
1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Score Four: 3D Connect Four  

with LEDs 
 

 

Christian Jolivet, Lauren Nishioku 

December 11, 2009 
 

 

 

Abstract 

 

The goal of our project was to create an electronic version of the board game Score Four, which 

is a 3D version of Connect Four. The game takes in user input from a keyboard and the computer 

transmits the data through a Bluetooth signal to the PIC microcontroller. From here, the PIC 

controls the time multiplexing of the board and sends information about the state of the game to 

the FPGA. Then, the FPGA uses this information to control the common cathodes of the LEDs 

on the game board.  The game board uses different colored LEDs to indicate different player‟s 

virtual pieces on the board. The project produced a reliably working game; however the LED 

array was rather dim and difficult to see, even without current-limiting resistors.  Future work 

consists of substituting a passive keypad for the Bluetooth input, and substituting a battery for 

the power source, which together would allow the game to be a portable, independent device.  



2 
 

Introduction 

 

Our project consists of making an electronic version of Score Four, which is a 3d version of 

Connect Four. The original version of Score Four was played on a game board with 16 wooden 

columns, onto which beads were dropped to indicate a player‟s move. For the electronic version, 

the game is played on a 4x4x4 grid, and players drop virtual “beads” into the 16 available 

columns in an attempt to place four checkers in a row in any of 76 possible ways. Unlike the 

board game which contains physical pieces that are dropped into the grid from above, we will 

use a keyboard input and a 3-dimensional grid of LEDs to allow the users to easily see available 

moves and previous moves. This will also make the game more user-friendly because the board 

can indicate which player‟s turn it is via the player lights, stop the game if the board is full, and 

alert the players when someone has won the game via flashing lights.  The LEDs are also an 

improvement on many similar devices that use computer screens to display the state of the board, 

because a physical display is much more intuitive for players to look at than a series of 2D  

diagrams. 

 
 

 

Figure 1: Block diagram of project 

 

 

 

 



3 
 

 

PIC Code: 

 

The PIC is responsible for the majority of the processing involved in running the game. First, it 

acquires user input from the computer via Bluetooth, and interprets it as a request to move in a 

particular vertical column of the game board. It must then decide what Z level to place the virtual 

bead in based on the current state of the board. After choosing a Z level, the PIC updates the 

state of the game in its internal memory and checks to see if the most recent move won the game. 

If a winning move was played, the PIC acknowledges this by making the board flicker. 

Otherwise, it sends the new state of the board to the FPGA over an SPI link, and requests a new 

input from the next player. SPI was chosen for this particular function, because it is simple-to-

use, built in function of the PIC, and requires very few wires. In addition to these functions, the 

PIC also checks to see if the board is full, rejects invalid moves (such as unrecognized key-

presses), and runs part of the time-multiplexing for the game board. 

 

Memory Structure: 

 

We chose to store moves in the PIC‟s memory in a rather unique format to enable the PIC to 

transfer the data to the FPGA over SPI more easily. The board is represented by a 16-entry array 

of 8-bit binary numbers. Each entry corresponds to half of one player‟s lights in one z level. The 

Figures below show a theoretical state of the board, here, lights F, A, 8, and 5 are lit for player 

one, and lights C, 9, 4, and 0 are lit for player two in the lowest Z-level. The chart on the 

following page shows the corresponding contents of the array in memory. 

 

 

 

 

 
Figure 2: Memory structure example 



4 
 

 

 

All levels are stored in this fashion, within one array, so player one‟s lights occupy the bottom 8 

entries of the array, and player two‟s lights occupy the top 8. 

 

FPGA Code: 

 

The FPGA‟s objective is to display the current state of the board by controlling the common 

cathodes. It has one module called ledctrl which receives data from the PIC serially over an SPI 

connection This data is essentially a binary number detailing which lights on the game board 

should be lit. The FPGA acts as a large shift register that converts the board data from serial to 

parallel. After 128 bits (the complete state of the board), have been shifted in, the PIC will send a 

valid bit, which triggers a flip flop that stores this new state of the board to a separate register. 

The output of this register is sent to a multiplexer, whose output is decided by the PIC‟s common 

anode output, so that the two outputs can be synchronized for time-multiplexing.  Figure 3 below 

shows the relationship between the PIC and FPGA. 

 

 

Figure 3: Detailed block diagram of PIC and FPGA 

 

Time Multiplexing: 

 



5 
 

In order to run the lights on the entire game board individually with a restricted number of pins, 

time-multiplexing is used. The board itself is wired in eight sections. A section corresponds to 

one player‟s lights for a level of the board, and every light within a section is attached to a single 

common anode.  The sections are turned on when they receive a high voltage from the transistor 

switch operated by the PIC. If the PIC oscillates between sections quickly enough, the human 

eye cannot detect that the LEDs are actually flickering rapidly while “lit”.  In addition, the 

cathode end of each LED is connected to all other LEDs in the same vertical column, such that 

lights in different Z levels, but with the same X,Y position all share a common cathode.  Thus, 

the PIC output determines what level is active, and the FPGA determines which lights in that 

level are actually lit.  This provides independent access to each light on the board with only 24 

wires. 

 

Figure 4: Coordinate system of the LED board 

LED Board: 
 

The construction of the board was difficult because we had to plan how to solder the board as 

efficiently as possible due to the 128 LEDs. Looking at other LED cubes build on YouTube, we 

decided to use minimum of wires by soldering the ends of the LEDs directly to each other. The 

most important part to the approach in building the board was to keep the components modular, 

which made the manual labor easier to perform. All connection points were physically joined 

before soldering by loops or twists to avoid poor mechanical connections. Each solder joint was 

tested with a power source prior to assembling the board further.  

 

First the cathodes of red and green LEDs were twisted together. After making 64 pairs of these, 

they were arranged into 16 „square modules‟ of 8 LEDs each. The red LEDs anode (shorter ends 

to be connected to the transistors) were hooked then soldered together and the same was repeated 

for the green LEDs. Next, levels were arranged using four of the squares each. The anodes of one 

LED color were all connected with a single wire. The insulation of this wire was cut and spaced 

apart to allow it to loop around each pair of connected LEDs of the same color. This was 

repeated for the other color. A schematic of one level (36 LEDs) is shown in Appendix A.  

 

The cathodes of the LED pairs were then connected in a similar way along individual columns. 

Small loops were made between the insulation cuts to allow the twisted common cathode ends to 

pass through. The columns were connected from the inner columns of the board going outward 



6 
 

and then soldered at the loops. The entire LED cube was then put on the frame. Because of the 

close fit, it was not necessary to tape the LEDs to the frame.   

 

The wood frame was made of scrap wood and wooden dowels. Holes were drilled in the wood 

machine shop with a 1/8” bit (the same diameter as the dowels) in a 4x4 grid. The dowels were 

cut into 16 pieces and hammered into the base for a snug fit. Wires from the LED board were 

then labeled with the appropriate level number or x, y coordinates to make the final wiring to the 

breadboard easy.  

 

The Breadboard: 

From previous labs, it was determined that the 2N3906 PNP transistors allowed current to the 

emitter when the base, with a 1K Ohm resistor between the board and HarrisBoard, was driven to 

ground. The collector is tied to the 3.3 V pinout of the HarrisBoard. The LEDs supplied in lab 

also ran well with a 330 Ohm resister. The wires connecting the level LEDs of the same color are 

arranged in order according to the PIC pinout for time-multiplexing. Therefore the 16 output pins 

from the FPGA are connected to 330 Ohm iolated 5 network resistors.  It was also determined 

through testing that the current-limiting resistors were not necessary and the LEDs were brighter 

without them.  

 

Instruction Manual:  

1) Run the file on finalproject.mcp on MPLAB and setup the Bluetooth connection  

2) Player 1 is red and Player 2 is green. Player 1 goes first in all games.  

3) The playable spaces on the board correspond to the keys „1‟ through „4‟ and „Z‟ through 

„V‟ as shown in Figure 5.  The corresponding locations on the physical board are shown 

in Figure 6.  

 

Figure 5 Valid keys highlighted in orange 



7 
 

 

Figure 6: Corresponding locations on the LED board to four of the valid keys 

4) HyperTerminal also prints the current state of the board with the bottom layer (Z = 0) 

printed on the bottom of the screen. „X‟ is Player 1 and „O‟ is Player 2.  

5) The game should start immediately with the red LED on the breadboard indicating that it 

is Player 1‟s turn. Once Player 1 has moved, the player light will switch and Player 2‟s 

green light will turn on. 

6) Each player will take turns making moves until either the board is full or a player makes 

four in a row 

7) The winning player will have their color lights flash and the losing player‟s moves will 

disappear from the board. The lights will continue flashing until a key is pressed which 

will clear the board and a new game will start.  

 

Note: To handle all cases HyperTerminal will print “INVALID MOVE” or “COLUMN FULL” 

if a key other than one of the specified 16 is pressed or if the entire column is filled with player 

moves respectively. It will remain that player‟s turn until a valid move is made.  

 

Results: 

 

The game functions well, and very reliably.  We created a fully playable version of Score Four 

which takes in user input through Bluetooth, consistently displays the correct state of the board 

on a 3D array of LEDs, and accurately detects wins.  All of the objectives listed in the initial 

proposal were met.   

 

The most difficult portion of this project was constructing the 3D LED array.  Not only did we 

have to individually handle 128 LEDs, but we also needed to find a way to wire them to each 

other so that they could be uniquely accessed without using a vastly unreasonable number of 

wires.   



8 
 

 

Future Work: 

 

This project was interesting as a proof of concept, but if it were to become a stand-alone game, it 

would require a few modifications. One such modification is a change in user interface. Using a 

computer for user input was convenient, as all of the necessary code for outputting Bluetooth 

signals was already written in a previous lab; however, it would be ideal to remove the computer 

from the process entirely. Instead of setting aside 16 keys on the keyboard to play the game, one 

could wire a 16-button keypad to the FPGA, use the FPGA to decode the key-presses, and send 

the resulting number in parallel to the PIC. The PIC could then translate this key press 

information from the FPGA similarly to the way it translates key press data from the Bluetooth 

connection.  This allows for the same functionality as the original device and increased 

portability, at the expense of minimal extra hardware, and several lines of code. 

 

Also, it would be favorable to use batteries to power the device rather than the desktop power 

supply.  This has the advantage of making the game easier to power outside of the lab. This 

modification would also require a battery holder, and possibly a voltage regulator to keep the 

board‟s input voltage stable. Based on reports from similar projects, these batteries may die 

quickly during normal game play, and a truly viable solution may require a more complex 

approach. 

 

 

Parts List: 

Part Quantity Cost 

Red diffused LEDs 65 Free 

Green diffused LEDs 65 Free 

Scrap wood  1 Free 

1/8”x 48” hardwood dowel 3  $1.85 x 3 = $5.55 

330 Ω iolated 5 resistor 

networks 

3 Free 

390 Ω resistor 2 Free 

1 K Ω resistor  8 Free 

PNP Transistor (2N3906) 8 Free 

HarrisBoard 2.0 1 Free 

PIC 18F4520 1 Free 

Total $5.55 

 

 

Bibliography:  

 

Win-detection algorithm: 

http://methodoverload.com/wp-content/uploads/2009/07/ThreeTacToe.java 

 

Data sheets: 

Spartan3-FPGA Data Sheet: 

http://www3.hmc.edu/~harris/class/e155/spartan3.pdf 

http://methodoverload.com/wp-content/uploads/2009/07/ThreeTacToe.java
http://www3.hmc.edu/~harris/class/e155/spartan3.pdf


9 
 

PIC18FXX2 Data Sheet: 

http://www3.hmc.edu/~harris/class/e155/pic18f452.pdf 

2N3906 Small Signal PNP Transistor: 

http://www3.hmc.edu/~harris/class/e155/2N3906.pdf 

PIC18F2420/2520/4420/4520 Data Sheet:  

http://ww1.microchip.com/downloads/en/DeviceDoc/39631D.pdf 

 

Picture Credits: 

LEDs: 

http://www.blog.ni9e.com/archives/leds.jpg 

Connect Four: 

http://www.oldeducator.com/connect4.jpg  

Score Four Board: 

http://www.jaqueslondon.com/shop/indoor_games/3d_score_4.html  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www3.hmc.edu/~harris/class/e155/pic18f452.pdf
http://www3.hmc.edu/~harris/class/e155/2N3906.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/39631D.pdf
http://www.blog.ni9e.com/archives/leds.jpg
http://www.oldeducator.com/connect4.jpg
http://www.jaqueslondon.com/shop/indoor_games/3d_score_4.html


10 
 

Appendix A: Schematics  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

PIC 

18F4520

P
1

5

P
1

1

P
1

2

P
1

3

P
1

4

P
2

3

P
1

7

P
1

8

P
2

0

P
2

1

P
8

P
5

P
6

P
7 P
2

4

P
1

0

P5

P
2

4

P
2

3

P6 P7 P8

P10 P11 P12 P13

P14 P15

P17

P18

P20

P
2

1

anode<0>

anode<4>

P97

P102

All resistors for the 

common cathodes

are 330 Ohms

All resistors for

the transistors for 

the common 

anodes are 1K Ohm

le
d

o
u

t<
1

0
>

le
d

o
u

t<
9
>

le
d

o
u

t<
8
>

le
d

o
u

t<
7
>

le
d

o
u

t<
6
>

le
d

o
u

t<
5
>

le
d

o
u

t<
4
>

le
d

o
u

t<
3
>

le
d

o
u

t<
2
>

le
d

o
u

t<
1
>

le
d

o
u

t<
0
>

le
d

o
u

t<
1

4
>

le
d

o
u

t<
1

3
>

le
d

o
u

t<
1

2
>

le
d

o
u

t<
1

1
>

le
d

o
u

t<
1

5
>

3
.3

 V

3.3 V

HarrisBoard 

2.0

Schematic for a plane in the 

LED board

3.3 V



13 
 

Appendix B: FPGA Code  
 
// Creators: Lauren Nishioku and Christian Jolivet 

// Create Date:    13:34:06 11/20/2009 

 

// Module Name:    ledctrl 

// Project Name: ScoreFour 

 

// Description: 

// This module was made to handle a portion of the 

// time-multiplexing for a large array of LEDs.   

 

module ledctrl( 

    input clk,                        // FPGA clock 

    input sclk,                // Clk for serial data 

    input ledin, 

    input valid, 

    input reset, 

    input [7:0] anode, 

    output reg [15:0] ledout 

    ); 

         

  reg [127:0] store; 

  reg [127:0] shiftout; 

   

  // Reset defaults - no output, state of the game is blank 

  always@(posedge reset or posedge clk) 

   if(reset) 

    store <= 128'b0; 

   else if(valid) 

    store <= shiftout; 

    

  always@(posedge sclk or posedge reset) 

   if(reset) 

    shiftout <= 128'b0; 

   else 

    shiftout <= {shiftout[126:0], ledin}; 

      

  always@(*) 

   case(~anode) 

    8'b00000001: ledout = ~store[15:0]; 

    8'b00000010: ledout = ~store[31:16]; 

    8'b00000100: ledout = ~store[47:32]; 

    8'b00001000: ledout = ~store[63:48]; 

    8'b00010000: ledout = ~store[79:64]; 

    8'b00100000: ledout = ~store[95:80]; 

    8'b01000000: ledout = ~store[111:96]; 

    8'b10000000: ledout = ~store[127:112]; 

    default ledout = ~store[127:112]; 

   endcase 

endmodule  



14 
 

Appendix C: PIC Code 
 

/* 

   ScoreFour.c 

   Lauren Nishioku and Christian Jolivet 

   cjolivet@hmc.edu 

   10/20/09 

 

   Note: use 20 MHz clock 

*/ 

 

#include <p18f4520.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

void blueconfig(void); 

char getcharserial(void); 

void getstrserial(char *buf); 

void spiconfig(void); 

void spisend(char x); 

void spisendboard(char *board); 

char getcharserial(void); 

void main(void); 

void isr (void); 

 

#pragma code high_vector=0x08 

void high_interrupt(void) 

{ 

   _asm 

      GOTO isr 

   _endasm 

} 

 

#pragma code 

void blueconfig(void) 

{ 

   /* Configuring USART for bluetooth: 

   TXSTA 

   7: 0   (clock source (N/A)) 

   6: 0   (8 bit mode) 

   5: 1   Transmit Enabled 

   4: 0    Asynchronous mode 

   3: 0   Unimplemented 

   2: 1   High Speed Baud Rate 

   1: 0   Not a writeable bit 

   0: 0   N/A 

    

   RCSTA 

   7: 1   Serial Port Enabled 

   6: 0   8 bit mode 

   5: 0   Don't Care 

   4: 1   Enable Receiver 

   3: 0   Disable Address Detection (???) 

   2: 0   Not Writeable 

   1: 0   Not Writeable 

   0: 0   N/A 

 

   SPBRG = 10 (Set the transfer rate to 115.2k baud) 

   */ 

   //TRISC 6 = 0; 

   //TRISC 7 = 1; 

 

   TXSTA = 0x24; 



15 
 

   RCSTA = 0x90; 

   SPBRG = 10; 

} 

 

void spiconfig(void) 

{ 

   /* Configuration for SPI 

   SSPSTAT 

   7: 0    SPI Master mode sampled at middle of output 

   6: 1   Data transmitted on rising edge of SCK 

   5: 0   N/A 

   4: 0   N/A 

   3: 0   N/A 

   2: 0   N/A 

   1: 0   N/A 

   0: 0   SSPBUF empty when receive is incomplete 

 

   SSPCON1 

   7: 0   No collision 

   6: 0   Not set in Master mode 

   5: 1   Synchronous serial port enable 

   4: 0   IDLE state for clock is low level 

   3-0: 0   SPI master mode, CLK = Fosc/4 

   */ 

 

   SSPCON1 = 0x20; 

   SSPSTAT = 0x40; 

} 

 

// Method for sending data over SPI 

// RC2 is a valid bit. FPGA will only update the display while it is on. 

void spisend(char x) 

{ 

   SSPBUF = x; 

} 

 

// Function for sending the state of the board over SPI 

void spisendboard(char *board) 

{ 

   char i=0; 

   PORTCbits.RC2 = 0;      // Setting the valid bit low. 

   for(i=15;i>=0;i--) 

   { 

      spisend(board[i]); 

   } 

   PORTCbits.RC2 = 1;      // Setting the valid bit high. 

} 

 

// Function for getting one character from the Serial Port 

char getcharserial(void) 

{ 

   while(1) 

   { 

      if(PIR1bits.RCIF) 

      { 

         // RCIF will be set when the receiver gets data  

         // Reset RCIF and read 8-bit received data by reading RCREG 

         PIR1bits.RCIF = 0; 

         return RCREG; 

      } 

   } 

} 

 



16 
 

 

// GetMoveX assigns x coordinate to key  press. 

char getmovex(char move) 

{ 

   char x = -1; 

 

   if(move == '1' |move == 'q' |move == 'a' |move == 'z' ) 

      x=0; 

   if(move == '2' |move == 'w' |move == 's' |move == 'x' ) 

      x=1; 

   if(move == '3' |move == 'e' |move == 'd' |move == 'c' ) 

      x=2; 

   if(move == '4' |move == 'r' |move == 'f' |move == 'v' ) 

      x=3; 

 

   return x; 

} 

 

// GetMoveY assigns y coordinate to key press  

char getmovey(char move) 

{ 

   char y = -1; 

   if(move == '1' |move == '2' |move == '3' |move == '4' ) 

      y=3; 

   if(move == 'q' |move == 'w' |move == 'e' |move == 'r' ) 

      y=2; 

   if(move == 'a' |move == 's' |move == 'd' |move == 'f' ) 

      y=1; 

   if(move == 'z' |move == 'x' |move == 'c' |move == 'v' ) 

      y=0; 

 

   return y; 

} 

 

// Checkfilled takes in the xyz coordinates of a location on the  

// game board and returns a 1 if that location has a game piece in it. 

char checkfilled(char x, char y, char z, char *board, char player) 

{ 

   char index; 

   char token = 0x80;         // token depends on x and y, and is 

                              // a coded representation of a move 

   token >>= 4*(1-y%2);       // played at a given location 

   token >>= x; 

    

   index = z*2;               // index references a memory location 

   index += y/2;              // where the pieces for a given player 

                              // and a given section of the board are 

                        // stored 

 

   if(player==0)            // player = 0 detects all pieces 

      return (((board[index] | board[index+8]) & token)!=0); 

   else if(player==1)         // player = 1 detects player 1's pieces 

      return((board[index] & token)!=0); 

   else if(player==2)         // player = 2 detects player 2's pieces 

      return ((board[index+8] & token)!=0); 

   else                   

      return 1;             

} 

 

// Makemove takes the xyz coordinates given, and places a player's 

// game piece at that location on the version of the board stored in 

// memory.  

char makemove(char x, char y, char z, char *board, char player) 



17 
 

{ 

   char index;                

   char token = 0x80;            // token depends on x and y, and is    

   token >>= 4*(1-y%2);          // a coded representation of a move 

   token >>= x;                  // played at a given location 

    

   index = z*2;                  // index references a memory location 

   index += y/2;                 // where the pieces for a given player 

                                 // and a given section of the board are 

                                 // stored 

    

   if(player==1)               // stores moves for player one 

      board[index] |= token; 

   else                     // sotres moves for player two 

      board[index+8] |= token; 

} 

 

// This function handles the details of getting a move from the player, 

// checking its validity, and putting the move in the appropriate z level 

// at the end of the function, the board is updated with the new move. 

void dropchecker(char *board, char player) 

{ 

   char validinput = 0;      // 1 if the input was a recognized, supported key. 

   char move; 

   char sucessfulmove=0;      // 1 if a move has been made 

    

   // coordinates of the requested move 

   char x; 

   char y; 

   char z; 

 

   // objective of this loop is to persist until a sucessful 

   // move has been made. 

   while(!sucessfulmove) 

   { 

      while(validinput==0)         // keep getting moves from the same player 

      {                            // until one of them is valid 

         move = getcharserial(); 

         x = getmovex(move); 

         y = getmovey(move); 

    

         if(x!= -1 & y!= -1)         // getmovex and getmovey check for invalid 

            validinput=1;         // inputs and return a -1 if one is obtained 

         else 

            printf("\r\nINVALID INPUT\r\n"); 

      } 

 

      for(z=0;z<4;z++)                        // this loop makes the pieces  

      {                                       // fall to the lowest available 

         if(!checkfilled(x,y,z,board,0))      // layer, and asks for another 

         {                                    // move if the column is full. 

            makemove(x,y,z,board,player); 

            sucessfulmove = 1; 

            z=4; 

         } 

      } 

 

      if(validinput & !sucessfulmove)        // prints to the screen if a 

      {                                      // new input is required because 

         printf("\r\nCOLUMN FULL\r\n");      // a column is full. 

         validinput=0; 

      } 

   } 



18 
 

} 

 

// Displays current state of the board over the serieal port 

void displayboard(char *board) 

{ 

   char x; 

   char y; 

   char z; 

    

   for(z=3;z>=0;z--) 

   { 

      for(y=3;y>=0;y--) 

      { 

         for(x=0;x<4;x++) 

         { 

            if(checkfilled(x,y,z,board,1)) 

               printf("X"); 

            else if(checkfilled(x,y,z,board,2)) 

               printf("O"); 

            else 

               printf("_"); 

         } 

         printf("\r\n"); 

      } 

      printf("\r\n"); 

   } 

   printf("\r\n"); 

} 

 

// Checks to see if the input player has won the game 

char windetect(char *board, char player) 

{ 

   char x; 

   char y; 

   char z;  

   for (z=0; z<4; z++) 

   { 

      for (y=0; y<4; y++) 

      { 

         for (x=0; x<4; x++) 

         { 

            // Checks for wins along one axis 

            if(checkfilled(x,y,0, board, player) && checkfilled(x,y,1, board, player) 

&& checkfilled(x,y,2, board, player) && checkfilled(x,y,3, board, player)) 

               return 1; 

            else if(checkfilled(x,0,z, board, player) && checkfilled(x,1,z, board, 

player) && checkfilled(x,2,z, board, player) && checkfilled(x,3,z, board, player)) 

               return 1; 

            else if(checkfilled(0,y,z, board, player) && checkfilled(1,y,z, board, 

player) && checkfilled(2,y,z, board, player) && checkfilled(3,y,z, board, player)) 

               return 1; 

 

            // Checks for wins along diagonals in a plane (one axis is constant) 

            else if(checkfilled(0,0,z, board, player) && checkfilled(1,1,z, board, 

player) && checkfilled(2,2,z, board, player) && checkfilled(3,3,z, board, player)) 

               return 1; 

            else if(checkfilled(x,0,0, board, player) && checkfilled(x,1,1, board, 

player) && checkfilled(x,2,2, board, player) && checkfilled(x,3,3, board, player)) 

               return 1; 

            else if(checkfilled(0,y,0, board, player) && checkfilled(1,y,1, board, 

player) && checkfilled(2,y,2, board, player) && checkfilled(3,y,3, board, player)) 

               return 1; 

 



19 
 

            else if(checkfilled(0,3,z, board, player) && checkfilled(1,2,z, board, 

player) && checkfilled(2,1,z, board, player) && checkfilled(3,0,z, board, player)) 

               return 1; 

            else if(checkfilled(x,3,0, board, player) && checkfilled(x,2,1, board, 

player) && checkfilled(x,1,2, board, player) && checkfilled(x,0,3, board, player)) 

               return 1; 

            else if(checkfilled(3,y,0, board, player) && checkfilled(2,y,1, board, 

player) && checkfilled(1,y,2, board, player) && checkfilled(0,y,3, board, player)) 

               return 1; 

 

            // Checks for wins on diagonals involving x, y, and z changing 

            else if(checkfilled(0,0,0, board, player) && checkfilled(1,1,1, board, 

player) && checkfilled(2,2,2, board, player) && checkfilled(3,3,3, board, player)) 

               return 1; 

            else if(checkfilled(3,0,0, board, player) && checkfilled(2,1,1, board, 

player) && checkfilled(1,2,2, board, player) && checkfilled(0,3,3, board, player)) 

               return 1; 

            else if(checkfilled(0,0,3, board, player) && checkfilled(1,1,2, board, 

player) && checkfilled(2,2,1, board, player) && checkfilled(3,3,0, board, player)) 

               return 1; 

            else if(checkfilled(0,3,0, board, player) && checkfilled(1,2,1, board, 

player) && checkfilled(2,1,2, board, player) && checkfilled(3,0,3, board, player)) 

               return 1; 

         } 

      } 

   } 

   return 0; 

} 

 

/*char windetect(char *board, char player) 

{ 

   char x; 

   char y; 

   char z; 

   char i; 

   char j; 

   char c[13]; 

   char win=0; 

    

   for(i=0;i<13;i++) 

   { 

      c[i] = 1; 

   } 

  

   for (z=0; z<4; z++) 

   { 

      for (y=0; y<4; y++) 

      { 

         for (x=0; x<4; x++) 

         { 

            for(i=0; i<4; i++) 

            { 

               j = 3-i; 

               c[0] &= checkfilled(i,y,z,board,player); 

               c[1] &= checkfilled(x,i,z,board,player); 

               c[2] &= checkfilled(x,y,i,board,player); 

 

               c[3] &= checkfilled(i,i,z,board,player); 

               c[4] &= checkfilled(x,i,i,board,player); 

               c[5] &= checkfilled(i,y,i,board,player); 

 

               c[6] &= checkfilled(j,i,z,board,player); 

               c[7] &= checkfilled(x,j,i,board,player); 



20 
 

               c[8] &= checkfilled(j,y,i,board,player); 

 

               c[9] &= checkfilled(i,i,i,board,player); 

               c[10] &= checkfilled(j,i,i,board,player); 

               c[11] &= checkfilled(j,j,i,board,player); 

               c[12] &= checkfilled(j,i,j,board,player); 

            } 

             

            for(i=0;i<13;i++) 

            { 

               win |= c[i]; 

            } 

            if(win) 

               return 1; 

         } 

      } 

   } 

   return 0;    

}*/ 

 

// Checks to see if the entire board is full 

char checkboardfull(char *board) 

{ 

   // If boards of Player 1 and 2 together are full, this equation will produce a 

0xFF, and evaluate to true. 

   return (((board[6] | board[14]) & (board[7] | board[15])) == 0xFF); 

} 

 

// Shows only the winning player's checkers, and makes them blink 

// In the event of a draw, use player = 0, which makes all colors 

// blink 

void win(char *board, char player) 

{ 

   int i; 

    

   // If player 1 wins, black out player 2's lights 

   if(player == 1) 

   { 

      for(i=8;i<16;i++) 

      { 

         board[i] = 0; 

      } 

   } 

    

   // If player 2 wins, black out player 1's lights 

   if(player == 2) 

   { 

      for(i=0;i<8;i++) 

      { 

         board[i] = 0; 

      } 

   } 

 

   T1CON=0xB1;            // Setting the timer frequency lower, so the board appears 

to blink 

   spisendboard(board);    

} 

 

void main(void) 

{ 

   char board[16]; 

   char filled[8]; 

   char invalid = 0; 



21 
 

   char move = 0; 

   char x = 0; 

   char y = 0; 

   char z = 0; 

   char i = 0; 

   char thing; 

 

   // Configuring communications 

   blueconfig(); 

   spiconfig(); 

 

   // Configuring Timer 1 to run in 

   // 16 bit mode, and Fosc/4 

   T1CON=0x81;  // 0xB1 for slow motion 

    

   // Enabling Timer1 overflow interrupt 

   PIE1bits.TMR1IE=1; 

   INTCONbits.GIE=1; 

   INTCONbits.PEIE=1; 

 

   // Configure I/O ports 

   TRISC = 0x90; 

   TRISD = 0x00; 

   TRISE = 0x00; 

    

   // Set up common anode and player light 

   PORTD = 0xFE; 

   PORTE = 0; 

 

   // Clearing the board 

   for(i=0; i<16; i++) 

   { 

      board[i] = 0x00; 

   } 

    

 

displayboard(board); 

spisendboard(board); 

 

//Game Loop 

   while(1) 

   { 

      // Player 1's turn 

      PORTE = 0x2;  // PORTE controls the player lights 

      dropchecker(board,1); 

      displayboard(board); 

      spisendboard(board); 

      if(windetect(board,1)) 

      { 

         printf("\r\nplayer 1 WINS!\r\n"); 

         win(board,1); 

         getcharserial();            // This is just to make the player press a button 

to 

         break;                     // start a new game 

      } 

      if(checkboardfull(board)) 

      { 

         printf("\r\nGAME OVER\r\n"); 

         win(board,0); 

         getcharserial(); 

         break; 

      } 

 



22 
 

      // Player 2's turn 

      PORTE= 0x1;      // PORTE controls the player lights 

      dropchecker(board,2); 

      displayboard(board); 

      spisendboard(board); 

      if (windetect(board,2)) 

      { 

         printf("\r\nplayer 2 WINS!\r\n"); 

         win(board,2); 

         getcharserial(); 

         break; 

      } 

      if(checkboardfull(board)) 

      { 

         printf("\r\nGAME OVER\r\n"); 

         win(board,0); 

         getcharserial(); 

         break;  

       

      } 

   }  // Note: since the PIC restarts when it reaches the end of the code, there's no 

      // need for another loop to restart the game. 

} 

 

 

// Interrupt handler to operate the common anode. 

#pragma interrupt isr 

void isr(void){ 

   if(PIR1bits.TMR1IF) 

   { 

      PIR1bits.TMR1IF=0; 

      if(PORTD==0x7F) 

         PORTD = 0xFE; 

      else 

      { 

         PORTD = (PORTD<<1) + 1; 

      } 

       

      // These values were chosen so that the board 

      // appears not to be blinking on the fastest 

      // timer configuration settings, but still blinks 

      // pleasantly on the slowest setting. 

      TMR1H = 0xE0; 

      TMR1L = 0x00; 

   } 

} 


