Space Invaders Final Report

Kevin Hsu
Andrew Pozo
December 10, 2009

ABSTRACT

A simplified version of Space Invaders has been implemented using a PIC18F4520
microcontroller and a SPARTAN-3 FPGA. The microcontroller is used to receive user control
inputs and calculate the state of the game: invader position/status, tank position, bullet position,
score, and win or lose. The FPGA is implemented as a graphics engine, to display the game on a
VGA monitor. A single level of the game with ten space invaders on the screen was
implemented in the final version.

INTRODUCTION

This report describes the implementation of Space Invaders LITE, based off of the game Space
Invaders, originally developed by Tomohiro Nishikado in 1978. A player uses a Nintendo
Entertainment System (NES) controller to control the tank’s movement and shooting. The
controller is powered by a separate 3.3V power source, to provide the proper logic levels to input
ports configured for digital I/O on the Harris board.

The PIC takes the inputs from the controller and updates the tank position on the screen, while
moving the space invaders down the screen on a set trajectory. If the user decides to shoot, the
PIC generates a single bullet based off the current position of the tank. The user is only allowed
to shoot again once a space invader is destroyed or the bullet has gone off screen. The game
ends when either all the space invaders have been eliminated or have reached the tank. This
data, collectively called the game state, is sent in a 16-bit sequence to the FPGA via Ports B, C,

and D.

PIC
Q@
Q
3
(¢}
@Y 16
o
(0]
o
o
QO
Y
Red—————
Green———— |
Blue———
FPGA VGA Monitor
HSync——————
Vsynec——————>

Figure 1. System block diagram

The FPGA decodes data sent from the PIC, determines which pixels are on and drives the VGA
monitor. The FPGA outputs the three color bits as well as HSync and VSync for the monitor.

NEW HARDWARE

VGA Monitor

The game is displayed using a VGA monitor. A VGA monitor makes images with an electron
gun that scans across the screen one row of pixels at a time until it reaches the bottom of the
screen and resets back at the top to paint another screen. The scanning is governed by a clock
running at 25.175 MHz and by two synchronization signals:

e Hsync: This horizontal synchronizing signal resets the monitor’s electron gun to begin
scanning a new line by pulsing for 3.77 us at a frequency of 31.47 KHz. Hsync has a
negative polarity.

e Vsync: This vertical synchronization signal resets the monitors electron gun to begin
scanning a new screen by pulsing for 63.555 us at a frequency of 59.94 Hz. Vsync has a
negative polarity.

The color of each pixel is determined by the voltage applied to three analog color signals: red,
green and blue. The color signals must be asserted with proper timing to paint all desired pixels
as the electron gun scans over the screen. The timing of the color signals was achieved by
counting rows and columns within the FPGA, so that the pixel the electron gun is painting is
known at all times.

More information on controlling a VGA monitor with a FPGA and schematics of the VGA
pinouts can be found in the MicroToys VGA monitor document [1].

NES Controller

A NES controller is used to control the movement and shooting of the tank. A standard NES
controller uses a small integrated circuit to serially transmit the state of all the buttons when
cued. For the Space Invaders game, the NES controller is used just as housing for the move and
shoot buttons. The IC was removed and wires were directly soldered to one end of the desired
buttons through the holes left after removing the IC, as well as to the common power and ground
planes of the controller’s PCB. A simplified controller schematic is shown as part of the bread
board schematic in Appendix A.

MICROPROCESSOR DESIGN

The PIC controls the game state of the space invaders and player. The variables associated with
the game states are saved as global variables. Positions of the space invaders, tank and bullet are
stored on the PIC as global integers, and the status of the space invaders are stored on the PIC as
a global array of 1’s and 0’s where a 1 represents an alive space invader and a O represents a
dead space invader.

The PIC uses the TIMERO overflow interrupt to update the game state on the FPGA. On the
interrupt, the PIC transfers a 16 bit sequence to the FPGA, containing the game state.

6 Code bits

10 Data bits

The top 6 bits of the sequence are code bits, which the FPGA uses to identify the type of data it
is receiving. The lower 10 bits store relevant data, like the x-y position of the space invaders or
tank, or whether a space invader is alive or dead. This 16-bit coded sequence is sent to the
FPGA through PORTB[0:2], PORTC[3:7], and PORTD[0:7] (listed in MSB to LSB order).
Inputs are received on the three LSBs of PORTC.

The following are the functions used to implement Space Invaders LITE:

Function Description

void isr (void)

TIMERO interrupt handler. On TIMERO overflow, reset values of
TIMERO, and sends game state data to the FPGA using send_int
and send_array.

Checks for the four different run screens possible: go, game, win, or
lose. Depending on the current game state, the function will send a
control signal to the FPGA choosing which screen to display.

It also updates the game states on the PIC and looks for inputs to the
PIC for left movement, right movement, or a shot.

void send_int (unsigned char
code, unsigned int data)

Takes in “code” and “data” and sends it to the FPGA. Data sent through
this function are:

e Invader x-y position

e Bullet x-y position

e Tank x-y position

void send_array(unsigned
char code, unsigned int
*data)

Takes in the “code” for an invader array (an array of 0’s and 1’s
indicating the status of a specific invader on the screen) and “data” array
to the FPGA.

void invader_traj(void)

Gives the path the space invaders will traverse during the course of the
game.

void move_tank (void)

Reads in inputs from the two LSB of PORTC and updates the horizontal
position of the tank on the PIC. Error checks for the user input so that
the tank does not run off the screen.

void shoot (void)

Gives the initial position and velocity of the bullet, once a shot is
detected through an input port.

int collision_detect (void)

Detects collisions between the bullet and a space invader. Hit boxes for
the invaders are a 22x16 pixel rectangle enclosing the entire space
invader.

int checkwin(void)

Checks if the invader array is empty. If the array it is, returns 1 for win,
otherwise returns 0.

void shot_reset (void)

Sets the position of the bullet, and the velocity of the bullet to 0.

void play(void)

Runs the game loop, and checks for the win and lose conditions of the
game. Uses checkwin to determine if the user has won.

void reset (void)

Resets all parameters necessary to run the game.

FPGA DESIGN

The FPGA is used as the VGA and graphics driver for the game. It takes in the 6 code bits and
10 data bits and translates them into properly timed signals for display on the VGA monitor. The
FPGA does this through the use of three main blocks: the digital clock time manager, a generate
syncs module and a generate display signals module.

clk >
reset > sclk
Digital Clock Manager » clk
HSync
VSync _
» reset .
GenSyncsVGA
» VSync S[0] Red .
» clk
16 » reset S[1] Green -
data p- data
S[2] Blue -
GenSignalsVGA2

Figure 2. FPGA module block diagram

Digital Clock Manager (DCM)

The DCM is used to create a 25 MHz clock used for timing the VGA monitor’s electron gun
with the necessary outputs from the FPGA. The DCM was programmed through Xilinx
CoreGen and its clock is distributed to all other modules.

GenSyncsVGA

This module generates the HSync and VSync signals for the VGA monitor. The GenSyncsVGA
module uses the DCM’s slower clock along with counters to keep track of where the VGA
monitor’s electron gun is and when it needs to be moved to a new row or reset back to the top
corner.

GenSignalsVGA2

To get the information of where to paint the tank, bullet or space invader array, this
GenSignalsVGA2 module has a data decoder that take in the 16-bit code sequence received from
the PIC, separates the most significant 6 bits and according to their value assigns the least
significant 10 bits of data to proper wires that are used by large logic blocks to generate the color
signals for the VGA monitor. A row and column counter sub-module keeps track of what pixel
the VGA monitor’s electron gun is painting at any particular moment. The logic takes this row
and column information along with the position data taken from the bottom 10 bits and generates

a signal for the red, green and blue VGA inputs that is asserted only when a particular pixel is
supposed to be painted.

To avoid the timing issues generated by asynchronously sending data from the PIC to the FPGA,
a dataReady bit is sent from the PIC to the FPGA after it has asserted and stabilized the output
data. The dataReady bit is registered and then tied to the enable of another register that receives
the data from the PIC. This set up ensures that data from the PIC is passed to the FPGA VGA
logic only on a rising clock edge, when the dataReady bit is asserted and consequently when the
data being sent is no longer changing.

RESULTS

A reliable Space Invaders LITE video game has been implemented. There are start, win and lose
game screens, there are ten space invaders slowly working their way down the screen and the
user can move the tank and shoot the space invaders with a NES controller.

One problem encountered during the project was a PIC reset that seemed to occur after a set
amount of time. It was discovered, with the help of other E155 students during the presentation,
that the PIC’s watchdog timer was resetting the game. The game is essentially an infinite while
loop that sends data when interrupted by TIMERO, because of this infinite loop the watchdog
timer was triggered and the PIC was reset. The watchdog timer was disabled by setting its
configuration register, WDTCON, to 0x00.

Another problem encountered was the drawing of detailed sprites in an efficient manner. In the
current implementation the FPGA uses logic to determine whether or not a pixel at a certain row
and column address needs to be painted. This technique is good for drawing simple shapes but
the necessary logic increases drastically when coding detailed sprites. An elegant solution for
drawing detailed sprites was never developed. Text drawing techniques were explored but
proved inadequate. Drawing text would have been implemented by partitioning the monitor into
multiple cells, like a chess board. The character each cell was to display would be held in a
screen buffer and a ROM library would hold the pixel pattern of all characters. Though defining
a space invader as a character in the library and drawing one in desired cells would have allowed
for displaying tens of space invaders, it would have restricted their movement to increments of
cells, not pixels, as required.

The final major problem encountered was screen glitches. As more information was being sent
to the FPGA to be drawn, the images began to glitch randomly across the screen. It was
discovered that the information being sent from the PIC was not synchronized with screen
drawing. Before synchronizing the data transfer and drawing, it was possible for the FPGA to
draw data that was not stable. The synchronization was accomplished as described in the FPGA
implementation section.

Parts List

NES Controller: $11.49

Sources
[1] Rinzler, D. "MicroToys Guide: VGA Monitor." Apr. 2005. Web. Nov. 2009.

Appendix A - Bread Board Circuit Schematic

Harris Board

T— Vin
T GND
NES Controller
+3.3V
— RBO Datal0]
—1 RB1 Data[1]
— RB2 Data[2]
M Lot Move Right — RB3 dataReady
shoot % RCO/P82
o RC1/P83
Lo RC2/P84
1k 1k
1k
1 P Data[0]
— P2 Data[1]
— P4 Data[2]
| P5 dataReady
330 ohm
P6 score[0]
o P7 score[1]
R P8 score[2]
Mm P1O score[3]
AV
<_HSync P18
<VSyne] P20
< Red | P21
<Green] P23
< Ble | P24
[Reset >———————— P25

Appendix B — C Code

/*

Programmed By: Kevin Hsu,

Andrew Pozo

Contact: khsu@hmc.edu, apozo@hmc.edu
Program Description:
This code runs the full game of Space Invaders (Light). It holds

all variables for the game state in the PIC and sends the updated
game states to the FPGA to be drawn on screen.

*/

#include <pl8F4520.h>
#include <timers.h>

#define

#define

#define
#define

DATA_HI_MASK

DATA_LOW_MASK

DATA_LOW_SIZE
UPDATE_DELAY

0x03

Oxff

8
60

//Masks upper 2 bits of data sent
//to FPGA. Data sent to FPGA is 10-bits.
//Masks lower 8 bits of data sent
//to FPGA.
//bitlength of lower bits sent to FPGA.

//Encodings for data sent to FPGA.

#define
#define
#define
#define
#define
#define
#define
#define
#define

CODE_NONE
CODE_INVADER_X

0x00
0x04

CODE_INVADER_Y

CODE_TANK_X

CODE_INVADER_R1 0x0C

CODE_BULLET_X
CODE_BULLET_Y
CODE_STATUS
CODE_SCORE

0x14
0x24

//Initial values and limits

#define
#define
#define
#define

INIT_INVADER_X
INIT_INVADER_Y
RXLIM
LXLIM

// GLOBAL VARIABLES
int invaderx;

int invadery;

int tankx;

int tanky;

int bulletx;

int bullety;

int bullet_vel;
int shot;

int game_status;
int invaderR1[10];
int rmove;

int lmove;

int right;

int left;

int invader_move;
int score;

120
50

0x08
0x10

0x28
0x48

200
40

//Interrupt handler. On interrupt, updates the gamestate.
void isr (void) ;

//Allows for digital output to FPGA from pic. Sends a single
//integer PIC, along with a code describing what the sent data
//is.

//

//Used to send positions values for tank, bullet, space invaders
//and the game status.

void send_int (unsigned char code, unsigned int data);

//Allows for digital output to FPGA from pic. Sends an array
//of 1-bit integers to the FPGA along with a code describing what
//the sent data is.

//

//Used to send the status of the space invader array to the FPGA.
void send_array(unsigned char code, unsigned int *data);

//Updates the position of the space invaders. Programmed for
//space invader trajectory.
void invader_traj(void);

//Allows user to move tank through input ports: PORTC[0], PORTCI[1].
void move_tank (void) ;

//Allows user to shoot bullet through input port PORTC[2]. Sets
//"shot" variable to 1, indicating the bullet has been shot.
void shoot (void);

//Checks for collisions between bullet and a space invader.
//Returns 0, if no collision 1is detected and 1 if a collision is detected.
int collision_detect (void);

//Resets the "shot" variable to 0, allows for the user to shoot
//again.
void shot_reset (void);

//Checks to see if the invader array is empty. Returns 0 if invaders
//stille exist. Returns 1 if no more invaders left.
int checkwin(void);

//Runs the play game once the user enters the "game" state. Checks to see
//if user has won, or if invaders have arrived on earth.
void play(void);

//Resets entire game.
void reset (void) ;

#pragma code high_vector = 0x8

void high_interrupt (void)
{
_asm

GOTO isr
_endasm

#pragma code

void main(void)
{
unsigned short long p;
int counter;
ADCON1 = 0xFF; //Turn off A/D Converter on PORTB to allow
//digital I/0 through that port
reset () ; //Initialize game

//Run game, allow for reset when game ends.
while (1)
{

play();

reset ();

}

// interrupt handler, runs this code when TIMERO Overflows
#pragma interrupt isr
void isr (void)
{
//reset TIMERO overflow
1if (INTCONbits.TMROIF)
{
TMROH (Oxffff - UPDATE_DELAY) >> 8;
TMROL (Oxffff - UPDATE_DELAY) &&0xff;
INTCONbits.TMROIF = 0O;

}
PORTBbits.RB3 = 1;
send_int (CODE_STATUS, game_status);

//if game status is go, send GO to FPGA to display GO on screen.
if (game_status == 0)
game_status = 0;

//run game if game status is GAME
else if (game_status == 1)
{
// 1f no bullet is currently moving, allow the PIC to pole user
// for shots
if (!shot)
{
if (PORTCbits.RC2)
shoot () ;
}
else // update the bullet position if bullet has been shot
{
if (invader_move%$2==0)
bullety -= bullet_vel;
if(collision_detect())
shot_reset ();
send_int (CODE_BULLET_X, bulletx);
send_int (CODE_BULLET_Y, bullety);

send_int (CODE_TANK_X, tankx);
PORTBbits.RB3 1;

send_array (CODE_INVADER_R1, invaderR1l);
PORTBbits.RB3 = 1;

send_int (CODE_INVADER_X, invaderx);
PORTBbits.RB3 1;

send_int (CODE_INVADER_Y, invadery);
PORTBbits.RB3 = 1;

send_int (CODE_SCORE, score);
PORTBbits.RB3 = 1;

if (bullety < 0) //if bullet runs off screen, reset shot
shot_reset () ;

invader_move++;
move_tank(); // pole user for tank movement
if (invader_move == 20)
{
invader_traj();
invader_move = 0;
}
game_status=1;
}
// if game status is WIN, send WIN to FPGA to display WIN on screen
else if (game_status == 2)
game_status = 2;

// if game status is LOSE, send WIN to FPGA to display LOSE on screen
else
game_status = 3;

void send_int (unsigned char code, unsigned int data)

{
PORTD = CODE_NONE; //sets PORTD to 0 to clear the port

//LOWER 8 BITS OF DATA SENT TO FPGA
PORTBbits.RBO data & 0x01;

PORTBbits.RB2 = (data & 0x02)>>1; //LSB
PORTBbits.RB1 = (data & 0x04)>>2;
PORTCbits.RC3 = (data & 0x08)>>3;
PORTCbits.RC4 = (data & 0x10)>>4;
PORTCbits.RC5 = (data & 0x20)>>5;
PORTCbits.RC6 = (data & 0x40)>>6;
PORTCbits.RC7 = (data & 0x80)>>7; //MSB

//HIGHER 8 BITS OF DATA SENT TO FPGA
PORTD = code | ((data >> DATA_LOW_SIZE)&DATA HI_MASK);
}

void send_array(unsigned char code, unsigned int *data)

unsigned char helper;
PORTD = CODE_NONE; //sets PORTD to 0 to clear the port

//LOWER 8 BITS OF DATA SENT TO FPGA
PORTBbits.RBO =
PORTBbits.RB2
PORTBbits.RB1
PORTCbits.RC3
PORTCbits.RC4
PORTCbits.RC5H
PORTCbits.RC6 = data
PORTCbits.RC7 = data

LI |
0.0 QO Q.
(R T
o
(U]

(@]

I

Q. O.

o O

t ot

o o
GO0 WM

//HIGHER 8 BITS OF DATA SENT TO FPGA
if (data[9]&&datal[8])

helper = 0bll;

else if(!data[9]&&datal8])
helper = 0b01;

else if (data[9]&&!datal8])
helper = 0b10;

else
helper = 0b00;

PORTD = code | helper;
}

void invader_traj(void)
{
int rightmost;
int leftmost;
int counter;
int trajhelper;

if (rmove) //invaders moving right
{
//allows invaders to move to the right until they reach the
//the right of the screen
if (invaderx < (int)RXLIM)//+rightmost*45)
invaderx += 5;
else //sets the movement to the left
{
rmove = 0;
lmove = 1;
invadery +=16;
}
}
else //invaders moving left
{
//allows invaders to move to the left until they reach the
//the right of the screen
if (invaderx > (int)LXLIM)//-leftmost*45)
invaderx —-=5;
else //sets movement to the right

{

rmove 1;
Imove = 0;

invadery +=16;

}

void move_tank (void)

{

if (PORTCbits.RCO == 1) //poles PORTC bit 0 for movement to the left
if (tankx <=540) //allows tank movement to left end.
tankx += 1;
if (PORTCbits.RCl == 1) //poles PORTC bit 1 for movement to the right
if (tankx >=5) //allows tank movement to right end.
tankx —-=1;

}

void shot_reset (void)

{

//resets shot and allows for another shot

shot = 0;
bullet_vel = 0;
bullety = -1;
bulletx = -1;

}

int collision_detect (void)

{

int 1i;

for(i = 0; i < 10; i++)

{

if ((bulletx+2>invaderx+i*40) && (bulletx<invaderx+22+i*40) &&invaderR1[1])

{

//checks if bullet is within the bounds of each invader in array.
//invaders are spaced 40 pixels apart, and have width 22 pixels.

if ((bullety<invadery+16)&& (bullety-—
2>invadery) && (invaderR1[i]!=0))
{
invaderR1[1i] = 0;
score+=1;
return 1;
shot_reset ();

return 0;

}

void shoot (void)
{
//initialize bullet position to tip of tank cannon
bulletx tankx+11;
bullety = tanky;
bullet_vel = 2; //set bullet velocity
shot = 1; //set bullet shot

int checkwin (void)
{
int counter;
for (counter=0; counter<l1l0; counter++)
{
//user has not won if anything exists in invader array
if (invaderR1l [counter]==1)
return 0;
}

return 1;

void play(void)
{
//allows the game to continue while there are space invaders on the
//screen, and while the invaders have yet to reach the tank.
while((invadery < tanky-20)&&(!checkwin()))
{
}
while (!PORTCbits.RC2)
{

if (checkwin())

game_status = 2;
else
game_status = 3;
}
}
void reset (void)
{
int counter;
TRISD = 0x00; //PORTD OUTPUT PORT
TRISC = 0x07; //PORTC[2:0] INPUT PORTS
//PORTC[7:3] OUTPUT PORTS
TRISB = 0x00; //PORTB OUTPUT PORTS
WDTCON = 0x00; //TURN OFF WATCHDOG TIMER TO ALLOW FOR GAME LOOP
TOCON = 0x87; //ENABLE TIMERO, 16 BIT, CLKO, x, PSA, by 256
INTCON = 0xAO0; //ENABLE INTERRUPTS, INT on TMRO OVERFLOW
PORTBbits.RB3 = 0;
game_status = 0; // initial GO Screen

while (!PORTCbits.RC2)
{

//Show "GO" screen until user presses "B" button
}

game_status = 1; // set screen to GAME

//Initialize space invader trajectory parameters. Trajectory
//begins moving to the right.

rmove = 1;

Imove = 0;

//Initialize invader move counter to 0. Invader traverses
//trajectory only when INVADER_MOVE reaches a constant.
invader_move = 0;

invaderx = INIT_INVADER X; //Initial invader position
invadery = INIT_INVADER_Y;

//Initialize tank positions
tankx = 320;
tanky = 460;

//Initialize bullet positions

shot = 0; //0 for bullet not yet fired.
bulletx -1;

bullety -1;

//Initialize score

score = 0;

for (counter = 0; counter <10; counter++)
invaderR1 [counter] = 1;

Appendix C - Verilog Code

L1771 7777 7707777777777 77
// Kevin Hsu and Andrew Pozo,
// Based on code by Michael Cope and Philip Johnson 1999

// Modified by Dan Chan,

Fall 2009

Nate Pinckney and Dan Rinzler Spring 2005

// Further modified by Jonathan Beall and Austin Katzin, Fall 2006
// Further modified Jonathan Beall and Austin Katzin, Fall 2006
L1707 7777777777777 77

module TopLevel (clk,reset, HSync,

input
input
output
output
output

input
output
input
wire
wire
wire

[15:0]
[3:0]

clk;
reset;
HSync;
vSync;
signal;

data;
score;

dataReady;

sclk;

clkdv, clkfx,
datavalid;

VSync,
//

//
//
//
//
//

signal, data, score, dataReady);

40Mhz input clock

Horizontal sync signal for monitor

Vertical sync signal for monitor

RGB (R is output[0]) signal for
monitor

Data input from PIC

//25Mhz clock after DCM

//

// Use DCM to create 25Mhz clk
digitalCM vgaDCM(clk,reset,clkdv,clkfx, sclk,clklock);

// Generate monitor timing signals
GenSyncsVGA GenSyncs(sclk, HSync,

// Generate Signal to monitor

GenSignalVGA2 GenSignal (VSync,
score,

endmodule

clklock; // Unused DCM signals

Is there valid data being sent?

vVSync, reset, datavalid);

dataValid, signal, sclk, reset, data,
dataReady) ;

L1771 700 7777777777777 7777777777777 77
// Kevin Hsu and Andrew Pozo, Fall 2009

// Based on code by Michael Cope and Philip Johnson 1999

// Modified by Dan Chan, Nate Pinckney and Dan Rinzler Spring 2005

// Further modified by Jonathan Beall and Austin Katzin, Fall 2006

// Further modified Jonathan Beall and Austin Katzin, Fall 2006

//

// This module takes the 25Mhz clock and steps it down to turn on

// HSync and VSync at the correct frequencies. It also determines when

// it is possible to send data for each pixel.

[I77777770777

module GenSyncsVGA (clk,HSync,VSync,reset,datavValid);

input clk;

input reset;

output HSync;

output VSync;

output datavalid; //High when according to HSync and VSync data is

//ready to flow

// 25 Mhz clk period = 40 ns
//Hsync = 31470Hz Vsync = 59.94Hz

reg [9:0] slowdownforHsync;

reg [9:0] slowdownforVsync;

reg HSync;

reg HData; // High when according to HSync data is ready to flow
reg VData; // High when according to VSync data is ready to flow
reg vSync;

//this always block determines when Hsync should be driven low to start a new
//1line
always @ (posedge clk)
begin
slowdownforHsync = slowdownforHsync + 1;

//check if you’ve counted to the end of the screen or if

//youre resetting

if ((slowdownforHsync == 10'd800)
slowdownforHsync = 0;

(reset == 1))

//check if you need to set the Hsync low for next line

if ((slowdownforHsync >= 10'd8)&& (slowdownforHsync < 10'd104))
HSync = 0;

else
HSync = 1;

//check if youre in a draw able part of the screen, Hdata used later
if ((slowdownforHsync >= 10'd152) && (slowdownforHsync < 10'd792))
HData = 1;
else
HData = 0;
end

//this always block determines when VSync should be driven low, indicating
// the start of a new screen
always @ (negedge HSync)
begin
slowdownforVsync = slowdownforVsync + 1;

//see if youre off the screen or if you want to reset
if ((slowdownforVsync == 10'd525) || (reset == 1))
slowdownforVsync = 0;

//see if you need to set Vsync low to start a new screen

if ((slowdownforVsync >= 10'd2) && (slowdownforVsync < 10'd4))
VSync = 0;

else
VSync = 1;

//see if youre in a draw able area of the screen
if ((slowdownforVsync >= 10'd37) && (slowdownforVsync < 10'd517))
VData = 1;
else
VDhata = 0;
end

//a signal that is asserted if the pixel is in a draw able area
assign dataValid = HData && VData;

endmodule

L1170 7777 777777777777 777
// Use a RowColCounter to keep track of rows and columns.

// Read in positions of the shapes from the PIC.

// Instantiate space invaders, tank, bullet, GO, WIN, LOSE for purposes of

// the game.

[I77

module GenSignalVGA2 (VSync, dataValid, signal, clk, reset, data, score,
dataReady) ;

input vsync;

input datavalid;
output [2:0] signal;

input clk;

input reset;

input [15:0] data;

output [3:0] score;

input dataReady;
wire [9:0] col; // Horizontal coordinate
wire [9:0] row; // Vertical coordinate
wire inInvader;
wire inTank;

wire inBullet;
wire inGo;

wire inWin;

wire inLose;

wire [9:0] invaderX;
wire [9:0] invaderY;
wire [9:0] tankX;

wire [9:0] bulletY;

wire [9:0] bulletX;

wire [9:0] invaderR1;
wire [9:0] status;

wire out;

reg [15:0] regData;

reg regDataReady;

parameter tankY = 10'd460;
parameter wX = 10'd320;
parameter wY = 10'd240;

always @ (posedge clk)
regDataReady <= dataReady;

always @ (posedge clk)
if (regDataReady)
regData <= data;

// Decodes data sent from PIC
dataDecoder decoder (clk, reset, regData, invaderX, invaderY, invaderRl,
tankX, bulletX, bulletY, status, score);

// Keep track of current coordinates.
RowColCounter rcCount (VSync, dataValid, col, row, clk, reset);

//draw the space invader
drawInvader invader (col, row, inInvader, invaderX, invaderY,
invaderR1) ;

//draw the tank
drawTank tank(col, row, inTank, tankX, tankY);

//draw the bullet
drawBullet bullet (col, row, inBullet, bulletX, bulletY);

//draw GO
drawGo go(col, row, inGo, wX, wY);

//draw WIN
drawWin win(col, row, inWin, wX, wY) ;

//draw LOSE
drawLose lose(col,row, inLose, wX,wY) ;

//registered mux to draw screen depending on game state
c4 choose(clk, status, inBullet, inInvader, inTank, inGo, inWin,
inLose, out);

assign signal[0] = out;

assign signal[l] = out;

assign signal[2] = out;
endmodule

//looks at 6MSB of data taken from the PIC. Decodes then stores into wires
//for drawing purposes

module dataDecoder (clk, reset, data, invaderX, invaderY, invaderR1l, tankX,
bulletX, bulletY, status, score);

input clk;

input reset;

input [15:0]data;

output reg [9:0] invaderX;

output reg [9:0] invaderY;

output reg [9:0] invaderRl;

output reg [9:0] tankX;

output reg [9:0] bulletX;

output reg [9:0] bullety;

output reg [9:0] status;

output reg [3:0] score;

parameter CODE_INVADER_X = 6'b000001;
parameter CODE_INVADER_Y = 6'b000010;

parameter CODE_INVADER_R1 = 6'b000011;

parameter CODE_TANK_X = 6'b000100;
parameter CODE_BULLET_X = 6'b000101;
parameter CODE_BULLET_Y = 6'b001001;
parameter CODE_STATUS = 6'b001010;
parameter CODE_SCORE = 6'b010010;

always @ (posedge clk, posedge reset)

begin
if (reset)
begin

invaderX <= 10'd0;

invaderY <= 10'd0;

O O OO oo oo
L e e e e e e

N+ N+ Ne Ne Ne Ne N

~.

invaderR1 <= 10'b11_1111_1111;

tankX <= 10'd320;

bulletX <= 10'd0;

bulletY <= 10'd0;

status <= 10'd0;

score <= 10'd0;

end
else

case (data[l1l5:107)
CODE_INVADER_X: invaderX <= datal9:
CODE_INVADER_Y: invaderY <= datal9:
CODE_INVADER_R1l: invaderRl <= data[9:
CODE_TANK_X: tankX <= datal9:
CODE_BULLET_X: bulletX <= datal[9:
CODE_BULLET_Y: bulletY <= datal[9:
CODE_STATUS: status <= datal[9:
CODE_SCORE: score <= datal[9:
default:;

endcase

end
endmodule

//gets the col and row of the electron gun
module RowColCounter (VSync, dataValid, col, row, clk, reset);

input vsync;

input datavalid;

output reg [9:0] col; // Horizontal coordinate
output reg [9:0] row; // Vertical coordinate
input clk;

input reset;

reg [9:0] temp;

// This always block counts column values from 0 to 640
always @ (posedge clk)
begin
if (reset)
col <= 0;
if (dataVvalid)
col <= col + 1;
else
col <= 0;
end

// This lets us know when we're at the next row.
always @ (posedge clk)
begin
if (reset)
begin
temp<= 0;
row <= 0;
end
if (!VSync) // new screen
begin
temp <= 0;

row <= 0;

end
else
if (datavalid)
temp <= temp + 1;
if (temp == 10'd640)
begin
row <= row + 1;
temp <= 0;
end
end
endmodule

module drawlInvader (col, row, in, x, vy, R1l);
input [9:0] col;
input [9:0] row;
output in;
input [9:0] x;
input [9:0] vy;
input [9:0] R1;

//combinational logic for space invaders on screen
assign in = .. //combinational logic left out for conserving paper
endmodule

module drawTank (col, row, in, %X, y);
input [9:0] col;
input [9:0] row;
output in;
input [9:0] x;
input [9:0] y;

//combinational logic for tank
assign in = .. //combinational logic left out to save paper
endmodule

module drawBullet(col, row, in, x, Vy);
input [9:0] col;
input [9:0] row;
output in;
input [9:0] x;
input [9:0] y;

//combinational logic for bullet
assign in = ((col>=x)&&(col<=x+1)&& (row==y)) ||
((col>=x)&&(col<=x+1)&& (row==y+1));
endmodule

module drawGo(col, row, in, x, Vy);
input [9:0] col;
input [9:0] row;
output in;
input [9:0] x;
input [9:0] vy;

//combinational logic
assign in = .. //combinational logic left out to save paper

endmodule

module drawWin (col,row,in,x,Vy);
input [9:0] col;
input [9:0] row;
output in;
input [9:0] x;
input [9:0] vy;

//combinational logic
assign in = .. //combinational logic left out to save paper
endmodule

module drawLose(col, row, in, x, Vy);
input [9:0] col;
input [9:0] row;
output in;
input [9:0] x;
input [9:0] vy;

//combinational logic
assign in = .. //combinational logic left out to save paper
endmodule

// mux chooses what to output to screen based on status received from PIC
module c4(clk, status, inBullet, inInvader, inTank, inGo, inWin, inLose,

out) ;
input clk;
input [9:0] status;
input inBullet;
input inInvader;
input inTank;
input inGo;
input inWin;
input inLose;

output reg out;

parameter GO = 2'b00;
parameter GAME = 2'b01l;
parameter WIN 2'b10;
parameter LOSE = 2'bll;
wire game;

assign game = (inBullet|inInvader|inTank);

always @ (posedge clk)

case(status[1:0])
GO: out <= inGo;
GAME: out <= game;
WIN: out <= inWin;
LOSE: out <= inLose;
default: out <= game;

endcase

endmodule

L1777 7 7777777777777 7777777777777 77
/17

// Copyright (c) 1995-2008 Xilinx, Inc. All rights reserved.

L1177 777 707777777777 77

/7

//

/] /\/ /

/) N/ Vendor: Xilinx

/7N \ \/ Version : 10.1.03

/7N \ Application : xaw2verilog

/] / Filename : digitalCM.v

/] /\ Timestamp : 11/09/2009 20:03:18

/7N AV

/7 N \N/__\

//

//Command: xaw2verilog —-st H:\E155\Final_project\space_invaders\digitalCM.xaw
//H:\E155\Final_project\space_invaders\digitalCM

//Design Name: digitalCM

//Device: xc3s400-tgl44-5

//

// Module digitalCM

// Generated by Xilinx Architecture Wizard

// Written for synthesis tool: XST

// Period Jitter (unit interval) for block DCM_INST = 0.03 UI
// Period Jitter (Peak-to-Peak) for block DCM_INST = 1.23 ns
“timescale 1ns / 1lps

module digitalCM(CLKIN_IN,
RST_IN,
CLKDV_OUT,
CLKFX_OUT,
CLKO_OUuT,
LOCKED_OUT) ;

input CLKIN_IN;
input RST_IN;
output CLKDV_OUT;
output CLKFX_OUT;
output CLKO_OUT;
output LOCKED_OUT;

wire CLKDV_BUF;
wire CLKFB_IN;
wire CLKFX_BUF;
wire CLKO_BUF;
wire GND_BIT;

assign GND_BIT = 0;

assign CLKO_OUT = CLKFB_IN;

BUFG CLKDV_BUFG_INST (.I(CLKDV_BUF
.O(CLKDV_OUT

BUFG CLKFX_BUFG_INST (.I(CLKFX_BUF
.O(CLKFX_OUT

BUFG CLKO_BUFG_INST (.I(CLKO_BUF),
.O(CLKFB_IN));

DCM DCM_INST (.CLKFB(CLKFB_IN),

.CLKIN(CLKIN_IN),

),
))
)
)

)i

.DSSEN (GND_BIT),
.PSCLK (GND_BIT),
.PSEN (GND_BIT),
.PSINCDEC (GND_BIT),
.RST (RST_IN),
.CLKDV (CLKDV_BUF),
.CLKFX (CLKFX_BUF),
.CLKFX180(),
.CLKO (CLKO_BUF),
.CLK2X (),
.CLK2X180¢(),
.CLK90 ()
.CLK180 (
.CLK270 (
.LOCKED (
(
(

14
)
)
LOCKED_OUT),
.PSDONE () ,

.STATUS ()) ;
defparam DCM_INST.CLK_ _FEEDBACK = "1X";
defparam DCM_INST.CLKDV_DIVIDE = 2.0;
defparam DCM_INST.CLKFX_DIVIDE = §;
defparam DCM_INST.CLKFX_MULTIPLY = 5;

defparam DCM_INST.CLKIN_DIVIDE_BY_2 = "FALSE";

defparam DCM_INST.CLKIN_PERIOD = 25.000;

defparam DCM_INST.CLKOUT_PHASE_SHIFT = "NONE";
defparam DCM_INST.DESKEW_ADJUST = "SYSTEM_SYNCHRONOUS";
defparam DCM_INST.DFS_FREQUENCY_MODE = "LOW";

defparam DCM_INST.DLL_FREQUENCY_MODE = "LOW";

defparam DCM_INST.DUTY_CYCLE_CORRECTION = "TRUE";

defparam DCM_INST.FACTORY_JF = 16'h8080;
defparam DCM_INST.PHASE_SHIFT = 0;
defparam DCM_INST.STARTUP_WAIT = "FALSE";

endmodule

