Multi-Device Connect 4

Final Report
12/11/2009
E155: Microprocessor-Based Systems

Professor Harris

Narayan Propato and Jason Kang

Abstract:

The goal of this project is to create a pair of identical handheld gaming devices that allow two players to
play Connect 4 against each other. Players take turns dropping chips into a six-by-seven game board using two
directional buttons and a select button. The game board is displayed on an eight-by-eight bi-color red/green dot-
matrix LED display. The first player to connect four chips in a line is victorious. If no player is able to achieve this
when the game board is full, the game declares a tie. The device uses a PIC to control game flow and inter-device
communication and an FPGA to control the LED display. The two prototype devices are able to carry out multiple
Connect 4 games, albeit with disconnections occurring approximately every twenty matches.

Introduction

The goal of this project is to create a pair of handheld gaming devices that allows two players to
play six-by-seven Connect 4 against each other. Both devices are identical in both hardware and
software such that if additional prototypes are created any combination of them will successfully
connect. The user interface consists of two directional buttons (left and right) and a select button. The
game board is displayed on an eight-by-eight bi-color red/green dot matrix LED display (Figure 1). Once
the two devices are connected, the first player to press select is allowed to make the starting move.
Additionally this player is assigned the color red, and his opponent is assigned green. When one player
wins the match, a special animation displays the winning combination. A new match begins when both
players have pressed select, with the green player now making the first move. The device uses a PIC to
control game flow and inter-device communication and an FPGA to control the LED display (Figure 2).

Column E Connection

Select Row Status

‘
(=

._‘J

.')

-
1,

Left and
Right
| Buttons §
sk Ef |

Ill

OizLE&:

._ '-')

)

-
1,

-~
)
-

-."‘
]
=]
9

Figure 1: Connect 4 inputs and outputs. Inputs consist of two directional buttons and a
select button. The output is an 8x8 dot matrix LED display.

PIC 18F4520 i USART | PIC 18F4520
Caolor /Row/Col Hand 4 Button Button t Hand Color fRow/Col
[7:01 shake Interrupt Interrupt| shake [7:0]
Pov ¥ ¥ Power
8x8 Dot- 4[-::;N Spartan 3 Spartan3 |z | 8x8Dot-
Matrix LED FPGA FPGA Matrix LED
. LEDs s .

Display J130) [Lf;’:n] . Display

Figure 2: Overview schematic showing connection between devices, and the interaction
between the three main pieces of hardware (PIC, FPGA, and LED display)

New Hardware: 8x8 Dot Matrix LED Display

COL.
5181 1 2 3 4 5 6 7 8
(2 GIVED) D @) D)
NO. th‘#ﬂ : - x—« ja—a e é 4
skl 4] s4[] z4|] 7&]]

Bﬂ
la

Nnlndn

Pl
L

. Eﬂ
i

3 5[4] 441 34
o oS5 5T BET S0 T A1 41
IR NIEn IR IR ETIE
o LR G611 SR ST 411 A4]] 4]

"*'I.I. Lanp

-~
©

0
sl

~>~=GREEN
—++=QORANGE
Figure 3: Internal Circuitry for 8x8 bi-color LED Display. Obtained from data sheet [1].

This display works similarly to the matrix keypad used in lab 3 except it is used as an output
instead of an input (Figure 3). To light up an individual LED the correct anode (row) must be powered
and the correct cathode (column) must be grounded. Time multiplexing is used to light up LEDs in
multiple rows. One must scan power through the row pins while outputting the logic Os to the LEDs that
should be turned on in the powered row. This organization allows many LEDs to be controlled by
relatively few pins.

Breadboard Schematic

The game device displays information through an 8x8 dot matrix LED display. Each dot on the
display contains two LEDs, a green one and a red one. Therefore the display needs eight common anode
control wires, eight green cathode wires, and eight red cathode wires (Figure 4). The desired color is
chosen by grounding the appropriate cathode and powering the appropriate anode. In addition, a
yellow color can be produced by turning on both the red and yellow LEDs. In order to ensure that all of
the LEDs are supplied with enough current, the anodes are tied to the 3.3V source through a 2N3960
PNP transistor. Since the red LEDs in the display run on a lower voltage than the green ones, the red
LEDs have a tendency to overpower the green LEDs. Therefore, 390Q resistors are added to the red
cathodes in order to even out the brightness.

To enable communication between two devices the Rx and Tx pins of the Harris Board must be
connected to the Tx and Rx pins of another device’s Harris Board respectively. In addition the two

devices must share a ground over the same cable so that the data is received using the same voltage
reference. Additionally the Rx pins are pulled up with a 1kQ resistor. This causes the Rx pin to remain in
an idle high state even if the UART connection is dropped.

4.5V
)—||||||_‘ Harrisboard 2.0
i 9 — Vin
? Gnd
- +3.3V
st — button interrupt (RBs)
i L buttens[2]/select button (p128)
Right 1K0)
o buttons[1]/right button (pP129)
To Ground of other device Left "m, buttons[0]/left button (P130)
1K Tx (RCE)
ToRx of other device — Jl R (RC7)
1K —| Interrupt (P131
To Tx of other device g RS .
$2012388K/9 @ g
POWER [7:0] (P2,P5, P10,P13,P17,P21,P25,P113)
8 by 8 red/green dot —-@ \
matrix LED display .@._
P
@— LEDS[15,13,...,1] (Green) (P4,P7,P11,P14,P18,
8 P23,P112,P118)
C Anod Bx IN3960 ”
emmen Ane ef PNP LEDS[14,12,...,0] (Red) (P1, P5,PE,P12 P15,
(3,6,9,12,15,18,21,24) 220,724 7113)
3900
3900 \8
-
3 3900
Green Cathodes .
{1,4,7,10,13,16,19,22) ;;E,:
Red Cathodes \8 i
o
(2,5,8,11,14,17,20,23) 3900
-

Figure 4: Breadboard Schematic. Transistor, resistor, and switch pictures taken from The
Electronics Club [2].

Three user input push button switches are mounted on the board. They are all active high and
are pulled to ground using 1kQ resistors. The board is powered with 4.5 V from three 1.5V AA batteries.
The Harris board’s voltage regulators are used to drop that voltage down to 3.3V, which is outputted
from the Harris board to power the LED display and provide the button voltage. A power switch was
added to turn the device on and off.

PIC

The PIC has six major roles:
1. Inter-Game Initialization

2. User Input

Inter-PIC Communication
Game Mechanics

Victory Conditions
Display

Their relationship is shown in Figure 5.

Configure
Peripherals

Match
Initialization

Get User Inputs

Communicate
Between PICs

Run Game
Mechanics

Check Victory
Conditions

Piece Dropped

This Round?
N

Display Board

Has Someone

Wan / Tied?
Y

Display Win
Animation

Figure 5: Flowchart of PIC code. Match loop cycles play continuously regardless of user
inputs.

The PIC carries out its roles through two nested loops. The outer loop runs the entire session
(which consists of multiple matches of Connect 4). The first time the session loop is called it initializes
communication with the opponent PIC and assigns turn order and colors. This process is described in
more detail in the Inter-PIC Game Initialization section. All successive times that it is called the session
loop simply switches turn order and instantiates variables to what they should be at the start of the
game.

The inner loop, the match loop, manages the current match. At the beginning of a loop the PIC
parses the user inputs (User Input). Then the PIC attempts to communicate with the opponent’s PIC
(Inter-PIC Communication). It sends player data and waits to receive and parse the opponent’s data.
Now that the PIC has data from both the player and the opponent it proceeds to carry out the active
player’s move if a move has been made (Game Mechanics). It then checks to see if the new move causes
a victory or tie (Victory Conditions). Finally, the PIC informs the FPGA how to update the display (Display)
before starting the next cycle of the loop.

The two devices communicate using the UART module built into the PICs. The connection
operates at a baud rate of 115.2k. This connection allows the players to communicate their moves to
one another and is also used to determine player colors and turn order.

Additional inputs come from the FPGA including denounced button signals (left, right, and
select) into Port C, and a button interrupt signal is wired to Port RB5 which takes advantage of that
port’s interrupt on change feature. This is described further in the PIC-User Input section.

The PIC also outputs information to the FPGA including eight data bits transmitted on Port D
over parallel to the FPGA. These bits tell the FPGA which spaces on the LED display should be altered
and to what color. Additionally, the PIC outputs a handshaking bit so that the FPGA knows when the
parallel data can be read. This is described further in the PIC-Display section.

PIC - Match Initialization:

At the start of each new game the program needs to initialize variables including making a clear
game board, clearing the previous winner, and assigning turn order.

The first time this module is used in a session the PIC devices need to establish a connection and
assign colors and a turn order to each player. A connection status light on the top right of the display will
be yellow to show that a connection has not been established yet. When either player presses their
select button the two PICs attempt to synchronize. The PIC which had its select button pressed sends an
op code (0b10100000), showing that it wants to start a connection, out on the transmit line of its UART.
If the other PIC is on and able to recognize the op code it replies with another op code (0b01010000),
showing that it is also ready to initialize a connection. When the first PIC receives this op code then the
status light turns green showing that a connection has been established. Additionally the player who
pressed select is assigned the color green and is the first player for the first match. The other player is
red and the second player.

The program returns to this module when the players decide to start a new match in a session.
This occurs when both players press select at the win screen. Upon returning to this module the turn
order is switched while keeping player colors.

PIC-User Input:

The PIC samples the debounced button inputs every time the interrupt signal is toggled by the
FPGA. This was done by connecting the interrupt signal to Port B and turning on the Port B interrupt,
which triggers whenever a Port B input is toggled. The input values recorded when the interrupt is
triggered is then processed by the dataSetup function, such that the variables “left,” “right,” and
“select” are assigned their corresponding values. These variables can then be used whenever they are
needed by other functions.

Inter-PIC Communication:

Once the game is in progress the UART connection is used to share the players’ moves. The most
significant bit is a valid bit. The PICs send data on every cycle of the match loop regardless of whether
new user input has been observed. If the players have not yet made a move then the valid bit will be
cleared so that sent data will be ignored. When the player chooses a column to drop a piece into, the
valid bit is set high and the selected column is sent over UART in the three least significant bits. The
remaining bits are used to check the quality of the signal. If bits 7-3 are not 0b1010 then the data packet
is considered to be corrupted and is therefore ignored.

This module also deals with synchronizing match loops between the two devices and detecting
lost connections. A delay loop is built into this module. The PIC breaks out of this delay loop when the
UART receive interrupt flag is set. This way if one PIC is running faster it will first send out its data then
wait in the loop to receive data, such that both devices are always processing the same match loop and
consequently stay synchronized. When the connection is lost the delay loop will time out causing the
connection status light to become red. When this happens the PICs will continue to attempt to
communicate so that the game can resume when the connection is re-established.

PIC - Game Mechanics:

The game mechanics module of the PIC processes the changes made to the game board as
defined by the user input. This module stores a virtual copy of the Connect 4 board in the form of an 8x8
array of characters. The value of each character shows what color should be displayed in that spot
(0b00=none, Ob01=green, Ob10=red).

The light in the second row from the top and the right-most column shows the color of the
active player. A cursor is shown on the active player’s display indicating which column of the game
board the piece will be dropped into. Pressing the left button moves this cursor left and pressing the
right button moves it right. If the select button is pressed this module causes a piece to fall into the
selected column. Also, this event causes turns to change.

PIC - Victory Conditions:

The game uses the endgameModule function to check the victory conditions every time a new
chip is placed on the board. It does this by checking whether there is a four-space-long (or longer) line of
chips that includes the most-recently placed chip. Additionally, it checks for winning combinations in all

four directions (horizontal, vertical, and the two diagonals), so if multiple combinations are created
simultaneously all will be detected. endgameModule also keeps track of which chips are part of a
winning combination, so that they can then be highlighted by the endAnimationModule. Finally, if
victory conditions aren’t met, endgameModule checks the top row of the board. If it is full, then a tie
has occurred and a special animation is played.

PIC — Display:

Based on information from the game mechanics module, the display module of the PIC informs
the FPGA what color each pixel on the LED display should. The PIC packages the color, row, and column
into 8 bits and outputs this word in parallel to the FPGA through PORTD. Then it toggles a hand shaking
signal on and off to inform the FPGA that it can read the data pins. Since the instruction clock is 1/4th the
speed of the board clock, the FPGA is able to consistently detect the change.

FPGA

The FPGA is responsible for debouncing user input, providing an interrupt signal to the PIC
whenever a button press is detected, and lighting up the dot matrix LED display with the contents of the
game board matrix.

It takes inputs from the left, right, and select buttons. Additionally the FPGA takes in data from
the PIC telling it what to display and when it can read this new data. The FPGA has 24 outputs to control
the dot-matrix LED display. Eight of them control the common anodes, eight control the green cathodes,
and eight control the red cathodes. In addition, the FPGA outputs the debounced buttons to the PIC and
toggles an interrupt output to tell the PIC when new user input data is available.

FPGA - User Input:

The FPGA debounces all three buttons by sampling them every 2000 clock cycles of a 20 Mhz
clock. Additionally, it provides the PIC with an interrupt signal which is toggled on the rising edge of any
of the three button inputs. The FPGA also masks the debounced button inputs such that only those
buttons that have undergone a rising edge are held high; buttons that were already high the previous
time they were sampled are transmitted as zeroes to the PIC.

FPGA - Display:

The FPGA is responsible for reflecting the matrix stored in the PIC on the dot matrix LED display
at the speed that is required. Matrix information consisting of the colors that should be displayed for
each element is stored in a 16 by 8 memory block. This module is time-multiplexed to light up individual
rows in the dot matrix LED display at a time. When the FPGA detects the handshaking signal, it samples
the data transmitted by the PIC and spends one clock cycle updating the contents of the appropriate
row in the matrix. Consequently the FPGA needs only be informed of any changes to the matrix, for it
will continue to display the old values otherwise. The FPGA does not read from a row while it is updating

to prevent incorrect information from being displayed on the dot matrix LED display. Additionally, the
FPGA will clear the contents of its memory block when the reset signal is held high.

Results:

The two prototype devices function as desired. Users are able to connect the two devices and
play an unlimited number of Connect Four matches (as long as the devices are powered, of course). The
connection between the two devices is fairly noisy, however, and therefore there is a small chance that
a spike of noise will produce faulty information to be received by one of the FPGAs. While the use of
three-bit op codes has drastically reduced the frequency of these occurrences, they do still happen
approximately every twenty games.

The most difficult part of the design was getting the communication to work reliably. If
movement caused the Tx and Rx UART pins to disconnect the receive interrupt flag stopped triggering. A
lot of this difficulty was due to the fact that if breakpoints are used in debug mode the connection is
dropped since the PIC can no longer send data at regular intervals. This causes the same problem that
we were trying to solve in the first place. Eventually we learned of two ways to fix this problem. One is
placing a pull-up resistor on the Rx pin so that when the Tx and Rx pins disconnect the Rx pin stays high.
Since the UART is idle high, the UART will see an idle signal on the Rx pin instead of a start bit. The
second solution was clearing the UART overrun flag. Originally we ignored the fact that this was
triggered believing that the UART would just ignore that data if the flag was set (similar to the framing
error flag). We discovered, however, that if the overrun flag is set the receive interrupt will not be set
when data is received.

The only major difference between the initial and final proposal (besides making the writing
clearer) was adding the goal of a status light for the connection. We realized that both debugging and
playing the game would be frustrating without it.

References:
Datasheets

[1] Wuxi Ark Technology Electronic Co. LTD. SZ012388K/9 Datasheet.
http://www.seeedstudio.com/depot/datasheet/SZ012388K9.pdf

Images:
Images of resistors, switches, and transistors obtained from

[2] Hewes, John. Circuit Symbols of Electronic Components. 2009
http://www.kpsec.freeuk.com/symbol.htm

APPENDIX A: PIC C Code

\\Charlie\HMCDFS\HMC_2011\jkang\My ...-06-09\Finall2Reliable\ConnectFourReport.c

//Created By: Jason Kang (Jkang@hmc.edu) and Narayan Propato (npropato@hmc.edu)

//Date: 11/25/2009
//Function:
//

// connect 4 handheld device.
// to an opponent®"s device.

This is code for the 18f4520 PIC microcontroler in a multiplayer
It deals with communication over the USART
It also has functions to accept button press

// inputs, and to communicate with an FPGA that handles display to an

// 8x8 bi-color dot-matrix LED display.

#include <p18f4520.h>
#include <stdio.h>
#include <usart.h>

// Function prototypes

void
void
void
char
char
void
void
void
void
void
void
void
void
void

isr(void);

config(void);
coltrans(void);
findRow(char);
dropAttempt(char, char);
updateDisplay(char, char, char);
initialization(void);
dataSetup(void);
communicationModule(void);
gameplayModule(void);
endgameModule(void);
displayModule(void);
endAnimationModule(void);
main(void);

// Definitions

char
char
char

//Global

char
char
char
char
char
char
char
char
char

MIN_ROW ;
MAX_COL ;
DROP_ROW = 7;

Variables

fail;

playerReady, oppReady;
turnOrder;

newGame = 0O;

lastColor = 0;
totalWinningChips = 0;
winningChips[22][2];
victory = 0;

tie = 0;

unsigned int t=0;

char
char
char
char
char
char
char
char
char
char
char

sync = 0;

colHighlight;

rowPlaced;

playerColor, oppColor;
turn = 0;

left = 0, right = 0;
playerSelect = 0, oppSelect = 0;
buttons;

playerMove, oppMove;
playerData=0, oppData=0;
board[8][8]:

//interrupt handler

//Periferal configuration.
//Transmit column over USART
//find row that that piece ends in
//attempt to drop a piece

//show a piece in LED display
//initializes a new game

//parses user iInput. creates packet
//trades data between PICs

//uses user & opp inputs to move
//checks victory conditions
//updates the whole LED display
//win screen animation

//play game on rows 2-7
//play game on columns 0-7
//The row that holds the piece to drop

//1s 1 if the drop attempt was invalid
//Are the players ready to start game
//First player(0) or Second Player(-1)
//Do players whant to play again
//last color to make a move

//number of chips that cause victory
//Stores location of winning chips (22 max)
//Has someone won the game?

//Have the players tied?

//an timing variable

//Are the PICs connected and synced.
//Column currently being highlighted
//Row that piece ends up in

//the color assignments to each player
//current turn: O,my turn; -1,o0pp. turn
//Are directional btns being pressed
//Has either player pressed select
//Buttons that are currently pressed
//Column selected by each player
//players®™ column

//the current state of the board

// When an interrupt happens, jump to the timer_isr function

#pragma code high_vector =

void

}

0x08
high_interrupt(void){
asm GOTO isr _endasm

#pragma code

#pragma interrupt isr
// Function runs when an interrupt is triggered

\\Charlie\HMCDFS\HMC_2011\jkang\My ...-06-09\Finall2Reliable\ConnectFourReport.c

void isr(void){

char maxcol;

char fake;

if (INTCONbits.RBIF == 1) { // whan a button is pressed
buttons = PORTC;
buttons = buttons | 0b00000100;
fake = PORTB;
INTCONbits.RBIF = 0; //clear interrupt flag

}

//main////777/77777/77777/777//77///777/7/777/
L177/77777777777777777777/77777/777/7/77///7/77/7/7777777
1117777777777 777/7777/777777/77777/777//777//777//777/

void main(void){
//wait a while for the FPGA to get programmed. This is necessary if the game
//is run on batteries
for (t = 500000;t>0;) {

t=1t+ 1;
//configure nessary PIC periferals
config();
while(1){
initialization(Q); //initialize the game at the start of each match
while(newGame == 0){ //while a match is currently running
dataSetup(); //parse user inputs and prepare USART data packet
communicationModule(); //Communicate with opponent
if (sync == 1) { //iT the connection is maintained
gameplayModule(); //run the turn of the game
if ((playerSelect = 0 || oppSelect = 0) && fail == 0) {
endgameModule(); //check victory conditions
}
displayModule(); //Update LED display
if (victory || tie) { //if someone wins
while(newGame == 0){
dataSetup(); //maintain communication
communicationModule();
endAnimationModule(); //while displaying animation
}
}
}
}

3
//config/////1/777/77777/777//7/7/7///7/7777/777/7777

void config(void){
// Interrupt configuration
// Enable global interrupts and PortB interrupts, and clear PortB interrupt flag
INTCON = 0b11001000;
PIElbits.RCIE = 0O; // Enable USART reciever interrupt
PIR1bits.RCIF = O; // Clear USART reciever interrupt flag

// USART configuration

TR1SC=0b10000000; // Sets RX to input and TX to output
TXSTA=0b00100100; // Enables TX and sets to high speed.
RCSTA=0b10010000; // Enables serial ports and RX.

SPBRG=10; // Sets baud rate to approximately 115.2k.

//make port D output ports (for the parallel comm to FPGA)
PORTD=0b00000000; //set port D to a known value
TRISD=0b00000000;

//make RE2 an output port (for telling FPGA about change)

\\Charlie\HMCDFS\HMC_2011\jkang\My ...-06-09\Finall2Reliable\ConnectFourReport.c

PORTEbits.RE2=0; //set RE2 to a known value
TRISEbits.TRISE2=0;

//Set up button interrupts
TRISBbits.TRISB5=1;

//Set up button inputs
TR1SC=0b10111000; // Sets RX to input and TX to output

//Reset the dot matrix display
TRISEbits.TRISE1=0;
PORTEbits.RE1=1; //set RE1
PORTEbits.RE1=0; //clear RE1l

//initialization/////777/77777777777777777777777777777777777/7777//777/7/777//77///777//777/

// Initializes game by establishing player turn order and color. This function handles
// two cases the Tirst is when the game is started for the first time. In this case the
// Tirst person to press select is assigned to be the first player and assigned the color

// green. The other player is second and is assigned red.

// The second case deals with games that are not the first in a set. In this case turn

// order is switched but color is not.

void initialization(void){
char i, j; //initialize some counter variables

//clear board
for (i=0; i<8; i++){
for (J=0; j<8; j++){
board[i]1[J]1=0;

}

colHighlight = 3; //initialize the starting column to the third
playerReady = 0; //clear the flags that would start a new game
oppReady = 0;

//Goes through this loop if it is the first game in a session
if (newGame == 0) {
board[0][7] = 3; //display a yellow status light that

updateDisplay(board[0][7].,0,7); //shows that connection is not yet made

//wait here until connection with other PIC has been made
while(sync == 0) {

oppData = ReadUSART(Q); //read USART to check for sync. code
INTCONbits.RBIE = 0;
playerSelect = buttons & 0b00001000; //is player®"s select pressed?
buttons = 0;
INTCONbits.RBIE = 1;
//if the opponent is sending the initialization code
if (oppData == 0b10100000) {
//this PIC starts as the second player
turn = -1;
playerColor=2; //...and the red player
oppColor=1; //...the opponent is green
turnOrder = -1; // and this keeps the starting turn
board[1][7] = oppColor; // show that it starts as the opp. turn
printf("%c", 0b01010000); // send an acknowledge string
sync = 1; // now the PICs are synchronized

}

// it the opponent has not sent the initialization code and
// the player has pressed select...
else if (playerSelect = 0){

\\Charlie\HMCDFS\HMC_2011\jkang\My ...-06-09\Finall2Reliable\ConnectFourReport.c

//send initialization code
printf(*"%c"™, 0b10100000);
//wait for the acknowledge string from the opponent
//do nothing if not acknopwledged
for (t = 50; t >0;) {
oppData = ReadUSART(Q);
t=1t - 1;
// if the initialization is acknowledged
if (oppData == 0b01010000) {

turn = 0; //you are the the 1st player
playerColor=1; //and are assigned green
oppColor=2; //the opponent is red

turnOrder = 0O;
board[1][colHighlight] = playerColor; //column select display

board[1][7] = playerColor; //show your turn
sync = 1; //PI1Cs are syhnchonized
break;
b
}
b
}
else {

//this code is used when the game is not the first in the session
//clear newGame flag that showed that the players wanted to start a new game
newGame = 0;

buttons 0;

//switch the starting player

if (turnOrder == 0) { //iT you were the first player
turn = -1; //you are now the second player
board[1][7] = oppColor; //show opponent®s turn
victory = O; //delete last game info.
tie = 0;
sync = 1;

else { //if you were the second player
turn = 0; //you now become the first player
board[1][colHighlight] = playerColor; //activate column select display
board[1][7] = playerColor; //show that it is your turn
victory = O; //adelete last game info.
tie = 0;
sync = 1;

}

//show that the turn order has been switched in this turn

turnOrder = ~turnOrder;

}
//dataSetup///// /1771777777777 7777/777777/7777777777/77/77/77/7//77//77/7//7//7///77/7/77777
// Module responsible for decoding player input and readying inter-PIC data.

void dataSetup(void){
//disable the input button interrupt so that the buttons don"t change
//while processing
INTCONbits.RBIE = 0;
left = buttons & 0b00100000; // get the left button
right = buttons & 0b00010000; // get the right button
playerSelect = buttons & 0b00001000; // get the select button
INTCONbits.RBIE = 1;
//clear buttions so that it doesn"t get double read.
buttons=0;
//iT the player passes select than add the move to the packet to be sent over
//USART (playerData)
if (playerSelect = 0) {
playerMove colHighlight;
// playerData Ob10000000 | playerMove;

\\Charlie\HMCDFS\HMC_2011\jkang\My ...-06-09\Finall2Reliable\ConnectFourReport.c

playerData = 0b11010000 | playerMove;
h
//0r else send useless data
else {

playerData = 0b00000000;

}
//communicationModule///////7////777777777777777/77777777/77/77777/7777/777//7/77///7/77/7/777/7777

// Module responsible for synchronizing players and transmitting and receiving player
// moves.
void communicationModule(void){
// send the playerData package to opponent®s PIC
printf("'%c", playerData);
//wait for a little while until data is recieved from the opponent. This loops allows
// the two PICs to synchronize since it delays the faster one.
for (t = 1000; t>0;) {
if (PIRlbits.RCIF == 1){

break;
b
t=t -1;
//if the connection times out...
if (t ==0) {
sync = 0; //the boards are not synchronized
RCSTAbits.CREN = 0; //clear the overrun error if there is one
RCSTAbits.CREN = 1;

board[0][7] = 2; //they are not connected so show red
updateDisplay(board[0][7].,0,7);

}

//if the connection does not time out

else {
sync = 1; //the boards are synchronized
board[0][7] = 1; // show this on the board with a green light
updateDisplay(board[0][7].,0,7);

}

oppData = ReadUSART(Q); // Read opponent data

if ((oppbata & 0b01110000) == 0b01010000) {
oppSelect = oppData & 0b10000000; // Parse it into oppSelect and oppMove
oppMove = oppData & 0b00000111;

else {
oppSelect = 0; // Parse it into oppSelect and oppMove
//oppMove = oppData & 0b00000111;

1117777777777 77/77777/77777/777//77/7//777/7/777/

// Module responsible for enforcing game rules.
void gameplayModule(void){
// Check if it is this player®s turn.
if (turn == 0){
// Check if the player has attempted to make a move, then check whether the move
// is valid and modify the board if it is. Additionally if it is valid, change
// turns, remove the cursor, and display the opponent®s color to signify it is
// his turn.
if (playerSelect 1= 0) {
fail = dropAttempt(playerMove, playerColor);
if (fail == 0) {
turn = ~turn;
board[1][colHighlight] = O;
board[1][7] = oppColor;

\\Charlie\HMCDFS\HMC_2011\jkang\My ...-06-09\Finall2Reliable\ConnectFourReport.c

// IT the player instead has pressed the left button, and the cursor is not
// located at the left edge of the screen, remove the previous position of the
// cursor, shift the position of the cursor one space to the left, and display
// the new position of the cursor.
else if ((left 1= 0) && ((colHighlight & 0b00000111) > 0)) {
board[1][colHighlight] = O;
colHighlight = colHighlight - 1;
board[1][colHighlight] = playerColor;

// If the player instead has pressed the right button, and the cursor is not
// located at the right edge of the screen, remove the previous position of the
// cursor, shift the position of the cursor one space to the right, and display
// the new position of the cursor.
else 1f ((right = 0) && ((colHighlight & 0b00000111) < (MAX_CoOL-1))) {
board[1][colHighlight] = 0O;
colHighlight = colHighlight + 1;
board[1][colHighlight] = playerColor;

// Check if it is the opponent®s turn and the opponent has attempted to make a
// move. ITf both are true, check that the move is valid and modify the board if
// it is. Additionally if it is valid, change turns, add the cursor, and display
// this player®s color to signify it is his turn.
else 1If (turn == -1 && oppSelect = 0){
fail = dropAttempt(oppMove, oppColor);
if (fail == 0) {
turn = ~turn;
board[1][colHighlight] = playerColor;
board[1][7] = playerColor;

//endgameModule///////77/77777777777777777/7777777777777/77/77777/77777/777///77////77/7/7777777

// Module responsible for determining whether endgame (victory/defeat) conditions
// have been met.
void endgameModule(void){

char 1,j;

char index = 0;

char lastMove;

char topleft, left, bottomleft, bottom, bottomright, right, topright;

playerSelect = 0;

// 1T it is this player®s turn, then use his color and check for his pieces.
if (turn == -1) {

lastMove = playerMove;

lastColor = playerColor;

// 1f it is the opponent®s turn, use his color and check for his pieces.
else if (turn == 0){

lastMove = oppMove;

lastColor = oppColor;

// Victory condition check.

// To check if the victory condition has been met, the program check for four
// continuous pieces arranged in a horizontal or vertical line or one of

// the two diagonal lines. More specifically, it checks if there are three

// pieces total to the topleft/bottomright, left/right, bottomleft/topright,
// or bottom of the most recently-placed piece. Additionally, the program

// keeps track of where the winning pieces where located using the matrix

// winningChips, which stores the row and column coordinates of each winning
// piece. ITf multiple winning combinations are found (such as simultaneous

\\Charlie\HMCDFS\HMC_2011\jkang\My ...-06-09\Finall2Reliable\ConnectFourReport.c

// horizontal and vertical combinations), winningChips stores chips belonging
// to all successful combinations, not just the first one found. When the

// program checks a line and finds that the victory condition has not been

// met, it restores the indexing of winningChips to what it was before checking
// said line. This ensures that only successful checks affect the winning

// chips displayed, since when victory is achieved only the first [index]

// elements of winningChips are displayed. Only the fTirst check is fully

// commented; the other three checks follow the same logic as the first.

////7 Topleft/bottomright victory check. ////
// Topleft check. //
// Only checks up to three spaces away from the most recently-placed piece.
// 1T the active player doesn"t have a piece [topleft] places to the topleft
// of his/her most recently-placed piece, stop the loop early. Else increase
// the indexing of winningChips and store the location of the piece.
for(topleft=1; topleft < 4; topleft++) {

if (board[rowPlaced - topleft][lastMove - topleft] != lastColor) {

break;
}

index = index + 1;
winningChips[index][0]
winningChips[index][1]

rowPlaced - topleft;
lastMove - topleft;

}

// Bottomright check. //
// 1If the active player doesn"t have a piece [bottomright] places to the bottomright
// of his/her most recently-placed piece, stop the loop early. Else increase the
// indexing of winningChips and store the location of the piece.
for(bottomright=1; bottomright < 4; bottomright++) {
if (board[rowPlaced + bottomright][lastMove + bottomright] !'= lastColor) {
break;

index = index + 1;

winningChips[index][0] = rowPlaced + bottomright;

winningChips[index][1] = lastMove + bottomright;
}
// 1T the total number of pieces in this line (including the most recently-placed
// one) is four or more, the active player is deemed the victor. The program still
// checks for other winning combinations in other lines.
if (topleft+bottomright-1 >= 4) {

victory = lastColor;
}

// IT the total number of pieces is three or less, victory has not been achieved
// and the index of winningChips is restored to what it was before the line was
// checked (zero).
else {

index = 0;
}

// Left/right victory check.
//// Left check.
for(left=1; left < 4; left++) {
if (board[rowPlaced][lastMove - left] != lastColor) {
break;
}

index = index + 1;
winningChips[index][0]
winningChips[index][1]

rowPlaced;
lastMove - left;

}
//// Right check.
for(right=1; right < 4; right++) {
if (board[rowPlaced][lastMove + right] !'= lastColor) {
break;

index = index + 1;
winningChips[index][0]
winningChips[index][1]

rowPlaced;
lastMove + right;

\\Charlie\HMCDFS\HMC_2011\jkang\My ...-06-09\Finall2Reliable\ConnectFourReport.c

}
it (left+right-1 >= 4) {
victory = lastColor;

else {
// The index is not reset to zero, because this could negate a previously-found
// set of winning chips. Instead index is returned to what it was before this
// line was checked.
index = index - (left + right - 2);

}

// Bottomleft/topright victory check.
//// Bottomleft check.
for(bottomleft=1; bottomleft < 4; bottomleft++) {
if (board[rowPlaced + bottomleft][lastMove - bottomleft] != lastColor) {
break;
}

index = index + 1;
winningChips[index][0]
winningChips[index][1]

rowPlaced + bottomleft;
lastMove - bottomleft;

}
//// Topright check.
for(topright=1; topright < 4; topright++) {
if (board[rowPlaced - topright][lastMove + topright] != lastColor) {
break;

index = index + 1;
winningChips[index][0] = rowPlaced - topright;
winningChips[index][1] = lastMove + topright;
b
if (bottomleft + topright-1 >= 4) {
victory = lastColor;

else {
index = index - (bottomleft + topright - 2);
}

// Bottom victory check. Note that top is not checked because there can be no pieces
// above the most-recently placed one.
for(bottom=1; bottom < 4; bottom++) {
if (board[rowPlaced + bottom][lastMove] != lastColor) {
break;
}

index = index + 1;
winningChips[index][0]
winningChips[index][1]

rowPlaced + bottom;
lastMove;

}
if (bottom >= 4) {
victory = lastColor;

else {
index = index - (bottom - 1);

// Victory effects.
// If victory has been achieved the winner®"s color is shown on an LED and the most
// recently-placed piece"s position is stored. Additionally the total number of
// winning chips is set equal to the current value of index. Any additional
// (erroneous) information stored in the winningChips matrix will thus be ignored,
// and there is no need to reset winningChips. Lastly, the cursor should not be
// displayed when the user can no longer control it.
if (victory 1= 0) {

board[2][7] = lastColor;

winningChips[0][0] = rowPlaced;

winningChips[0]1[1] = lastMove;

totalWinningChips = index;

board[1][colHighlight] = 0;

\\Charlie\HMCDFS\HMC_2011\jkang\My ...-06-09\Finall2Reliable\ConnectFourReport.c

}

// Tie condition check.
// 1T victory is not found, it is possible a tie has occurred. This is tested by
// checking if the top row is filled with pieces. If it is then a tie has occurred.

else {
for (i=0;i<7;) { // Only check the first seven spaces, since
// the eighth isn"t part of the game board.
if (board[2][i] == 0) { // 1T a space is empty, break out of the loop.
break;
}
i=1+ 1; // If it isn"t move on to the next.
if (=7){ // 1T all seven spaces are Tilled, then a
tie = 1; // tie has occurred.
board[1][colHighlight] = 0; // Remove cursor.
board[2][7] = 3: // Display tie LED.
}
}

}
//displayModule//////7/77777777777777777777777777777777777/77777/77777/77//7//77///7/77/7/7/77/7777

// Module responsible for keeping LED display up-to-date it goes through every
// element of the matrix and tells the FPGA to update the LED display to the appropriate
// value based on what the PIC has stored on its software copy of the board.

void displayModule(void){
char i1, j; //initialize some indicies
for(i=0;i<8;i++){ //1ook at every element on the display
for(§=0;j<8;j++){
updateDisplay(board[i][J].,i.jJ); //update the FPGA"s copy of the board based
// on PIC"s copy

}
//endAnimationModule///////77/7777777/77777777777777777777/77777/77777/77///77////77/7/7777777

// When a player wins, this function runs the animation which alternates the color

// of the winning pieces between the winning player®s color and yellow. If it is a tie
// a different animation play highlighting all of the pieces on the board. It also waits
// Tor both players to press select. At this point the animation breaks so that the

// players can start a new game.

void endAnimationModule(void) {
char 1; //instantiate indicies
char j;

//This is the code that runs if there is a victory
if (victory) {
// highlight all of the winning chips in yellow
for (i = 0; 1 <= totalWinningChips;) {
updateDisplay(3,winningChips[i][0].,winningChips[i][1]);
//wait a while before changing the next one so that the animation was visible
for (t = 100000;t>0;) {
t=1t+ 1;

//return all the pieces back to the winning player®s color

for (i = 0; 1 <= totalWinningChips;) {
updateDisplay(lastColor,winningChips[i][0],winningChips[i1[1]1);
// wait so that the time between changes is visible
for (t = 100000;t>0;) {

\\Charlie\HMCDFS\HMC_2011\jkang\My ...-06-09\Finall2Reliable\ConnectFourReport.c 10

t=1t+ 1;

//Look for both players to press select
if (playerSelect 1= 0) {
playerReady = 1;

b
if (oppSelect 1= 0) {
oppReady = 1;

if (playerReady && oppReady) {
//Start a new game when both players have pressed select
newGame = 1;

}

//This controls the tie animations
else if (tie) {
//color the whole board yellow
for(i=2;i<8;i++){
for(J=0;j<7;j3++){
updateDisplay(3,i,j);
//wait so that time between changes is visible
while(t<15000){
t++;
}

t=0;

3
for(J=0;j<7;j3++){
updateDisplay(board[i]1[J]1,i.]):;
//wait so that time between changes is visible
while(t<15000){
t++;
}

t=0;

//Look for both players to press select
if (playerSelect = 0) {
playerReady = 1;

if (oppSelect = 0) {
oppReady = 1;

b

if (playerReady && oppReady) {
//Start a new game when both players have pressed select
newGame = 1;
break;

//Functions not directly called by main()//////7/77//77///7/777/77//77/7/7//77///77///7///77///77//77/777
1117777777777 777/77777/77777/77777/777//777///777/7/777/

//updateDisplay//////7/7//777777/7/7/7/7/7/7/7/7/7/77777/777777777/777/77/7/77/7/7/7/7/7/77777
//updateDisplay(color, row, col)

// This function takes in the color, row, and column then tells

//the FPGA this information. It also tellss the FPGA that it can read

//by setting RE2, waiting for a while for the FPGA to read it, then

//turning RE2 back off to complete transmsision.

//The data is sent over PORT D with the following packet structure...

//{Colorl, Color0O, Row2, Row 1, RowO, Col2, Coll, ColO}

\\Charlie\HMCDFS\HMC_2011\jkang\My ...-06-09\Finall2Reliable\ConnectFourReport.c 11

void updateDisplay(char color, char row, char col){
//convert row and column to FPGA"s matrix indexing
row=row-1;
col=-(col-7);

//mask out the relevant bits and shift to appropriate location
color = (color & 0b0O0000011) << 6; //mask 2 color LSBs and shift
row = (row & 0b00000111) << 3; //mask 3 row LSBs and shift
col = col & 0b00000111; //mask 3 col LSBs

//combine into portD
PORTD=(color~row~col);

//Let FPGA read data

PORTEbits.RE2=1; //set RE2

PORTEbits.RE2=0; //clear RE2
3

//dropAttempt//// /1777777777777 777777777777777777777777777777/77777/77/7//77//7//77///77/7777

//dropAttempt(col, color)
// Attempts to drop a piece into the column (col). If it fails this
// Tunction does nothing. If it suceeds it will update the board with the
// appropriate color and tell the FPGA what to display
char dropAttempt(char col, char color){
char minrow; //Get the MIN_ROW
minrow=MIN_ROW;
rowPlaced= findRow(col);

if (rowPlaced >=minrow && rowPlaced <=7){ //iT it is a valid row
board[rowPlaced][col]=color; //update the board
return O;

else {
return 1;

}

}
//TindRow/ /1 /1177777177777 77777777777777/77777/77777777/777777777/7/777/7/777//777//777/7/777/

//(char)findRow(col)

// This fTunction takes in a column (that the user dropped the
//piece into), looks at the board (a global variable), then finds
//the row that the piece should be in using connect 4 rules

char findRow(char col){
char row; //the row to put the piece in

//1ook for the highest numbered row with a piece
for (row=7; row>=MIN_ROW; row--){ //start from the bottom and search up
if (board[row][col] == 0){
break; //break out when you find the first no zero row
}
}

return row;

APPENDIX B: FPGA RTL Schematic

~

Instance top level: Sheet1 of 1

Interrupt
clk .
reset interrupt
2:0
: : .
buttons[2.0] — 2% buttons[2:0] reghuttons[2:0] me=es egbuttons[2:0]
Interrupt
DataStorage
clk
Valid slowclk
clk . reset . 150
oW new validbit enable leds[15:0] e Heds[15:0]
. : [7.0L .
[pic[7:0] — ! Dic[7:0] data[7:0] N i) . data[7:0]
e powere[2:0]
Valid
DataStorage
SlowClock Power o
‘rescle|:l§> ;:;l;m slowelk ok POWer[7:0] st power[7:0] _—
reset powere[2:0])
SlowClock
Power

Page: 1

APPENDIX C: FPGA Verilog Code

TopModule.v

Fri Dec 11 13:41:39 2009

“timescale 1ns / 1ps
L1177 7777777777777777777777777777777777/777/777/777/777/777/777//777/777/77/7/777777

//
//
//
//
//
//
//
//
//
//
//
//
//
//

Company: Harvey Mudd College
Engineer: Narayan Propato

Create Date: 18:56:09 11/20/2009

Design Name: Top Module

Module Name: TopModule

Project Name: FPGA LED Display controller

Target Devices: XC3S400

Tool versions:

Description: This module is responsible for time-multiplexing the data storage
module, debouncing the buttons, and providing an interrupt signal to the PIC.
Revision: 1.0

Revision 0.01 - File Created

Additional Comments:

L1177777777777777777777777777777777777/77/7/77/77/7/777/77///7/7/7/77/7/7//77/7/7/77777
module TopModulle(

input clk,

input reset,

input [2:0] buttons,
input [7:0] pic,

input new,

output interrupt,

output [2:0] regbuttons,
output [7:0] power,
output [15:0] leds

)

wire slowclk;
wire [7:0] data;
wire [2:0] powere;

//Instances

Valid valid(clk, pic, new, data, validbit);

SlowClock SlowClock(clk,reset,slowclk);

Interrupt Interrupt(slowclk,reset,buttons, interrupt,regbuttons);

Power Power(slowclk, reset, power, powere);

DataStorage DataStorage(clk, slowclk, reset, data, validbit, powere, leds);

endmodule

Page 1

Fri Dec 11 13:42:10 2009

Valid.v

1 “timescale 1ns / 1ps

2 L11777777777777777777777777777777/7777/7777777/77/7777/777//7/7/7/7/7/7//7/7/7/7/7/7/77777
3 // Company: Harvey Mudd College

4 // Engineer: Narayan Propato

5 //

6 // Create Date: 19:00:49 11/20/2009

7 // Design Name: Valid Module

8 // Module Name: Valid

9 // Project Name: FPGA LED Display controller

10 // Target Devices: XC3S400

11 // Tool versions:

12 // Description: This modulle is responsible for determining whether the PIC data
13 // is new (and therefore valid) or not. If it is, VALIDBIT is high and DataStorage
14 // writes the PIC data into memory.

15 // Dependencies:

16 // Revision: 1.0

17 // Revision 0.01 - File Created

18 // Additional Comments:

19 L11777777777777777777777777777777/7777/77/7/77/77/7/77/777//7/7/7/7/7/7/7/7/77/7/7/77777
20 module Valid(

21 input clk,

22 input [7:0] pic,

23 input new,

24 output reg [7:0] data,

25 output validbit,

26);

27 reg [1:0] valid;

28

29 // validbit is held high when PIC input data is new. Note that new is provided
30 // by the PIC to notify the FPGA that new data is available.
31 always@(posedge clk)
32 begin
33 data <= pic;
34 valid[1l] <= new;
35 valid[0] <= valid[1];
36 end
37
38 assign validbit = valid[1]&~valid[0];
39
40 endmodule
41

Page 1

SlowClock.v Fri Dec 11 13:42:22 2009

1 “timescale 1ns / 1ps

2 L11777777777777777777777777777777/7777/7777777/77/7777/777//7/7/7/7/7/7//7/7/7/7/7/7/77777
3 // Company: Harvey Mudd College

4 // Engineer: Narayan Propato

5 //

6 // Create Date: 19:00:49 11/20/2009

7 // Design Name: Slow Clock Module

8 // Module Name: SlowClock

9 // Project Name: FPGA LED Display controller

10 // Target Devices: XC3S400

11 // Tool versions:

12 // Description: This modulle is responsible for making a slow clock signal from
13 // the input clock signal. This slow clock signal is used to cycle power between
14 // the LED display rows and to read the row data from DataStorage at the same

15 // speed.

16 // Dependencies:

17 // Revision: 1.0

18 // Revision 0.01 - File Created

19 // Additional Comments:
20 L11777777777777777777777777777777/7777/77/7/77/77/7/77777///7/7/777/7/7/7//7/7/7/7/77777
21 module SlowClock(
22 input clk,

23 input reset,

24 output slowclk

25)

26

27 reg [11:0] counter;

28 wire [11:0] ncounter;

29
30
31 // Slow clock logic, used to power the rows on the LED display at a reasonable rate.
32 // Counter will automatically reset once it overflows.
33 always@ (posedge clk, posedge reset)
34 if (reset == 1)
35 counter <= 12"b011111111111;
36 else
37 counter <= ncounter;
38
39 assign ncounter = counter + 12°b0000000000001;
40 assign slowclk = counter[11];
41
42
43 endmodule
44

Page 1

Interrupt.v

Fri Dec 11 13:42:38 2009

“timescale 1ns / 1ps
L1177 7777777777777777777777777777777777/777/777/777/777/777/777//777/777/77/7/777777

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Company: Harvey Mudd College
Engineer: Narayan Propato

Create Date: 19:00:49 11/20/2009

Design Name: Interrupt module

Module Name: Interrupt

Project Name: FPGA LED Display controller

Target Devices: XC3S400

Tool versions:

Description: This modulle is responsible for debouncing the user button
input as well as providing an interrupt signal to the PIC that is dependant
on user input.

Dependencies:

Revision: 1.0

Revision 0.01 - File Created

Additional Comments:

L11777777777777777777777777777777/7777/77/7/77/77/7/77/777//7/7/7/7/7/7/7/7/77/7/7/77777
module Interrupt(

input clk,

input reset,

input [2:0] buttons,

output reg interrupt,
output reg [2:0] regbuttons

);

reg [1:0] leftreg;

reg [1:0] rightreg;
reg [1:0] selectreg;
reg [2:0] btnvalid;

// These registers keep track of the last two sampled values
// of each button.
always@(posedge clk)
begin
leftreg[1] <= buttons[2];
leftreg[0] <= leftreg[1];
rightreg[1] <= buttons[1];
rightreg[0] <= rightreg[1];
selectreg[1] <= buttons[0];
selectreg[0] <= selectreg[1];
end

// A valid button input is defined as a change from zero
// (not pressed) to one (pressed).
always@(*)
begin
it (leftreg == 2"b10)
btnvalid[2] <= 1;
else
btnvalid[2] <= O0;
if (rightreg == 2"b10)
btnvalid[1l] <= 1;
else
btnvalid[1] <= O;
if (selectreg == 2"b10)
btnvalid[0] <= 1;
else
btnvalid[0] <= O;
end

Page 1

Interrupt.v Fri Dec 11 13:42:38 2009

62

63 // The interrupt signal is toggled on the positive edge of

64 // any of the button inputs. Additionally, the buttons sent

65 // to the PIC are masked such that only those undergoing a

66 // change from zero to one are held high. Those that were

67 // already previously one are held low.

68 always@(posedge clk, posedge reset)

69 if (reset == 1)

70 interrupt <= 0;

71 else it (]btnvalid)

72 begin

73 regbuttons <= {btnvalid[2]&leftreg[l],btnvalid[l]&rightreg[l],btnvalid[0]&
selectreg[1]};

74 interrupt <= ~interrupt;

75 end

76 else

77 regbuttons <= 0;

78

79 endmodule

80

Page 2

Fri Dec 11 13:42:50 2009

Power.v
1 “timescale 1ns / 1ps
2 L11777777777777777777777777777777/7777/7777777/77/7777/777//7/7/7/7/7/7//7/7/7/7/7/7/77777
3 // Company: Harvey Mudd College
4 // Engineer: Narayan Propato
5 //
6 // Create Date: 19:00:49 11/20/2009
7 // Design Name: Power module
8 // Module Name: Power
9 // Project Name: FPGA LED Display controller
10 // Target Devices: XC3S400
11 // Tool versions:
12 // Description: This modulle is providing power to the different LED display
13 // rows in order to time-multiplex the DataStorage module. Two registers are
14 // defined: POWER and POWERE. POWER is outputted to the LED display, while POWERE
15 // is the encoded version that is used for preventing read/write conflicts in the
16 // Data Storage module.
17 // Dependencies:
18 // Revision: 1.0
19 // Revision 0.01 - File Created
20 // Additional Comments:
21 L11777777777777777777777777777777/7777/7777/77/77/7/77/77///7/7/7/7/7/7/7/7/7/7/7/7/77777
22 module Power(
23 input clk,
24 input reset,
25 output reg [7:0] power,
26 output reg [2:0] powere
27)
28
29 // Power is provided by cycling the active bit in power, which corresponds
30 // to the row that is being powered. Note that the power bits is active low,
31 // because they are connected to PNP transistors. powere is used for internal
32 // logic purposes.
33 always@(posedge clk, posedge reset)
34 if(reset)
35 begin
36 power <= 8"b01111111;
37 powere <= 3"b000;
38 end
39 else
40 begin
41 power <= {power[0],power[7:1]%};
42 powere <= powere + 1;
43 end
44
45 endmodule
46

Page 1

DataStorage.v

Fri Dec 11 13:43:02 2009

“timescale 1ns / 1ps
L1177 7777777777777777777777777777777777/777/777/777/777/777/777//777/777/77/7/777777

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Company: Harvey Mudd College
Engineer: Narayan Propato

Create Date: 19:00:49 11/20/2009

Design Name: Data Storage Module

Module Name: DataStorage

Project Name: FPGA LED Display controller

Target Devices: XC3S400

Tool versions:

Description: This modulle is responsible for storing the matrix information
pertaining to the game board in a memory block, as well as updating this matrix
with changes provided by the PIC.

Dependencies:

Revision: 1.0

Revision 0.01 - File Created

Additional Comments:

L11777777777777777777777777777777/7777/77/7/77/77/7/77/777//7/7/7/7/7/7/7/7/77/7/7/77777
module DataStorage(

input clk,

input slowclk,

input reset,

input [7:0] data,
input enable,

input [2:0] powere,
output reg [15:0] leds
)

reg [1:0] color;

reg [2:0] row;

reg [2:0] column;

reg [15:0] memory [7:0];
integer 1i;

// Dividing PIC data into its sub-components.
always@(*)
begin
color <= ~data[7:6];
row <= data[5:3];
column <= data[2:0];
end

// Data storage memory block write logic. When an element in the matrix needs
// to be changed, the corresponding row is read, altered, and stored again.
always@(posedge clk, posedge reset)
if (reset == 1)
begin
for (i =0; 1 <8; 1 =1 +1)
memory[i] <= 16"b1111111111111111;
end
else if (enable == 1)
begin
case(column)
3"b111: memory[row] <= {color, memory[row][13:0]};
3"b110: memory[row] <= {memory[row][15:14], color, memory[row][11:0]}%};
3"b101: memory[row] <= {memory[row][15:12], color, memory[row][9:0]};
3"b100: memory[row] <= {memory[row][15:10], color, memory[row][7:0]};
3"b011: memory[row] <= {memory[row][15:8] , color, memory[row][5:0]};
3"b010: memory[row] <= {memory[row][15:6] , color, memory[row][3:0]};
3"b001: memory[row] <= {memory[row][15:4] , color, memory[row][1:0]};

Page 1

DataStorage.v Fri Dec 11 13:43:03 2009

62 3"b000: memory[row] <= {memory[row][15:2] , color};
63 default: memory[row] <= O;

64 endcase

65 end

66

67 // Memory block read logic. Reads are only performed when a write is not.
68 always@(posedge slowclk, posedge reset)

69 if (reset == 1)

70 begin

71 leds <= 16"b1111111111111111;

72 end

73 else if (enable == 0)

74 begin

75 leds <= memory[powere];

76 end

77

78 endmodule

79

Page 2

APPENDIX D: Pin-Out

FPGA pin PIC pin Function

P124 Clk1 Clock
pl131 RB5 interrupt/Button Change Interrupt
p80 RE2 NEW / PIC-FPGA handshaking
p79 RE1 FPGA reset
RC7 UART Rx
RC6 UART Tx
p87 RC5 buttons[2]/Left Button
p86 RC4 buttons[1]/Right Button
p85 RC3 buttons[0]/Select Button
p97 RD7 PIC[0]/color[1]
p98 RD6 PIC[1]/color[0]
p99 RD5 PIC[2]/row][2]
p100 RD4 PIC[3]/row[1]
pl102 RD3 PIC[4]/row][0]
p103 RD2 PIC[5]/col[2]
p104 RD1 PIC[6]/col[1]
p105 RDO PIC[7]/col[0]
p13 power[0]
pl7 power([1]
p21 power|[2]
p25 power(3]
pll6 power([4]
p2 power[5]
p6 power|[6]
p10 power([7]
pll leds[0]
pl2 leds[1]
pla leds[2]
p15 leds[3]
p18 leds[4]
p20 leds[5]
p23 leds[6]
p24 leds[7]
pl12 leds([8]
pll3 leds[9]
pl18 leds[10]
pl leds[11]
p4 leds[12]
p5 leds[13]
p7 leds[14]

p8 leds[15]

APPENDIX E: Parts List

Part Source Manufacturer Part ID Number Total Price
Pushbuttons R-VAC Electronics 8161J81ZQE22/ 4/2 $8.35
D6R10 F2 LFS
Power Switches R-VAC Electronics PRCSA1-20L-BBOCW 2 $1.90
Battery Holders R-VAC Electronics BC3AAW 2 $2.50
Dot Matrix LED Seeed Studio LED203A58 2 $11.00

Displays

Depot

Note: values given are for assembly of two prototype devices, not one.

	Final Report.pdf
	PIC Final Code
	Final Report
	FPGA Top-Level Schematic Final
	Final Report
	Top Module
	Valid
	SlowClock
	Interrupt
	Power
	DataStorage
	Final Report

