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Abstract: 
 

A MIDI sound module was implemented to interpret MIDI messages from a 
keyboard and then output the sampled waveform of another instrument. An FPGA was 
configured as a UART to receive MIDI messages from a keyboard. A PIC was 
programmed to read in and interpret MIDI messages to send note values and to receive 
the samples of an instrument’s waveform from a PC. The waveform samples were 
converted to an analog signal and conditioned for a commercial audio amplifier.  The 
module successfully outputs the waveforms at 3kHz, producing recognizable but rather 
low quality notes of a bass guitar. 
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Introduction and Overview: 
 

MIDI is a music communication protocol in which music information is stored in 
bytes.  The bytes hold op-codes that indicate basic instructions such as note on or off, 
note value and volume, as well as various special effects. Any MIDI device can be 
configured to output these bytes through a MIDI cable to be interpreted by another 
device. The purpose of this MIDI module is to handle the note on, note off and note value 
information to output a waveform of the corresponding note of another instrument. The 
module uses a keyboard as the MIDI controller. The keyboard sends three bytes every 
time a note is pressed or released, which are sent to a UART implemented on the FPGA. 
The FPGA separates the three bytes and sends them to the PIC for interpretation. The PIC 
ignores any message that is not note on or note off. The PIC is configured to 
asynchronously transmit and receive messages with a PC using a USB serial converter. 
When a note should be off, the PIC sends zeros to the PC. When a note should be on, the 
PIC sends the correct note value to the PC. The PC sends back three samples of an 
instrument’s waveform at 1kHz. The PIC receives them in memory and outputs samples 
to the FPGA at 3kHz, the original rate the instrument’s waveform was sampled at. The 
samples are output a nybble at a time. The FPGA deserializes the nybbles and outputs a 
sample byte to a digital to analog converter. The analog signal is conditioned with an op-
amp and is sent to an amplifier. The result is a keyboard that can produce notes from 
another instrument. A block diagram representation of the project can be found in 
Appendix A.  This report will cover the details of the design.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3 

 
New Hardware: 
 
 The project used three pieces of new hardware in addition to Xilinx Spartan 
FPGA and PIC 18F4520, described below. 
 
USB Thingie:  The MIDI module uses a USB Thingie manufactured by Smiley Micros to 
interface with a PC. The USB Thingie connects to a USB port on a PC and connects to 
some peripheral device, the PIC in this case, through a UART. It uses a common USB to 
UART IC made by Future Technology Devices International. The driver that is provided 
by FTDI allows the USB Thingie to show up as a Virtual Com Port in Windows. After 
installation of these drivers, the USB Thingie can be controlled in exactly the same 
manner as the BlueSMiRF module used in earlier e155 labs. The advantage of the USB 
Thingie is that it can operate at much higher baud rates than Sparkfun’s bluetooth 
Dongle. 
 
MIDI and the 4N36 optocoupler:  MIDI devices output messages as currents, which must 
be electrically isolated before they are sent to the Harris Board. Several subtle problems 
may occur when setting up the electrical isolation for the MIDI serial connection. When 
connecting an optocoupler with an internal LED and phototransistor, the digital power 
supply should be connected to the collector of the transistor through a pull-up resistor 
(Pin 5 of the 4N36 made by Fairchild Semiconductor). The emitter (Pin 4) should be 
connected to ground. The most important part is to leave the base floating (Pin 3). Light 
from the LED that hits the base will inject current into the base to turn on the transistor. 
Pin 5 of the MIDI cable should be connected to the LED’s cathode (Pin 2) and pin 4 
should be connected to the anode (Pin 1) through a current limiting resistor. This circuit 
conforms to the electrical specifications provided by the MIDI Manufacturer’s 
Association. 
 
DAC0808: The DAC 0808 is a current output 8-bit DAC with an error of 1LSB. It 
requires a +5V (Pin 13) and  -10V to -15V power supply (Pin 3). A resistor should be 
placed in between the reference voltage power supply and the positive reference voltage 
pin (Pin 14). The value of this resistor should be chosen so that when the pin is pulled to 
ground during maximum output (i.e., when the input is 0xFF), the current into the pin is 
2mA. The same resistance should be placed between ground (Pin 2) and the negative 
reference voltage (Pin 15). A bypass capacitor should be placed between the negative 
power supply and the compensation input (Pin 16). The DAC outputs a current between 0 
and 2mA. 
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Schematic: 
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Reading the MIDI messages on the FPGA: 
 
 The first step in communicating with a MIDI controller is to electrically isolate 
the MIDI cable from the receiving device using a phototransistor optocoupler. Current 
sent over the MIDI cable turns on an LED inside the optocoupler. The light from this 
LED causes current to flow into the base of the phototransistor. The transistor is turned 
on and the output is pulled low. This output is sent to a UART to be deserialized. 

Because the PIC’s UART is being used for communications with the PC, the 
serial voltage signal from the optocoupler circuit is sent to an I/O pin on the FPGA, 
which has been programmed to act as a UART. The UART reads the MIDI message, de-
serializes it and sends it a byte at a time to the PIC. The UART takes in the Harris 
Board’s clock, a universal reset and the MIDI voltage signal, and outputs a byte of data. 
Verliog code for the UART is in Appendix B. The UART is constructed of the four sub-
modules described below. 
  The clock divider module, divclk, creates a 93kHz clock. 93kHz was chosen 
because it is approximately three times the baud rate for MIDI. The rest of the UART 
uses this clock to sample each bit of the MIDI signal three times. The majority of these 
samples is taken to reconstruct the signal.  
 The synchronizer module, sync, takes in the asynchronous MIDI voltage input 
and uses two registers to synchronize the input with the 93kHz clock of the UART. The 
synchronizer is necessary to avoid metastable bits. 
 The oversample module, oversample, clocked by the 93kHz clock, shifts in three 
bits of the input signal. The majority of these three bits is found using xnor gates and is 
output to another module as one bit of the MIDI byte. Because the 93kHz clock is close 
to, but not exactly, three times the baud rate of the MIDI signal, the oversampler 
sometimes becomes misaligned. Ideally, the module would always take three samples of 
the same bit of the input signal, however when it is misaligned it occasionally takes two 
samples of a first bit and one of a second, or one sample of a first bit and two of a second. 
In the first case, the module should sample just two times in the next cycle to become 
realigned with the MIDI clock.  In the second case, the module should count four samples 
before taking the majority so it can move out the odd bit and take three samples from the 
same bit.  A submodule called urescreator handles the counter, which controls when the 
oversampler stores the majority of the bits in the three registers. This counter is adjusted 
by a mux which is conditioned by which bits were equal in the previous majority detect.  
If they were all the same, it counts to three on the next cycle. However if the first was 
different or the third was different, it counts to four or two respectively. When the 
counter overflows, urescreator asserts an output signal “ures” which indicates when a 
new bit has been created. “Ures” enables a shift register in the oversample module to 
register the majority.  The registered bits are sent to an eight bit shift register to be 
deserialized.   
 The shift register module, shiftreg, takes in the bits serially from the averaged 
samples of the oversampler. There are eight registers so that the shift registers will 
eventually hold a complete byte of MIDI data. The shift register is enabled by the “ures” 
signal so the bits shift on the clock edge, only when there is a new bit. The registers 
constantly shift but are not loaded into the output byte’s buffer until a signal “send” is 
asserted. “Send” is an output of a sub-module finite state machine (FSM) called 
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serialcontrol.  The FSM in serialcontrol stays in an idle state until it receives the start bit.  
Since MIDI idles at logic level one, the FSM waits for logic level zero as a start bit. 
When the state machine receives the start bit, it moves through states every time a new 
bit is output by the oversampler. When all 8 data bits have been loaded, the FSM asserts 
“send” which tells shiftreg to load the contents of the shift registers into an 8 bit output 
register. This bus is the output of the UART, which is then sent to the PIC. 

When the UART on the FPGA has extracted a byte of MIDI data, it writes it to 
PORTD on the PIC.  Simultaneously, the FPGA toggles pin 5 on PORTC to indicate that 
a new byte is available. The PIC polls this pin and stores the contents of PORTD 
whenever it changes. 
 
 
Interpreting messages on the PIC: 
 

The MIDI messages have three bytes: status, note and volume.  The PIC is 
programmed to interpret these messages.  C code for the PIC can be found in Appendix 
C.  When the PIC first receives a byte, it checks the most significant bit, since only the 
status messages will have a one in the most significant bit. If the most significant bit is 
one, the value of PORTD is stored in a global variable “status” and a counter is set to 
zero.  Before pin 5 is polled again, the PIC will check the value of status. The only 
messages of interest are note on “0x90”, and note off “0x80”.  If status is note on, the PIC 
will set a variable “valid” to 1.  If status is note off, “valid” will be set to 2.  Otherwise, 
“valid” will be zero.  

The next time the FPGA indicates a new byte by toggling pin 5, the PIC will 
check the values in counter and valid.  If counter is zero, the status byte was just loaded 
so the current byte is note. When valid is one, this note should be on so the PIC sends the 
byte in PORTD to TXREG to be transmitted to the PC. When valid is two, this note 
should be off so the PIC sends a null value to TXREG. In both cases, the counter is 
incremented so that the volume byte of the MIDI message is skipped and the PIC is ready 
to receive the next three bytes. 

 
 

PIC and LabView Communications: 
 

The PIC is connected to the PC through a USB Thingie serial converter. When the 
PIC loads a note byte into TXREG, the built in USART transmits it to the receive port on 
the USB Thingie. A LabView VI is configured to read in the note value and send back 
samples of a waveform to the PIC. The block diagram of the LabView VI can be found in 
Appendix D.  The LabView VI reads the COM port of the USB Thingie with a built in 
block called VISA read, and stores the note byte in the read buffer.  

The content of the read buffer is stored as the current note and a counter is 
initialized to zero. Each iteration of the main while loop requires 1ms to execute, so to 
ultimately output samples at 3kHz, the loop must send three samples over the UART with 
each cycle. The sampled waveforms are read from a tab-delimited file at the startup of the 
LabView VI and are stored in an array in the computer’s memory. The current note value 
is used to index the array’s columns, and the counter is used to index the rows. The 
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current note value is scaled so that the lowest note message will correspond with column 
zero. Since three samples are sent on each loop iteration, LabView indexes three 
consecutive samples (rows) and sequentially writes them to the serial port’s write buffer. 
The counter is then incremented by three. On the next iteration, LabView looks to see if a 
new note was received. If not, it continues outputting the current note’s waveform. If the 
current note is either zero (before being scaled) or not contained in the array, LabView 
simply outputs zeros for each of the three samples. 

The PIC receives these samples one at a time through the USART. These values 
are stored in an array in the PIC’s memory. A counter, smp_count, is incremented each 
time a value is received.  This counter is used to index which element of the array should 
be written.  When three samples have been counted, the counter is reset.  

 
 
Outputting a Waveform: 
 

The PIC uses timer 0 to control when it outputs the samples. The interrupt of the 
timer is not enabled, but its flag is polled so that the PIC can send a sample whenever the 
timer overflows. Every time the flag goes high, the PIC reinitializes the timer and 
retrieves the sample at the memory address of the array pointer plus an index counter.  
The index counter is incremented whenever the PIC outputs a byte and is reset whenever 
the third sample is output. To remove the discontinuity from being stored as two’s 
complement bytes, 0x80 is added to each sample.  The normalized sample is then output 
to the FPGA.  

The PIC has two 8 bit ports, PORTC and PORTD. Since all of PORTD and half 
of PORTC are occupied, the sample byte must be output in two nybbles to the FPGA.  
The lower four bits of PORTC are configured as outputs. The PIC sends the lower nybble 
of the sample to PORTC and toggles an indicator bit on PORTE. The sample is then 
downshifted so the upper nybble is in the lower four bits, and is sent to PORTC. The 
indicator bit is toggled again. The FPGA is programmed to deserialize these nybbles into 
one byte using a shift register that is enabled by output “deser” of a finite state machine 
in module desernybs. The FSM sits in an idle state until it the bit from the PIC toggles. It 
then moves to a state indicating that it has received the first nybble. It stays in a holding 
state until the PIC bit toggles again, indicating it has received the second nybble. Signal 
“deser” is set high when the FPGA has either the first or the second nybble. When both 
nybbles have been received, signal “whole” is set high. This enables the FPGA to register 
the contents of the shift registers into one concatenated byte. This byte is connected to a 
DAC.  

The DAC converts the FPGA’s output byte into an analog current output. This 
current ranges from 0 to 2mA and needs to be conditioned before being sent to an audio 
amplifier. The circuit shown in the schematic sends this current across an 850Ω resistor 
to convert it into a voltage at the output. 850Ω is chosen so that the peak-to-peak voltage 
of this signal is 1.7V, which is the standard line level for many American audio devices.  
 The output of this circuit is fed into a passive RC bandpass filter. The filter 
removes both low and high inaudible frequencies from the signal. Removal of the DC 
level and low frequency components prevents constant deflections of the speaker cone, 
which may distort the audio. The components were chosen so that the corner frequencies 
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of the band-pass filter are 15 Hz and 20 kHz. A voltage follower buffers the filter’s 
output to provide a low-impedance signal to an audio amplifier. Texas Instruments’ 
TL074 quad operational amplifier is used for these circuits. 
 
 
MatLab and Data Storage: 
 
 Three octaves of bass guitar were recorded in thirty-seven sound files. They were 
all recorded and saved in a linear pulse code modulated .wav file to avoid logarithmic 
scaling and other lossy compression methods. This file format stores each 16-bit sample 
of the waveform in an array. A MatLab routine returns the list of samples in the file. The 
original files were recorded at 44.1 kHz. To produce an array of 3 kHz samples, every 
fifteen samples were averaged. The introduced a sampling rate error which pitch shifted 
all of the notes by a quarter-tone. 
 Next, all of these averaged samples were normalized to 8-bit values. The 
maximum absolute value of the samples in each array was determined and the entire 
array was scaled so that the maximum value was 127. These samples were then rounded 
to the nearest integer between -128 and 127. This was performed for every .wav file, and 
these lists of samples were stored as the columns of a tab-delimited text file. 
 
 
Results: 
 
 The MIDI sound module successfully outputs the waveforms of a bass guitar.  
Unfortunately, the PIC could not run fast enough to send the samples at 44.1kHz, the 
original sample rate of the notes. Therefore, the sample output rate had to be lowered to 
3kHz. This caused distortion of high frequency signals.  

In retrospect, this problem could have been avoided by implementing everything 
on the FPGA.  The FPGA was already programmed with a UART.  If it was programmed 
with a second UART, it could have read in 44 samples from LabView and stored them in 
its own RAM.  The PIC was only fast enough to read in 3 samples.  Since the FPGA has 
a divider and many multipliers, the signal could have been multiplied by the MIDI 
volume message and windowed with the divider to produce a less distorted sound.  All of 
this could have occurred simultaneously on the FPGA, while the PIC was constrained to 
one operation per instruction cycle. Aside from running slowly, the system worked as 
intended.   
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Parts List: 
 
Part Source Part Number Price 
USB Thingie Smiley Micros N/A $26.90 

Optocoupler West Florida 
Components 

4N36 $0.30 

MIDI Cable Style’s Music 
777 E Foothill 
Blvd, Pomona 

N/A $8.73 

DAC Stock Room DAC0808 $0 

Op-Amps Stock Room TL074 $0 

Audio 
Amplifier 

Personal N/A $0 
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Appendix A: 
Block diagram representation of the project. 
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Appendix B: 
Verilog Code 
 
////////////////////////////////////////////////////////////////////////////////// 
// Company: Harvey Mudd College 
// Engineer: Aaron Guillen and Allison Russell 
//  
// Create Date:     19:44:36 11/15/2009  
// Design Name:     UART and Deserializer 
// Module Name:     mpproj_aarg  
// Project Name:  MIDI Sound Module 
// Description:  Top level module for a UART on the FPGA.  Also receives 
// samples as nybbles from the PIC and deserializes them to output waveform 
// 
//////////////////////////////////////////////////////////////////////////////// 
module mpproj_aarg( 
     input clk, 
     input rx, 

input reset, 
 input [3:0] nyb, 
 input newnyb, 
     output [7:0] word, 
 output clk93, 
 output new_byte, 
 output [7:0] whole_shebang 
    ); 
 
 wire clk93; 
 wire rxsync; 
 wire serbit; 
 wire ures; 
 // Divide the clk to get a 93kHz clock, 3 times the baud rate for MIDI 
 divclk dv(clk, reset, clk93); 
  
 // Because the input is asynchronous, synchronize it to avoid metastability 
 sync sn(clk93, reset, rx, rxsync); 
  
 // Oversample the serial input and output the average of 3 data points 
 oversample os(clk93, reset, rxsync, serbit, ures); 
  
 // De-serialize the data. Output to word byte to word, sent to PIC 
 shiftreg sr(clk93, ures, serbit, reset, word); 
  
 // De-serialize the nybbles.  Output whole shebang to a DAC 
 desernybs dn(clk, reset, nyb, newnyb, whole_shebang); 
endmodule 
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//////////////////////////////////////////////////////////////////////////////////  
// Engineer: Aaron Guillen and Allison Russell 
// Create Date:    21:09:17 11/15/2009  
// Module Name: divclk  
// Description:     divclk takes in the pic's 20MHz clock and divides it with a  
// counter so that it is a 93kHz clock.  93kHz was chose because it is three times 
// the speed of the MIDI signal clock. 
//////////////////////////////////////////////////////////////////////////////// 
module divclk( 
 input clk, 
 input reset, 
 output reg clk93 
 ); 
  
 reg [6:0] counter; 
 wire edge93; 
  
 // edge93 is asserted when counter=107 

assign edge93 = counter[6] & (counter[5]) & (~counter[4]) & (counter[3]) & 
(~counter[2]) & (counter[1]) & counter[0]; 

 
 // counter resets on "reset" and when it has counted to 107 (edge93=1) 
 always @(posedge clk, posedge reset) 
  if (reset) 
   counter <= 0; 
  else if (edge93) 
   counter <= 0; 
  else 
   counter <= counter + 1; 
  
 // clk93 toggles whenever edge93 rises 
 always @(posedge edge93, posedge reset) 
  if (reset) 
   clk93 <= 0; 
  else 
   clk93 <= ~clk93; 
    
endmodule 
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////////////////////////////////////////////////////////////////////////////////// 
// Engineer: Aaron Guillen and Allison Russell 
// Create Date:    20:27:55 11/15/2009  
// Module Name:    sync  
// Description:    Sync is a synchronizer module that takes in the  
// asynchronous MIDI voltage input and uses two registers to synchronize  
// the input with the UART 93kHz clock 
////////////////////////////////////////////////////////////////////////////////// 
 
module sync( 
 input clk, 
 input reset,  
 input rx, 
 output reg rxsync 
 ); 
  
 reg rx2; 
  
 always @(posedge clk, posedge reset) 
  if (reset) begin 
   rx2 <= 1; 
   rxsync <= 1; 
  end 
  else begin 
   rx2 <= rx; 
   rxsync <= rx2; 
  end 
   
endmodule 
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//////////////////////////////////////////////////////////////////////////////////  
// Engineer: Aaron Guillen and Allison Russell 
// Create Date:    21:12:26 11/15/2009  
// Module Name: oversample   
// Description:     Oversample oversamples the synchronized input and  
// outputs the average of the 3 oversampled bits.   
//////////////////////////////////////////////////////////////////////////////// 
module oversample( 
   input clk93, 
     input reset, 
     input rxsync, 
     output reg serbit, 
 output ures 
    ); 
 
 //Declare wires and registers 
 wire eq23, eq34, r4p; 
 reg r2, r3, r4; 
 reg eq23p, eq34p; 
  
 //Call submodule to create ures, a counter which tells the  
 //oversampler when to average 
 urescreator uc(clk93, reset, eq23p, eq34p, ures); 
  
 //Shift registers for taking in three bits at a time 
 //Reset is 1 because MIDI idles at 1 
 always @(posedge clk93, posedge reset) 
  if (reset) begin 
   r2 <= 1; 
   r3 <= 1; 
   r4 <= 1; 
  end 
  else begin 
   r2 <= rxsync; 
   r3 <= r2; 
   r4 <= r3; 
  end 
  
 //r4p takes the value of r3 instead of r4 on the special 
 //case where the first two are not equal but the last two are 
 assign r4p = (eq34p & (~eq23p)) ? r3 : r4; 
 assign eq23 = r2 ^~ r3; 
 assign eq34 = r3 ^~ r4p; 
  
 //Ures is asserted when the oversampler should average the samples 
 always @(posedge clk93, posedge reset) 
  if (reset) begin 
   eq23p <= 1; 
   eq34p <= 1; 
  end 
  else if (ures) begin 
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   eq23p <= eq23; 
   eq34p <= eq34; 
  end 
   
 always @(*) 
  case({eq23,eq34}) 
   2'b00:  serbit <= r4; 
   default:  serbit <= r3; 
  endcase 
endmodule 
 
//SUBMODULE 
module urescreator( 
 input clk93,  
 input reset,  
 input eq23p,  
 input eq34p,  
 output reg ures 
 ); 
 
 reg [1:0] counter; 
 wire ur0, ur1, ur2; 
  
 //counter counts up to 4 
 always @(posedge clk93, posedge reset) 
  if (reset) 
   counter <= 0; 
  else if (ures) 
   counter <= 0; 
  else 
   counter <= counter + 1; 
    
 assign ur0 = ~counter[0] & counter[1]; 
 assign ur1 = counter[0] & counter[1]; 
 assign ur2 = counter[0] & ~counter[1]; 
  
 //ures takes on the value of 1, 2 or 3 based on the previous 
 //equivalences between bits. 
 always @(*) 
  case({eq23p,eq34p}) 
   2'b00:  ures <= ur0; 
   2'b01:  ures <= ur2; 
   2'b10:  ures <= ur1; 
   default:  ures <= ur0; 
  endcase 
 
endmodule 
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//////////////////////////////////////////////////////////////////////////////// 
// Engineer: Aaron Guillen and Allison Russell 
// Create Date:    21:26:39 11/15/2009  
// Module Name:    shiftreg  
// Description:    Shiftreg takes in the serial bits from the oversampler.  when it 
// receives a start bit (0), it counts the 8 bits in the byte signal and loads them 
// onto an 8 bit output bus to be sent to the PIC. 
//////////////////////////////////////////////////////////////////////////////// 
module shiftreg( 
  input clk93, 
  input ures, 
     input serbit, 
     input reset, 
   output reg [7:0] word 
    ); 
 reg intermediate; 
 reg [7:0] wordp; 
 wire send; 
 // FSM shifts bits in every time ures indicates a new bit is in serbit.  
 // MSB is sent first over the MIDI serial port 
 always @(posedge clk93, posedge reset) 
  if (reset) begin 
   wordp <= 8'b11111111; 
   intermediate <= 1; 
   end 
  else if (ures) begin 
   intermediate <= serbit; 
   wordp[0] <= intermediate; 
   wordp[1] <= wordp[0]; 
   wordp[2] <= wordp[1]; 
   wordp[3] <= wordp[2]; 
   wordp[4] <= wordp[3]; 
   wordp[5] <= wordp[4]; 
   wordp[6] <= wordp[5]; 
   wordp[7] <= wordp[6]; 
  end 
 
 //send is a signal from submodule serialcontrol asserted when a byte is complete 
  always @(posedge clk93, posedge reset) 
  if (reset) 
   word <= 8'b00000000; 
  else if (send) begin 
   word[7] <= wordp[0]; 
   word[6] <= wordp[1]; 
   word[5] <= wordp[2]; 
   word[4] <= wordp[3]; 
   word[3] <= wordp[4]; 
   word[2] <= wordp[5]; 
   word[1] <= wordp[6]; 
   word[0] <= wordp[7]; 
  end 



 17 

  
 serialcontrol sc(clk93, ures, reset, intermediate, send); 
endmodule 
 
//SUBMODULE 
module serialcontrol( 
 input clk93, 
 input ures, 
 input reset, 
 input serbit, 
 output send 
 ); 
 //declare parameters for the finite state machine 
 reg [4:0] state; 
 reg [4:0] nextstate; 
 parameter idle = 4'b0000; 
 parameter start = 4'b0001; 
 parameter MSB = 4'b0010; 
 parameter B6 = 4'b0011; 
 parameter B5 = 4'b0100; 
 parameter B4 = 4'b0101; 
 parameter B3 = 4'b0110; 
 parameter B2 = 4'b0111; 
 parameter B1 = 4'b1000; 
 parameter LSB = 4'b1001;  
  
 // FSM loops in idle state until serbit is 0 (start bit =0, stop bit =1) 
 always @(*) 
  case(state) 
   idle: if(serbit)  nextstate <= idle; 
    else     nextstate <= start; 
   start:    nextstate <= MSB; 
   MSB:    nextstate <= B6; 
   B6:    nextstate <= B5; 
   B5:    nextstate <= B4; 
   B4:    nextstate <= B3; 
   B3:    nextstate <= B2; 
   B2:    nextstate <= B1; 
   B1:    nextstate <= LSB; 
   LSB:    nextstate <= idle; 
   default:    nextstate <= idle; 
  endcase 
  
 always @(posedge clk93, posedge reset) 
  if (reset) 
   state <= 4'b0000; 
  else if (ures) 
   state <= nextstate; 
 //send is asserted when the state machine is at the least significant bit. 
 assign send = (~ures)&(state==LSB); 
endmodule 
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/////////////////////////////////////////////////////////////////////////// 
// Engineer: Aaron Guillen and Allison Russell 
// Create Date:    21:44:30 12/03/2009  
// Module Name:    desernybs   
// Description: Desernybs receives nybbles from the PIC and deserializes 
// them to output a byte. 
//////////////////////////////////////////////////////////////////////////////// 
module desernybs( 
    input clk, 
    input reset, 
    input [3:0] nyb, 
    input newnyb, 
    output reg [7:0] whole_shebang 
    ); 
 
 //internal signals  
 wire deser, whole; 
 reg [3:0] highnyb; 
 reg [3:0] lownyb; 
 reg [2:0] state; 
 reg [2:0] nextstate; 
 
 //parameters 
 parameter OFF = 3'b000; 
 parameter FIRSTnyb = 3'b001; 
 parameter CHILL = 3'b010; 
 parameter SECONDnyb = 3'b011; 
 parameter COMPLETE = 3'b100; 
  
 //deserialize the nybble input from the pic. enable when newnyb toggles 
 always @(posedge clk, posedge reset) 
  if (reset) begin 
   highnyb <= 0; 
   lownyb <= 0; 
  end 
  else if (deser) begin 
   highnyb <= nyb; 
   lownyb <= highnyb; 
  end 
  
 //when there is a whole byte, output it 
 always @(posedge clk, posedge reset) 
  if (reset)  
   whole_shebang <= 0; 
  else if (whole) 
   whole_shebang <= {highnyb, lownyb}; 
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 //state machine to create control signals for registers 
 always @(posedge clk, posedge reset) 
  if (reset) 
   state <= OFF; 
  else 
   state <= nextstate; 
 always @(*) 
  case(state) 
   OFF: if(newnyb)   nextstate <= FIRSTnyb; 
    else     nextstate <= OFF; 
   FIRSTnyb:   nextstate <= CHILL; 
   CHILL: if(newnyb)  nextstate <= CHILL; 
    else   nextstate <= SECONDnyb; 
   SECONDnyb:   nextstate <= COMPLETE; 
   COMPLETE:   nextstate <= OFF; 
   default:    nextstate <= OFF; 
  endcase 
 
 //assign control signals 
 assign deser = (state == FIRSTnyb) | (state == SECONDnyb); 
 assign whole = (state == COMPLETE); 
 
endmodule 
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Appendix C: 
C code on the PIC. 
/*  
midimodule.c 
Created by Aaron_Guillen@hmc.edu and Allison_Russell@hmc.edu, 12/1/09. 
Description: This code programs the pic to receive MIDI messages from the  
FPGA.  It sends turns a note on or off based on the status message.  It 
sends the note that should be played to the PC and receives the samples 
back from the PC.  It then outputs the samples a nybble at a time to the 
FPGA. 
*/ 
 
//LIBRARIES 
#include <p18f4520.h> 
#include <stdio.h> 
#include <stdlib.h> 
# include <timers.h> 
void main(void); 
void isr(void); 
 
//INTERRUPT VECTOR 
#pragma code high_vector = 0x08 
void high_interrupt(void) { 
 _asm 
  GOTO isr // Branch to interrupt service routine 
 _endasm 
} 
 
//INITIALIZE VARIABLES 
int status; 
int counter; 
int new_byte; 
int valid; 
int output; 
int prod; 
int tmr_counter; 
int data[3]; // array of 3 2-byte sample values 
int *data_ptr; 
int smp_count;  
int tmr_sample; 
 
//MAIN  
#pragma code 
void main(void) { 
 
 // Initialize every value used by the interrupt in case it  
 // triggers early 
 data_ptr = &data[0];  
 tmr_counter=0x0000;   
 smp_count = 0; 
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 //Configure PIC transmit and receive for full-duplex mode 
 TXSTA = 0x24;  // Async mode, transmit enabled, high Baud 
 RCSTA = 0x90;  // Async mode, receiver and serial port enabled 
 SPBRGH = 0x00;  
 SPBRG = 0x09;  // Baud rate is 125kHz 
 TRISD = 0xFF; // PORTD is input 
 TRISC = 0xF0; // Top nybble is input, bottome nybble is output 
 TRISB = 0x00; // PORTB is output 
 ADCON1 = 0xFF; // analog to digital 
 INTCON = 0xC0;  // Interrupts enabled 
 PIE1 = 0x20; // Enable recieve interrupts 
 T0CON = 0x08; // Leave off, but initialize anyway. 
 
 //Initialize more values 
 PORTD = 0x00; 
 status = 0x00; 
 LATBbits.LATB5 = 0; 
 
  
 //RC5 is an output from the FPGA, toggled when new byte sent 
 new_byte = PORTCbits.RC5; 
 while(1){ 
  //RECEIVING BYTES FROM THE FPGA 
  if(status==0x90){ // Note on message for ch0 is 0x90 
   valid = 1; 
  } 
  else if (status==0x80){ // Note off message is 0x80 
   valid = 2; 
  } 
  else{   // All other MIDI messages are ignored 
   valid = 0; 
  } 
  while((new_byte==PORTCbits.RC5)&(INTCONbits.TMR0IF==0)){ 
  } // While there's no MIDI bytes or samples in memory, wait 
  if (new_byte !=PORTCbits.RC5){  // new MIDI byte 
   new_byte=PORTCbits.RC5; // reset new_byte indicator  
   if(PORTDbits.RD7==1){   // Status bytes have MSB=1 
    counter = 0; 
    status = PORTD; // Save the status byte  
   } 
   else{    // Data bytes have MSB=0 
    if(counter==0){ 
     if(valid==1){ // Note on, send note 
      TXREG = PORTD; 
      counter = counter+1;  
     } 
     else if(valid==2){ // Note off,  
          // send 0x00 
      TXREG = 0x00; 
      counter = counter+1; 
     } 
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    } 
   } 
  } 
 
  //OUTPUTTING SAMPLES 
  //Run a timer at 3kHz. Output samples when timer goes off. 
  //Output three, then turn timer off. Interrupt turns timer  
  //on when LabView sends the next three bytes. 
  else if(INTCONbits.TMR0IF){ // TMR0 has overflowed 
   INTCONbits.TMR0IF = 0; // Clear flag bit 
   if (tmr_counter == 2){// Stop timer when all sent  
    T0CON = 0x08; 
   } 
   TMR0H = 0xFE; // Reinitialize the timer.  
   TMR0L = 0x88; // Value determined empirically. 
   tmr_sample = *(data_ptr+tmr_counter); //Get sample 
   output = tmr_sample+0x80; // Remove discontinuity  
        // from 2's compliment 
   PORTC = output;     // Output the lower 4 bits 
   LATBbits.LATB5 = 1; // Toggle a control signal  
         // for the FPGA's de-serializer 
   output = output>>4; // Retrieve upper nybble 
   PORTC = output;     // Output the upper nybble 
   LATBbits.LATB5 = 0; // Toggle the control signal 
   if (tmr_counter<2){ 
    // increment array index 
    tmr_counter = tmr_counter + 1;  
   } 
   else{ 
    tmr_counter = 0; // reset array index 
   } 
  } 
 } 
}  
 
//INTERRUPT  
#pragma interrupt isr // Tells compiler to preserve all memory 
void isr(void) { 
 PIR1bits.RCIF=0;  // Clear the interrupt flag 
 *(data_ptr+smp_count) = RCREG;  // Store the sample in memory 
 if (smp_count<2){  // If not on last sample 
  smp_count = smp_count + 1; // increment array index 
 } 
 else{ // if received the last sample, reset the array index 
  smp_count = 0;  
  tmr_counter = 0;  // tmr_counter should also be zero 
  TMR0H = 0xFF;             
  TMR0L = 0xFF; // reinitialize timer 
  T0CON = 0x81; // Restart timer 
 } 
} 
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Appendix D: 
Main while loop of the Labview VI. 

 


