

MIDI Sound Module

Final Project Report
December 11, 2009

E155

Aaron Guillen and Allison Russell

Abstract:

A MIDI sound module was implemented to interpret MIDI messages from a
keyboard and then output the sampled waveform of another instrument. An FPGA was
configured as a UART to receive MIDI messages from a keyboard. A PIC was
programmed to read in and interpret MIDI messages to send note values and to receive
the samples of an instrument’s waveform from a PC. The waveform samples were
converted to an analog signal and conditioned for a commercial audio amplifier. The
module successfully outputs the waveforms at 3kHz, producing recognizable but rather
low quality notes of a bass guitar.

 2

Introduction and Overview:

MIDI is a music communication protocol in which music information is stored in
bytes. The bytes hold op-codes that indicate basic instructions such as note on or off,
note value and volume, as well as various special effects. Any MIDI device can be
configured to output these bytes through a MIDI cable to be interpreted by another
device. The purpose of this MIDI module is to handle the note on, note off and note value
information to output a waveform of the corresponding note of another instrument. The
module uses a keyboard as the MIDI controller. The keyboard sends three bytes every
time a note is pressed or released, which are sent to a UART implemented on the FPGA.
The FPGA separates the three bytes and sends them to the PIC for interpretation. The PIC
ignores any message that is not note on or note off. The PIC is configured to
asynchronously transmit and receive messages with a PC using a USB serial converter.
When a note should be off, the PIC sends zeros to the PC. When a note should be on, the
PIC sends the correct note value to the PC. The PC sends back three samples of an
instrument’s waveform at 1kHz. The PIC receives them in memory and outputs samples
to the FPGA at 3kHz, the original rate the instrument’s waveform was sampled at. The
samples are output a nybble at a time. The FPGA deserializes the nybbles and outputs a
sample byte to a digital to analog converter. The analog signal is conditioned with an op-
amp and is sent to an amplifier. The result is a keyboard that can produce notes from
another instrument. A block diagram representation of the project can be found in
Appendix A. This report will cover the details of the design.

 3

New Hardware:

 The project used three pieces of new hardware in addition to Xilinx Spartan
FPGA and PIC 18F4520, described below.

USB Thingie: The MIDI module uses a USB Thingie manufactured by Smiley Micros to
interface with a PC. The USB Thingie connects to a USB port on a PC and connects to
some peripheral device, the PIC in this case, through a UART. It uses a common USB to
UART IC made by Future Technology Devices International. The driver that is provided
by FTDI allows the USB Thingie to show up as a Virtual Com Port in Windows. After
installation of these drivers, the USB Thingie can be controlled in exactly the same
manner as the BlueSMiRF module used in earlier e155 labs. The advantage of the USB
Thingie is that it can operate at much higher baud rates than Sparkfun’s bluetooth
Dongle.

MIDI and the 4N36 optocoupler: MIDI devices output messages as currents, which must
be electrically isolated before they are sent to the Harris Board. Several subtle problems
may occur when setting up the electrical isolation for the MIDI serial connection. When
connecting an optocoupler with an internal LED and phototransistor, the digital power
supply should be connected to the collector of the transistor through a pull-up resistor
(Pin 5 of the 4N36 made by Fairchild Semiconductor). The emitter (Pin 4) should be
connected to ground. The most important part is to leave the base floating (Pin 3). Light
from the LED that hits the base will inject current into the base to turn on the transistor.
Pin 5 of the MIDI cable should be connected to the LED’s cathode (Pin 2) and pin 4
should be connected to the anode (Pin 1) through a current limiting resistor. This circuit
conforms to the electrical specifications provided by the MIDI Manufacturer’s
Association.

DAC0808: The DAC 0808 is a current output 8-bit DAC with an error of 1LSB. It
requires a +5V (Pin 13) and -10V to -15V power supply (Pin 3). A resistor should be
placed in between the reference voltage power supply and the positive reference voltage
pin (Pin 14). The value of this resistor should be chosen so that when the pin is pulled to
ground during maximum output (i.e., when the input is 0xFF), the current into the pin is
2mA. The same resistance should be placed between ground (Pin 2) and the negative
reference voltage (Pin 15). A bypass capacitor should be placed between the negative
power supply and the compensation input (Pin 16). The DAC outputs a current between 0
and 2mA.

 4

Schematic:

 5

Reading the MIDI messages on the FPGA:

 The first step in communicating with a MIDI controller is to electrically isolate
the MIDI cable from the receiving device using a phototransistor optocoupler. Current
sent over the MIDI cable turns on an LED inside the optocoupler. The light from this
LED causes current to flow into the base of the phototransistor. The transistor is turned
on and the output is pulled low. This output is sent to a UART to be deserialized.

Because the PIC’s UART is being used for communications with the PC, the
serial voltage signal from the optocoupler circuit is sent to an I/O pin on the FPGA,
which has been programmed to act as a UART. The UART reads the MIDI message, de-
serializes it and sends it a byte at a time to the PIC. The UART takes in the Harris
Board’s clock, a universal reset and the MIDI voltage signal, and outputs a byte of data.
Verliog code for the UART is in Appendix B. The UART is constructed of the four sub-
modules described below.
 The clock divider module, divclk, creates a 93kHz clock. 93kHz was chosen
because it is approximately three times the baud rate for MIDI. The rest of the UART
uses this clock to sample each bit of the MIDI signal three times. The majority of these
samples is taken to reconstruct the signal.
 The synchronizer module, sync, takes in the asynchronous MIDI voltage input
and uses two registers to synchronize the input with the 93kHz clock of the UART. The
synchronizer is necessary to avoid metastable bits.
 The oversample module, oversample, clocked by the 93kHz clock, shifts in three
bits of the input signal. The majority of these three bits is found using xnor gates and is
output to another module as one bit of the MIDI byte. Because the 93kHz clock is close
to, but not exactly, three times the baud rate of the MIDI signal, the oversampler
sometimes becomes misaligned. Ideally, the module would always take three samples of
the same bit of the input signal, however when it is misaligned it occasionally takes two
samples of a first bit and one of a second, or one sample of a first bit and two of a second.
In the first case, the module should sample just two times in the next cycle to become
realigned with the MIDI clock. In the second case, the module should count four samples
before taking the majority so it can move out the odd bit and take three samples from the
same bit. A submodule called urescreator handles the counter, which controls when the
oversampler stores the majority of the bits in the three registers. This counter is adjusted
by a mux which is conditioned by which bits were equal in the previous majority detect.
If they were all the same, it counts to three on the next cycle. However if the first was
different or the third was different, it counts to four or two respectively. When the
counter overflows, urescreator asserts an output signal “ures” which indicates when a
new bit has been created. “Ures” enables a shift register in the oversample module to
register the majority. The registered bits are sent to an eight bit shift register to be
deserialized.
 The shift register module, shiftreg, takes in the bits serially from the averaged
samples of the oversampler. There are eight registers so that the shift registers will
eventually hold a complete byte of MIDI data. The shift register is enabled by the “ures”
signal so the bits shift on the clock edge, only when there is a new bit. The registers
constantly shift but are not loaded into the output byte’s buffer until a signal “send” is
asserted. “Send” is an output of a sub-module finite state machine (FSM) called

 6

serialcontrol. The FSM in serialcontrol stays in an idle state until it receives the start bit.
Since MIDI idles at logic level one, the FSM waits for logic level zero as a start bit.
When the state machine receives the start bit, it moves through states every time a new
bit is output by the oversampler. When all 8 data bits have been loaded, the FSM asserts
“send” which tells shiftreg to load the contents of the shift registers into an 8 bit output
register. This bus is the output of the UART, which is then sent to the PIC.

When the UART on the FPGA has extracted a byte of MIDI data, it writes it to
PORTD on the PIC. Simultaneously, the FPGA toggles pin 5 on PORTC to indicate that
a new byte is available. The PIC polls this pin and stores the contents of PORTD
whenever it changes.

Interpreting messages on the PIC:

The MIDI messages have three bytes: status, note and volume. The PIC is
programmed to interpret these messages. C code for the PIC can be found in Appendix
C. When the PIC first receives a byte, it checks the most significant bit, since only the
status messages will have a one in the most significant bit. If the most significant bit is
one, the value of PORTD is stored in a global variable “status” and a counter is set to
zero. Before pin 5 is polled again, the PIC will check the value of status. The only
messages of interest are note on “0x90”, and note off “0x80”. If status is note on, the PIC
will set a variable “valid” to 1. If status is note off, “valid” will be set to 2. Otherwise,
“valid” will be zero.

The next time the FPGA indicates a new byte by toggling pin 5, the PIC will
check the values in counter and valid. If counter is zero, the status byte was just loaded
so the current byte is note. When valid is one, this note should be on so the PIC sends the
byte in PORTD to TXREG to be transmitted to the PC. When valid is two, this note
should be off so the PIC sends a null value to TXREG. In both cases, the counter is
incremented so that the volume byte of the MIDI message is skipped and the PIC is ready
to receive the next three bytes.

PIC and LabView Communications:

The PIC is connected to the PC through a USB Thingie serial converter. When the
PIC loads a note byte into TXREG, the built in USART transmits it to the receive port on
the USB Thingie. A LabView VI is configured to read in the note value and send back
samples of a waveform to the PIC. The block diagram of the LabView VI can be found in
Appendix D. The LabView VI reads the COM port of the USB Thingie with a built in
block called VISA read, and stores the note byte in the read buffer.

The content of the read buffer is stored as the current note and a counter is
initialized to zero. Each iteration of the main while loop requires 1ms to execute, so to
ultimately output samples at 3kHz, the loop must send three samples over the UART with
each cycle. The sampled waveforms are read from a tab-delimited file at the startup of the
LabView VI and are stored in an array in the computer’s memory. The current note value
is used to index the array’s columns, and the counter is used to index the rows. The

 7

current note value is scaled so that the lowest note message will correspond with column
zero. Since three samples are sent on each loop iteration, LabView indexes three
consecutive samples (rows) and sequentially writes them to the serial port’s write buffer.
The counter is then incremented by three. On the next iteration, LabView looks to see if a
new note was received. If not, it continues outputting the current note’s waveform. If the
current note is either zero (before being scaled) or not contained in the array, LabView
simply outputs zeros for each of the three samples.

The PIC receives these samples one at a time through the USART. These values
are stored in an array in the PIC’s memory. A counter, smp_count, is incremented each
time a value is received. This counter is used to index which element of the array should
be written. When three samples have been counted, the counter is reset.

Outputting a Waveform:

The PIC uses timer 0 to control when it outputs the samples. The interrupt of the
timer is not enabled, but its flag is polled so that the PIC can send a sample whenever the
timer overflows. Every time the flag goes high, the PIC reinitializes the timer and
retrieves the sample at the memory address of the array pointer plus an index counter.
The index counter is incremented whenever the PIC outputs a byte and is reset whenever
the third sample is output. To remove the discontinuity from being stored as two’s
complement bytes, 0x80 is added to each sample. The normalized sample is then output
to the FPGA.

The PIC has two 8 bit ports, PORTC and PORTD. Since all of PORTD and half
of PORTC are occupied, the sample byte must be output in two nybbles to the FPGA.
The lower four bits of PORTC are configured as outputs. The PIC sends the lower nybble
of the sample to PORTC and toggles an indicator bit on PORTE. The sample is then
downshifted so the upper nybble is in the lower four bits, and is sent to PORTC. The
indicator bit is toggled again. The FPGA is programmed to deserialize these nybbles into
one byte using a shift register that is enabled by output “deser” of a finite state machine
in module desernybs. The FSM sits in an idle state until it the bit from the PIC toggles. It
then moves to a state indicating that it has received the first nybble. It stays in a holding
state until the PIC bit toggles again, indicating it has received the second nybble. Signal
“deser” is set high when the FPGA has either the first or the second nybble. When both
nybbles have been received, signal “whole” is set high. This enables the FPGA to register
the contents of the shift registers into one concatenated byte. This byte is connected to a
DAC.

The DAC converts the FPGA’s output byte into an analog current output. This
current ranges from 0 to 2mA and needs to be conditioned before being sent to an audio
amplifier. The circuit shown in the schematic sends this current across an 850Ω resistor
to convert it into a voltage at the output. 850Ω is chosen so that the peak-to-peak voltage
of this signal is 1.7V, which is the standard line level for many American audio devices.
 The output of this circuit is fed into a passive RC bandpass filter. The filter
removes both low and high inaudible frequencies from the signal. Removal of the DC
level and low frequency components prevents constant deflections of the speaker cone,
which may distort the audio. The components were chosen so that the corner frequencies

 8

of the band-pass filter are 15 Hz and 20 kHz. A voltage follower buffers the filter’s
output to provide a low-impedance signal to an audio amplifier. Texas Instruments’
TL074 quad operational amplifier is used for these circuits.

MatLab and Data Storage:

 Three octaves of bass guitar were recorded in thirty-seven sound files. They were
all recorded and saved in a linear pulse code modulated .wav file to avoid logarithmic
scaling and other lossy compression methods. This file format stores each 16-bit sample
of the waveform in an array. A MatLab routine returns the list of samples in the file. The
original files were recorded at 44.1 kHz. To produce an array of 3 kHz samples, every
fifteen samples were averaged. The introduced a sampling rate error which pitch shifted
all of the notes by a quarter-tone.
 Next, all of these averaged samples were normalized to 8-bit values. The
maximum absolute value of the samples in each array was determined and the entire
array was scaled so that the maximum value was 127. These samples were then rounded
to the nearest integer between -128 and 127. This was performed for every .wav file, and
these lists of samples were stored as the columns of a tab-delimited text file.

Results:

 The MIDI sound module successfully outputs the waveforms of a bass guitar.
Unfortunately, the PIC could not run fast enough to send the samples at 44.1kHz, the
original sample rate of the notes. Therefore, the sample output rate had to be lowered to
3kHz. This caused distortion of high frequency signals.

In retrospect, this problem could have been avoided by implementing everything
on the FPGA. The FPGA was already programmed with a UART. If it was programmed
with a second UART, it could have read in 44 samples from LabView and stored them in
its own RAM. The PIC was only fast enough to read in 3 samples. Since the FPGA has
a divider and many multipliers, the signal could have been multiplied by the MIDI
volume message and windowed with the divider to produce a less distorted sound. All of
this could have occurred simultaneously on the FPGA, while the PIC was constrained to
one operation per instruction cycle. Aside from running slowly, the system worked as
intended.

 9

References:

[1] “Tech Specs and Info,” MIDI Manufacturer’s Association.
http://www.midi.org/techspecs/index.php

[2] “DAC0808,” National Semiconductor.
http://www.national.com/mpf/DA/DAC0808.html#Overview

[3] “4N36,” Fairchild Semiconductor. http://www.fairchildsemi.com/pf/4N/4N36-M.html

[4] “USB meets Breadboard,” Smiley Micros.
http://www.smileymicros.com/index.php?module=pagemaster&PAGE_user_op=view_pa
ge&PAGE_id=31

[5] National Instruments Help Forums.
http://forums.ni.com/ni/board/message?board.id=170&thread.id=282110&view=by_date
_ascending&page=1

Parts List:

Part Source Part Number Price
USB Thingie Smiley Micros N/A $26.90

Optocoupler West Florida
Components

4N36 $0.30

MIDI Cable Style’s Music
777 E Foothill
Blvd, Pomona

N/A $8.73

DAC Stock Room DAC0808 $0

Op-Amps Stock Room TL074 $0

Audio
Amplifier

Personal N/A $0

 10

Appendix A:
Block diagram representation of the project.

 11

Appendix B:
Verilog Code

//
// Company: Harvey Mudd College
// Engineer: Aaron Guillen and Allison Russell
//
// Create Date: 19:44:36 11/15/2009
// Design Name: UART and Deserializer
// Module Name: mpproj_aarg
// Project Name: MIDI Sound Module
// Description: Top level module for a UART on the FPGA. Also receives
// samples as nybbles from the PIC and deserializes them to output waveform
//
//
module mpproj_aarg(
 input clk,
 input rx,

input reset,
 input [3:0] nyb,
 input newnyb,
 output [7:0] word,
 output clk93,
 output new_byte,
 output [7:0] whole_shebang
);

 wire clk93;
 wire rxsync;
 wire serbit;
 wire ures;
 // Divide the clk to get a 93kHz clock, 3 times the baud rate for MIDI
 divclk dv(clk, reset, clk93);

 // Because the input is asynchronous, synchronize it to avoid metastability
 sync sn(clk93, reset, rx, rxsync);

 // Oversample the serial input and output the average of 3 data points
 oversample os(clk93, reset, rxsync, serbit, ures);

 // De-serialize the data. Output to word byte to word, sent to PIC
 shiftreg sr(clk93, ures, serbit, reset, word);

 // De-serialize the nybbles. Output whole shebang to a DAC
 desernybs dn(clk, reset, nyb, newnyb, whole_shebang);
endmodule

 12

//
// Engineer: Aaron Guillen and Allison Russell
// Create Date: 21:09:17 11/15/2009
// Module Name: divclk
// Description: divclk takes in the pic's 20MHz clock and divides it with a
// counter so that it is a 93kHz clock. 93kHz was chose because it is three times
// the speed of the MIDI signal clock.
//
module divclk(
 input clk,
 input reset,
 output reg clk93
);

 reg [6:0] counter;
 wire edge93;

 // edge93 is asserted when counter=107

assign edge93 = counter[6] & (counter[5]) & (~counter[4]) & (counter[3]) &
(~counter[2]) & (counter[1]) & counter[0];

 // counter resets on "reset" and when it has counted to 107 (edge93=1)
 always @(posedge clk, posedge reset)
 if (reset)
 counter <= 0;
 else if (edge93)
 counter <= 0;
 else
 counter <= counter + 1;

 // clk93 toggles whenever edge93 rises
 always @(posedge edge93, posedge reset)
 if (reset)
 clk93 <= 0;
 else
 clk93 <= ~clk93;

endmodule

 13

//
// Engineer: Aaron Guillen and Allison Russell
// Create Date: 20:27:55 11/15/2009
// Module Name: sync
// Description: Sync is a synchronizer module that takes in the
// asynchronous MIDI voltage input and uses two registers to synchronize
// the input with the UART 93kHz clock
//

module sync(
 input clk,
 input reset,
 input rx,
 output reg rxsync
);

 reg rx2;

 always @(posedge clk, posedge reset)
 if (reset) begin
 rx2 <= 1;
 rxsync <= 1;
 end
 else begin
 rx2 <= rx;
 rxsync <= rx2;
 end

endmodule

 14

//
// Engineer: Aaron Guillen and Allison Russell
// Create Date: 21:12:26 11/15/2009
// Module Name: oversample
// Description: Oversample oversamples the synchronized input and
// outputs the average of the 3 oversampled bits.
//
module oversample(
 input clk93,
 input reset,
 input rxsync,
 output reg serbit,
 output ures
);

 //Declare wires and registers
 wire eq23, eq34, r4p;
 reg r2, r3, r4;
 reg eq23p, eq34p;

 //Call submodule to create ures, a counter which tells the
 //oversampler when to average
 urescreator uc(clk93, reset, eq23p, eq34p, ures);

 //Shift registers for taking in three bits at a time
 //Reset is 1 because MIDI idles at 1
 always @(posedge clk93, posedge reset)
 if (reset) begin
 r2 <= 1;
 r3 <= 1;
 r4 <= 1;
 end
 else begin
 r2 <= rxsync;
 r3 <= r2;
 r4 <= r3;
 end

 //r4p takes the value of r3 instead of r4 on the special
 //case where the first two are not equal but the last two are
 assign r4p = (eq34p & (~eq23p)) ? r3 : r4;
 assign eq23 = r2 ^~ r3;
 assign eq34 = r3 ^~ r4p;

 //Ures is asserted when the oversampler should average the samples
 always @(posedge clk93, posedge reset)
 if (reset) begin
 eq23p <= 1;
 eq34p <= 1;
 end
 else if (ures) begin

 15

 eq23p <= eq23;
 eq34p <= eq34;
 end

 always @(*)
 case({eq23,eq34})
 2'b00: serbit <= r4;
 default: serbit <= r3;
 endcase
endmodule

//SUBMODULE
module urescreator(
 input clk93,
 input reset,
 input eq23p,
 input eq34p,
 output reg ures
);

 reg [1:0] counter;
 wire ur0, ur1, ur2;

 //counter counts up to 4
 always @(posedge clk93, posedge reset)
 if (reset)
 counter <= 0;
 else if (ures)
 counter <= 0;
 else
 counter <= counter + 1;

 assign ur0 = ~counter[0] & counter[1];
 assign ur1 = counter[0] & counter[1];
 assign ur2 = counter[0] & ~counter[1];

 //ures takes on the value of 1, 2 or 3 based on the previous
 //equivalences between bits.
 always @(*)
 case({eq23p,eq34p})
 2'b00: ures <= ur0;
 2'b01: ures <= ur2;
 2'b10: ures <= ur1;
 default: ures <= ur0;
 endcase

endmodule

 16

//
// Engineer: Aaron Guillen and Allison Russell
// Create Date: 21:26:39 11/15/2009
// Module Name: shiftreg
// Description: Shiftreg takes in the serial bits from the oversampler. when it
// receives a start bit (0), it counts the 8 bits in the byte signal and loads them
// onto an 8 bit output bus to be sent to the PIC.
//
module shiftreg(
 input clk93,
 input ures,
 input serbit,
 input reset,
 output reg [7:0] word
);
 reg intermediate;
 reg [7:0] wordp;
 wire send;
 // FSM shifts bits in every time ures indicates a new bit is in serbit.
 // MSB is sent first over the MIDI serial port
 always @(posedge clk93, posedge reset)
 if (reset) begin
 wordp <= 8'b11111111;
 intermediate <= 1;
 end
 else if (ures) begin
 intermediate <= serbit;
 wordp[0] <= intermediate;
 wordp[1] <= wordp[0];
 wordp[2] <= wordp[1];
 wordp[3] <= wordp[2];
 wordp[4] <= wordp[3];
 wordp[5] <= wordp[4];
 wordp[6] <= wordp[5];
 wordp[7] <= wordp[6];
 end

 //send is a signal from submodule serialcontrol asserted when a byte is complete
 always @(posedge clk93, posedge reset)
 if (reset)
 word <= 8'b00000000;
 else if (send) begin
 word[7] <= wordp[0];
 word[6] <= wordp[1];
 word[5] <= wordp[2];
 word[4] <= wordp[3];
 word[3] <= wordp[4];
 word[2] <= wordp[5];
 word[1] <= wordp[6];
 word[0] <= wordp[7];
 end

 17

 serialcontrol sc(clk93, ures, reset, intermediate, send);
endmodule

//SUBMODULE
module serialcontrol(
 input clk93,
 input ures,
 input reset,
 input serbit,
 output send
);
 //declare parameters for the finite state machine
 reg [4:0] state;
 reg [4:0] nextstate;
 parameter idle = 4'b0000;
 parameter start = 4'b0001;
 parameter MSB = 4'b0010;
 parameter B6 = 4'b0011;
 parameter B5 = 4'b0100;
 parameter B4 = 4'b0101;
 parameter B3 = 4'b0110;
 parameter B2 = 4'b0111;
 parameter B1 = 4'b1000;
 parameter LSB = 4'b1001;

 // FSM loops in idle state until serbit is 0 (start bit =0, stop bit =1)
 always @(*)
 case(state)
 idle: if(serbit) nextstate <= idle;
 else nextstate <= start;
 start: nextstate <= MSB;
 MSB: nextstate <= B6;
 B6: nextstate <= B5;
 B5: nextstate <= B4;
 B4: nextstate <= B3;
 B3: nextstate <= B2;
 B2: nextstate <= B1;
 B1: nextstate <= LSB;
 LSB: nextstate <= idle;
 default: nextstate <= idle;
 endcase

 always @(posedge clk93, posedge reset)
 if (reset)
 state <= 4'b0000;
 else if (ures)
 state <= nextstate;
 //send is asserted when the state machine is at the least significant bit.
 assign send = (~ures)&(state==LSB);
endmodule

 18

///
// Engineer: Aaron Guillen and Allison Russell
// Create Date: 21:44:30 12/03/2009
// Module Name: desernybs
// Description: Desernybs receives nybbles from the PIC and deserializes
// them to output a byte.
//
module desernybs(
 input clk,
 input reset,
 input [3:0] nyb,
 input newnyb,
 output reg [7:0] whole_shebang
);

 //internal signals
 wire deser, whole;
 reg [3:0] highnyb;
 reg [3:0] lownyb;
 reg [2:0] state;
 reg [2:0] nextstate;

 //parameters
 parameter OFF = 3'b000;
 parameter FIRSTnyb = 3'b001;
 parameter CHILL = 3'b010;
 parameter SECONDnyb = 3'b011;
 parameter COMPLETE = 3'b100;

 //deserialize the nybble input from the pic. enable when newnyb toggles
 always @(posedge clk, posedge reset)
 if (reset) begin
 highnyb <= 0;
 lownyb <= 0;
 end
 else if (deser) begin
 highnyb <= nyb;
 lownyb <= highnyb;
 end

 //when there is a whole byte, output it
 always @(posedge clk, posedge reset)
 if (reset)
 whole_shebang <= 0;
 else if (whole)
 whole_shebang <= {highnyb, lownyb};

 19

 //state machine to create control signals for registers
 always @(posedge clk, posedge reset)
 if (reset)
 state <= OFF;
 else
 state <= nextstate;
 always @(*)
 case(state)
 OFF: if(newnyb) nextstate <= FIRSTnyb;
 else nextstate <= OFF;
 FIRSTnyb: nextstate <= CHILL;
 CHILL: if(newnyb) nextstate <= CHILL;
 else nextstate <= SECONDnyb;
 SECONDnyb: nextstate <= COMPLETE;
 COMPLETE: nextstate <= OFF;
 default: nextstate <= OFF;
 endcase

 //assign control signals
 assign deser = (state == FIRSTnyb) | (state == SECONDnyb);
 assign whole = (state == COMPLETE);

endmodule

 20

Appendix C:
C code on the PIC.
/*
midimodule.c
Created by Aaron_Guillen@hmc.edu and Allison_Russell@hmc.edu, 12/1/09.
Description: This code programs the pic to receive MIDI messages from the
FPGA. It sends turns a note on or off based on the status message. It
sends the note that should be played to the PC and receives the samples
back from the PC. It then outputs the samples a nybble at a time to the
FPGA.
*/

//LIBRARIES
#include <p18f4520.h>
#include <stdio.h>
#include <stdlib.h>
include <timers.h>
void main(void);
void isr(void);

//INTERRUPT VECTOR
#pragma code high_vector = 0x08
void high_interrupt(void) {
 _asm
 GOTO isr // Branch to interrupt service routine
 _endasm
}

//INITIALIZE VARIABLES
int status;
int counter;
int new_byte;
int valid;
int output;
int prod;
int tmr_counter;
int data[3]; // array of 3 2-byte sample values
int *data_ptr;
int smp_count;
int tmr_sample;

//MAIN
#pragma code
void main(void) {

 // Initialize every value used by the interrupt in case it
 // triggers early
 data_ptr = &data[0];
 tmr_counter=0x0000;
 smp_count = 0;

 21

 //Configure PIC transmit and receive for full-duplex mode
 TXSTA = 0x24; // Async mode, transmit enabled, high Baud
 RCSTA = 0x90; // Async mode, receiver and serial port enabled
 SPBRGH = 0x00;
 SPBRG = 0x09; // Baud rate is 125kHz
 TRISD = 0xFF; // PORTD is input
 TRISC = 0xF0; // Top nybble is input, bottome nybble is output
 TRISB = 0x00; // PORTB is output
 ADCON1 = 0xFF; // analog to digital
 INTCON = 0xC0; // Interrupts enabled
 PIE1 = 0x20; // Enable recieve interrupts
 T0CON = 0x08; // Leave off, but initialize anyway.

 //Initialize more values
 PORTD = 0x00;
 status = 0x00;
 LATBbits.LATB5 = 0;

 //RC5 is an output from the FPGA, toggled when new byte sent
 new_byte = PORTCbits.RC5;
 while(1){
 //RECEIVING BYTES FROM THE FPGA
 if(status==0x90){ // Note on message for ch0 is 0x90
 valid = 1;
 }
 else if (status==0x80){ // Note off message is 0x80
 valid = 2;
 }
 else{ // All other MIDI messages are ignored
 valid = 0;
 }
 while((new_byte==PORTCbits.RC5)&(INTCONbits.TMR0IF==0)){
 } // While there's no MIDI bytes or samples in memory, wait
 if (new_byte !=PORTCbits.RC5){ // new MIDI byte
 new_byte=PORTCbits.RC5; // reset new_byte indicator
 if(PORTDbits.RD7==1){ // Status bytes have MSB=1
 counter = 0;
 status = PORTD; // Save the status byte
 }
 else{ // Data bytes have MSB=0
 if(counter==0){
 if(valid==1){ // Note on, send note
 TXREG = PORTD;
 counter = counter+1;
 }
 else if(valid==2){ // Note off,
 // send 0x00
 TXREG = 0x00;
 counter = counter+1;
 }

 22

 }
 }
 }

 //OUTPUTTING SAMPLES
 //Run a timer at 3kHz. Output samples when timer goes off.
 //Output three, then turn timer off. Interrupt turns timer
 //on when LabView sends the next three bytes.
 else if(INTCONbits.TMR0IF){ // TMR0 has overflowed
 INTCONbits.TMR0IF = 0; // Clear flag bit
 if (tmr_counter == 2){// Stop timer when all sent
 T0CON = 0x08;
 }
 TMR0H = 0xFE; // Reinitialize the timer.
 TMR0L = 0x88; // Value determined empirically.
 tmr_sample = *(data_ptr+tmr_counter); //Get sample
 output = tmr_sample+0x80; // Remove discontinuity
 // from 2's compliment
 PORTC = output; // Output the lower 4 bits
 LATBbits.LATB5 = 1; // Toggle a control signal
 // for the FPGA's de-serializer
 output = output>>4; // Retrieve upper nybble
 PORTC = output; // Output the upper nybble
 LATBbits.LATB5 = 0; // Toggle the control signal
 if (tmr_counter<2){
 // increment array index
 tmr_counter = tmr_counter + 1;
 }
 else{
 tmr_counter = 0; // reset array index
 }
 }
 }
}

//INTERRUPT
#pragma interrupt isr // Tells compiler to preserve all memory
void isr(void) {
 PIR1bits.RCIF=0; // Clear the interrupt flag
 *(data_ptr+smp_count) = RCREG; // Store the sample in memory
 if (smp_count<2){ // If not on last sample
 smp_count = smp_count + 1; // increment array index
 }
 else{ // if received the last sample, reset the array index
 smp_count = 0;
 tmr_counter = 0; // tmr_counter should also be zero
 TMR0H = 0xFF;
 TMR0L = 0xFF; // reinitialize timer
 T0CON = 0x81; // Restart timer
 }
}

 23

Appendix D:
Main while loop of the Labview VI.

