Chris Koo bckoo9@gmail . com

Dmitriy Yakovlev dyakovlev@hmc . edu

input p ins

c l k − P124 Clock

r e s e t − P25 Reset

t r i g g e r s − P82−P87 RC input from PIC

output p ins

dac out − P10−P24 DAC Sample output

l e d s − P97−P105 LED Bargraph output

∗/

‘timescale 1ns / 1ps

/∗ Cont ro l l e r Module

I n s t a n t i a t e s a number o f s yn t h e s i z e r channels ,

adds t h e i r output at every 44100Hz cyc l e and puts i t out on

dac out

∗/
module c o n t r o l l e r (

input c lk , // 20 MHz FPGA system c l ock

input r e s e t , // routed to synth channels

input [5 : 0] t r i g g e r s , // drum inpu t s (s e v e r a l can f i r e at once)

output reg [1 1 : 0] dac out , // 12− b i t p a r a l l e l DAC output

output [7 : 0] l e d s // LED debug output

) ;

assign l e d s = {2 ’ b00 , t r i g g e r s } ;

wire [1 4 : 0] dac in ; // dac data b u f f e r

wire sample c lk ;

// slowed−down audio output c l o c k (44100.0 Hz)

c l o ckd iv output c lk (c lk , 32 ’ d220500 , sample c lk) ;

// note : the input # i s durat ion o f h a l f c y c l e

// channel 0

wire [1 1 : 0] s i g n a l 0 ;

wire [1 1 : 0] output 0 ;

synth #(24 ’ h000500 , 24 ’ h000300 , 24 ’ h000100 , 24 ’ h000400) c0 (sample c lk ,

r e s e t , t r i g g e r s [0] , s i gna l 0 , output 0) ;

s ine 220Hz s i g 0 (sample c lk , s i g n a l 0) ;

// channel 1

17

wire [1 1 : 0] s i g n a l 1 ;

wire [1 1 : 0] output 1 ;

synth #(24 ’ h000500 , 24 ’ h000300 , 24 ’ h000100 , 24 ’ h000400) c1 (sample c lk ,

r e s e t , t r i g g e r s [1] , s i gna l 1 , output 1) ;

s ine 120Hz s i g 1 (sample c lk , s i g n a l 1) ;

// channel 2

wire [1 1 : 0] s i g n a l 2 ;

wire [1 1 : 0] output 2 ;

synth #(24 ’ h000500 , 24 ’ h000300 , 24 ’ h000100 , 24 ’ h000400) c2 (sample c lk ,

r e s e t , t r i g g e r s [2] , s i gna l 2 , output 2) ;

s ine 80Hz s i g 2 (sample c lk , s i g n a l 2) ;

// channel 3

wire [1 1 : 0] s i g n a l 3 ;

wire [1 1 : 0] output 3 ;

synth #(24 ’ h000500 , 24 ’ h000300 , 24 ’ h000100 , 24 ’ h000400) c3 (sample c lk ,

r e s e t , t r i g g e r s [3] , s i gna l 3 , output 3) ;

s ine 330Hz s i g 3 (sample c lk , s i g n a l 3) ;

// channel 4

wire [1 1 : 0] s i g n a l 4 ;

wire [1 1 : 0] output 4 ;

synth #(24 ’ h000500 , 24 ’ h000300 , 24 ’ h000100 , 24 ’ h000400) c4 (sample c lk ,

r e s e t , t r i g g e r s [4] , s i gna l 4 , output 4) ;

s ine 400Hz s i g 4 (sample c lk , s i g n a l 4) ;

// channel 5

wire [1 1 : 0] s i g n a l 5 ;

wire [1 1 : 0] output 5 ;

synth #(24 ’ h000500 , 24 ’ h000300 , 24 ’ h000100 , 24 ’ h000400) c5 (sample c lk ,

r e s e t , t r i g g e r s [5] , s i gna l 5 , output 5) ;

s ine 60Hz s i g 5 (sample c lk , s i g n a l 5) ;

// combines the i n d i v i d u a l sample s i g n a l s

s i gna l comb ine r sc1 (output 0 , output 1 , output 2 ,

output 3 , output 4 , output 5 ,

dac in) ;

// f l i p −f l o p ga t e s output to DAC

always @ (posedge sample c lk)

dac out <= dac in [1 4 : 3] ;

endmodule

/∗ Synth channel module

Contro ls one drum . Trigger s t a r t s p layback , mute s top s i t b e f o r e i t s t op s

au tomat i ca l l y by reaching ADSR endpoint

∗/
module synth (

input sample c lk , // 44100Hz sample ra t e c l o c k

// con t r o l s

input mute , // s top p l ay ing

18

input t r i g g e r , // s t a r t p l ay ing (or r e s t a r t)

// sample ROM access por t

input [1 1 : 0] sample in ,

// r e s u l t i n g sample output (0x7FF when not p l ay ing)

output reg [1 1 : 0] sample out ,

) ;

// ADSR enve lope params (passed from i n i t i a l i z i n g module)

parameter a r a t e = 0 ;

parameter d ra t e = 0 ;

parameter s r a t e = 0 ;

parameter r r a t e = 0 ;

// fo rce t r e a t sample in as s igned

wire signed [1 1 : 0] sample in s ;

assign sample in s = sample in ;

wire signed [1 1 : 0] c o e f f ; // return wire f o r adsr c o e f f i c i e n t

wire signed [2 3 : 0] wreg ; // working reg f o r ad jus t ed sample c a l c u l a t i o n

wire [1 1 : 0] wout ; // output reg f o r ad jus t ed sample c a l c u l a t i o n

// s t a t e machine s t u f f

reg [1 : 0] s t a t e = 2 ’ b00 ;

reg [1 : 0] next = 2 ’ b00 ;

parameter Trig = 2 ’ b01 ;

parameter Playing = 2 ’ b10 ;

parameter Stopped = 2 ’ b00 ;

wire done ; // adsr s i g n a l

// t h i s module g i v e s back enve lope mu l t i p l i e r c o e f f i c i e n t

ads r enve l ope #(a rate , d rate , s r a t e , r r a t e)

adsr1 (sample c lk , s t a t e [0] , c o e f f , done) ;

// mu l t i p l y ! (sample g e t s >>>1 to ge t c o e f f to l i n e up r i g h t)

assign wreg = (sample ins >>>1) ∗ c o e f f ;

// sn ips top 12 b i t s and conver t s s igned −> unsigned

assign wout = wreg [2 3 : 1 2] + 12 ’h7FF ;

// s t a t e r e g i s t e r

always @ (posedge sample c lk)

begin

s t a t e <= next ;

case (s t a t e)

Playing :

sample out <= wout ;

Trig :

sample out <= wout ;

default : // Stopped

sample out <= 12 ’h7FF ;

endcase

end

19

// next s t a t e l o g i c

always @ (∗)

begin

case (s t a t e)

Trig :

next <= Playing ;

Playing :

i f (t r i g g e r) next <= Trig ;

else i f (mute | | done) next <= Stopped ;

else next <= Playing ;

Stopped :

i f (t r i g g e r) next <= Trig ;

else next <= Stopped ;

default :

next <= Stopped ;

endcase

end

endmodule

/∗ ADSR enve lope NCF module

a pp l i e s ADSR enve lope to input data .

∗/
module ads r enve l ope (

input sample c lk ,

input p l ay c t l , // pu l s e i n d i c a t e s s t a r t / r e s t a r t p layback

output [1 1 : 0] c o e f f , // mu l t i p l i c a t i o n c o e f f i c i e n t

output i d l e s t a t e

) ;

// c o e f f output range : 0x000 to 0x7FF

// ADSR enve lope params (ge t dec la red at module i n i t)

parameter a r a t e = 0 ;

parameter d ra t e = 0 ;

parameter s r a t e = 0 ;

parameter r r a t e = 0 ;

// ADSR turning po in t s (hardcoded here)

parameter [2 3 : 0] a t tack turn = 24 ’ h7FF000 ; // 2∗ amplt iude

parameter [2 3 : 0] decay turn = 24 ’ h3FF000 ; // 1∗ ampl i tude

parameter [2 3 : 0] s u s t a i n tu rn = 24 ’ h1FF000 ; // 1/2∗ ampl i tude

reg signed [2 3 : 0] c o e f f r e g ; // accumulator f o r the c o e f f i c i e n t

assign c o e f f = c o e f f r e g [2 3 : 1 2] ; // snip and output top 12

// prede f ined add/ sub t r a c t va lue s

wire signed [2 3 : 0] a i n c ;

assign a i n c = c o e f f r e g + a ra t e ;

wire signed [2 3 : 0] d dec ;

assign d dec = c o e f f r e g − d ra t e ;

wire signed [2 3 : 0] s dec ;

assign s dec = c o e f f r e g − s r a t e ;

20

wire signed [2 3 : 0] r dec ;

assign r dec = c o e f f r e g − r r a t e ;

// s t a t e machine t ha t c on t r o l s s t age o f the adsr

reg [2 : 0] s t a t e = 3 ’ b100 ;

reg [2 : 0] next = 3 ’ b100 ;

parameter I d l e = 3 ’ b101 ;

parameter Trigger = 3 ’ b100 ;

parameter Attack = 3 ’ b000 ;

parameter Decay = 3 ’ b001 ;

parameter Susta in = 3 ’ b010 ;

parameter Release = 3 ’ b011 ;

// s t a t e r e g i s t e r

always @ (posedge sample c lk)

begin

s t a t e <= next ;

case (s t a t e)

I d l e :

c o e f f r e g <= 24 ’h2FF000 ; // ∗1
Trigger :

c o e f f r e g <= 24 ’h2FF000 ; // r e s e t s c o e f f

Attack :

c o e f f r e g <= a in c ;

Decay :

c o e f f r e g <= d dec ;

Susta in :

c o e f f r e g <= s dec ;

Re lease :

c o e f f r e g <= r dec ;

default :

c o e f f r e g <= 24 ’h3FF000 ; // ∗1
endcase

end

// next s t a t e l o g i c

always @ (∗)

begin

case (s t a t e)

I d l e :

i f (p l a y c t l) next <= Trigger ; // r e t r i g g e r

else next <= Id l e ;

Tr igger :

next <= Attack ;

Attack :

i f (p l a y c t l) next <= Trigger ; // r e t r i g g e r

else i f (c o e f f r e g > a t tack turn) next <= Decay ;

else next <= Attack ;

Decay :

i f (p l a y c t l) next <= Trigger ; // r e t r i g g e r

else i f (c o e f f r e g < decay turn) next <= Susta in ;

else next <= Decay ;

Susta in :

21

i f (p l a y c t l) next <= Trigger ; // r e t r i g g e r

else i f (c o e f f r e g < s u s t a i n tu rn) next <= Release ;

else next <= Susta in ;

Re lease :

i f (p l a y c t l) next <= Trigger ; // r e t r i g g e r

else i f (c o e f f r e g < 0) next <= Id l e ;

else next <= Release ;

default :

next <= Id l e ;

endcase

end

// high when the adsr i s i d l i n g

assign i d l e s t a t e = (s t a t e == 3 ’ b101) ;

endmodule

// adds s i x s igned 12− b i t va lue s

// note − g i v e s 15− b i t r e s u l t in s t ead o f ove r f l ow ing or c l i p p i n g

module s i gna l comb ine r (

input [1 1 : 0] sample0 ,

input [1 1 : 0] sample1 ,

input [1 1 : 0] sample2 ,

input [1 1 : 0] sample3 ,

input [1 1 : 0] sample4 ,

input [1 1 : 0] sample5 ,

output [1 4 : 0] sum

) ;

// note − cons ider r ep l a c in g with 13− b i t c l i p p i n g adder

assign sum = (sample0 + sample1 + sample2 + sample3 + sample4 + sample5) ;

endmodule

// c l o c k d i v ide r , ou tputs square s i g n a l s o f any frequency l e s s than 10 MHz

// note − f requency i s an in t e g e r determining the quan t i t y o f 10 th s o f h e r t z . . s ,

// so to ge t 5 kHz , put 50000 (5000.0 Hz) in to frequency

module c l o ckd iv (

input c lk ,

input [3 1 : 0] f requency ,

output f r e q ou t

) ;

reg [3 1 : 0] count = 0 ; // ho ld s current c y c l e count

always @ (posedge c l k)

begin

i f (count + frequency < 200000000) count = count + frequency ;

else count = (count + frequency) − 200000000;

end

assign f r e q ou t = (count >= 100000000) ;

endmodule

22

Listing 4: Sample Sine Wave Generator

/∗
E155 Final Pro jec t − Drummer

Ver i log ROM and counter modules f o r s ine wave genera t ion .

Chris Koo bckoo9@gmail . com

Dmitriy Yakovlev dyakovlev@hmc . edu

∗/
‘timescale 1ns / 1ps

/∗
ROM module with 12− b i t samples o f a 80Hz s ine wave taken at 44100Hz

∗/

module s ine 80Hz (

input c lk ,

output [1 1 : 0] data // s igned 12− b i t sample

) ;

reg [9 : 0] address = 0 ; // 10− b i t address

s ine 80Hz data data (address , data) ;

always @ (posedge c l k)

i f (address == 10 ’ b1000100111) address = 0 ;

else address = address + 1 ;

endmodule

module s ine 80Hz data (

input [9 : 0] address ,

output reg [1 1 : 0] data

) ;

always @ (∗)

begin

case (address)

10 ’ b0000000000 : data = 12 ’ b000000000000 ;

10 ’ b0000000001 : data = 12 ’ b000000010110 ;

10 ’ b0000000010 : data = 12 ’ b000000101101 ;

10 ’ b0000000100 : data = 12 ’ b000001011100 ;

. . .

10 ’ b1000100100 : data = 12 ’ b111110110110 ;

10 ’ b1000100101 : data = 12 ’ b111111001101 ;

10 ’ b1000100110 : data = 12 ’ b111111100100 ;

10 ’ b1000100111 : data = 12 ’ b111111111100 ;

default :

data = 12 ’ h800 ;

endcase

end

endmodule

23

4.4.3 Perl Code

Listing 5: gen.pl

#!/ usr / bin / p e r l

E155 Final Pro jec t − Drummer

Perl code t ha t genera te s Ver i log s ine wave NCO modules

Dmitriy Yakovlev dyakovlev@hmc . edu

take s frequency , sampling frequency , output f i l e name as inpu t s

e . g . gen . p l 440 44100 A4. v

pr i n t s out loaded Ver i log ROM

die (”bad inputs ”) i f $#ARGV != 2 ;

$ f = @ARGV[0] ;

$ s f = @ARGV[1] ;

$ f i l e = @ARGV[2] ;

print ”\ ns ine f requency : $ f Hz\nsampling at : $ s f Hz” ;

print ”\ ntarge t f i l e : $ f i l e ” ;

open (TARGET, ”>>$ f i l e ”) or die $! ;

setup

my $pi = 3.14159265358979 ;

sub d2b {
return unpack(”B32” , pack (”N” , sh i f t)) ;

}

generate beg inning o f module

$pre = ’ ‘ t ime s ca l e 1ns / 1ps

/∗
ROM module with 12−b i t samples o f a ’ . $ f . ’Hz s i n e wave taken at ’ . $ s f . ’Hz

∗/

module s i n e ’ . $ f . ’Hz(

input c lk ,

output [1 1 : 0] data // s igned 12−b i t sample

) ;

reg [9 : 0] address = 0 ; // 10−b i t address

s i n e ’ . $ f . ’ Hz data data (address , data) ;

always @ (posedge c l k)

i f (address == 10\ ’ b ’ . substr (d2b (int ($ s f / $ f)) , −10) . ’) address = 0 ;

e l s e address = address + 1 ;

endmodule

24

module s i n e ’ . $ f . ’ Hz data (

input [9 : 0] address ,

output reg [1 1 : 0] data

) ;

always @ (∗)

begin

case (address)

’ ;

and put i t in to the f i l e

print TARGET $pre ;

gen cases and wr i t e in to f i l e

foreach $sample (0 . . ($ s f / $ f)) {

$data = sin (2∗ $pi ∗$sample∗ $ f / $ s f) ;

sca l e up to 2ˆ12

$data = int ($data ∗ 2048) ∗ 0 . 9 9 9 ;

conver t data to 12− b i t binary , snip

$bdata = substr d2b ($data) , −12;

conver t address to 10− b i t binary , snip (shouldn ’ t over f l ow)

$badr = substr d2b ($sample) , −10;

print TARGET ” 10 ’ b$badr : data = 12 ’ b$bdata ;\n” ;

}

generate end o f module . s tandard output i s 1000000000000 , which i s ”0”

$post = ” de f au l t :

data = 12 ’ h800 ;

endcase

end

endmodule

” ;

and put i t in the f i l e

print TARGET $post ;

close (TARGET) or die $! ;

print ”\n” ;

25

