
VGA Battleship

Kyle Baran and Tae Lee
Engineering 155: Microprocessor-Based Systems

12/11/09

Abstract
 In this project the team recreated the popular game “Battleship” using a keypad,
pushbutton, PIC microcontroller, Xilinx FPGA, and VGA monitor. Two players first place their
five ships on their board and then alternate turns guessing where their opponents’ ships are.
Both of these functions use a keypad polled by the PIC. The PIC keeps track of the ships’
locations and their damage statuses and outputs information about the current guess to the FPGA
in parallel. The FPGA is responsible for drawing on the VGA the game boards, showing which
guesses were hits and misses, indicating which player is up, and displaying which ships have
been destroyed. The game ends when one player sinks all of the other player’s ships, and the
FPGA indicates this by flashing which player has won.

Introduction
A traditional game of Battleship involves two players taking turns to guess the location of

each other’s ships on a 10x10 grid. Each player is given two such 10x10 boards and five
different ships. One board is used to place his/her own ships and the other is used to mark the
player’s guesses of the opponent’s ships. Due to the nature of the game, the players are not
allowed to view each other’s boards.

The game starts with the players’ placing their ships such that no ships overlap or are off
the board. Once all the ships have been placed, the players alternate making guesses about the
location of the opponent’s ships. Each ship has a specific length; the ships’ names and their
corresponding lengths are shown in Table 1. Players mark an incorrect guess (miss) with a white
pin and a correct guess (hit) with a red pin. A ship is sunk when every point along its length has
been hit, and the player who lost his or her ship must say which ship was sunk. The game is over
when all of one player’s ships have been sunk, and the player with surviving ship(s) win.

Ship Name Length
Destroyer 2
Submarine 3

Cruiser 3
Battleship 4

Aircraft Carrier 5
Table 1: Ship Name and Length

 In this recreation of the game, a VGA screen is used to display the players’ boards side
by side, and each player is given only one board to both place the ships and hit opponent’s ships.
Since all that is really needed is that each player’s guesses be indicated correctly (hit or miss),
the players’ ships placements are saved in a PIC microcontroller and are never shown on the
screen. This may incur a little confusion during the placement stage, since the player cannot see
the ships that he/she has placed, but it does not affect the overall game play.

 The system takes input from a player via three main subsystems: a 4x4 keypad, a
pushbutton, and a dip switch. The numbers from 0-9 are used to input a placement or a guess,
depending on the stage of the game. The pushbutton is used to place a ship or guess a spot that’s
been input through the keypad. The DIP switch, which is used only during the ship placement
stage, indicates the orientation (right or down) of the ship’s placement. All of these buttons are
polled by the PIC microcontroller, which stores the ships’ placements and runs necessary game
logic for the game play. The PIC outputs signals about the game conditions to the FPGA, which
in turn outputs signals to run the VGA display. Figure 1 shows basic a basic block diagram of
this configuration.

Push-
button

Keypad

PIC

FPGA VGA
Monitor

DIP Switch

Figure 1: High-Level Block Diagram of Subsystems

Extra Hardware: VGA Display
 A VGA monitor was used to display the game in this project. A VGA monitor uses a 15-
pin connection to receive signals to display on its screen. There are three analog color pins, one
for each of the colors red, green, and blue. Although these pins are analog, for the purpose of
this project they only use discrete values since only 5 colors are employed. There are 4 ground
pins, one for each color and another for master ground. Furthermore, two more pins are used for

horizontal and vertical sync signals. The rest of the pins are unused. All the pins were tied to
discrete outputs from the FPGA. Figure 2 shows a diagram of a typical VGA connection with
pins and their usage.

Figure 2: VGA Connections

 A standard 640x480 VGA screen takes in pixel data at 25.175MHz. The FPGA’s 40MHz
internal clock is scaled by 5/8 down to 25 MHz using a Digital Clock Manager (DCM) built into
the FPGA. The FPGA outputs pixel data at 25MHz, which is within the acceptable range of data
rate of a VGA monitor. HSync and VSync signals are used to tell the monitor when to begin a
row of pixels and when to begin a new screen. Each time HSync pulses, a row of the screen is
drawn. VSync is high for the entire time the screen is drawn, which is refreshed at
approximately 60Hz. Table 2 summarizes the VGA timing.

Table 2: VGA Timing Information

The MicroToys VGA monitor documentation contains more information about VGA monitor
with FPGA controls.[1]

Schematics
Figure 3 shows the breadboard schematic of our design.

Figure 3: Breadboard Schematic

Microcontroller Design

Input Functionality
 All of the PIC’s input functionality is governed by a finite state machine as shown in
Figure 4.

Exactly one
row = 1

All rows = 0 or
more than one
row = 1

Exactly one row = 1

Call Decode on state 5

Exactly one row = 1

Call Decode on state 4
Exactly one row = 1

Call Decode on state 3 State 6

All rows = 0 or
more than one
row = 1

All rows = 0 or
more than one
row = 1

All rows = 0 or
more than one
row = 1

Column 0 = 0
Column 1 = 0
Column 2 = 1

Column 0 = 0
Column 1 = 1
Column 2 = 0

Column 0 = 1
Column 1 = 0
Column 2 = 0

Exactly one
row = 1

Exactly one
row = 1

State 3 State 4 State 5

State 2State 1State 0

Column 0 = 0
Column 1 = 1
Column 2 = 0

Column 0 = 1
Column 1 = 0
Column 2 = 0

Column 0 = 0
Column 1 = 0
Column 2 = 1

At least one
row = 1

All rows = 0 or
more than one
row = 1

All rows = 0

All rows = 0 or
more than one
row = 1

Figure 4: Diagram of keypad polling Finite State Machine

The PIC accepts input from a 16-segment keypad (shown in Figure 3) through polling. The PIC
drives the voltage of each column of the keypad high one at a time and checks to see if any of the
buttons have been pressed, which is indicated by one or more of the rows having a high voltage.
The PIC goes to the next state every 13.1 ms to ignore bounce from the keypad. The columns
are connected to PORTB<5:4> and PORTC<0> while the rows are connected to PORTB<3:0>.
If exactly one of the rows is high, and stays that way for another 13 ms, then only one button has
been pressed, and the PIC records which button has been pressed based on the high row and
column information. Since the standard Battleship board is a 10x10 grid, all 16 keys are not
necessary, so the rightmost column, which contains the letters A through D, is not polled at all.

The star and pound keys are ignored by the decoding logic, meaning that only pressing the 0
through 9 buttons will be accepted as a valid entry by the PIC.
 The PIC stores the potential guesses as a two-digit number, with the left digit
representing the row to be guessed and the right number representing the column. The PIC
continually outputs the row/column information over PORTD to the FPGA, with PORTD<7:4>
holding the row value and PORTD<3:0> holding the column value. The rows and columns are
0-indexed, with the top left square having a location of (0,0) and the bottom right square having
a location of (9,9). Each value is initialized as 10, which the game logic reads as an invalid
value. When a valid button is pressed, the PIC shifts the guess digits left, so the old column
value becomes the new row value and the most recent button press becomes the new column
value. The user can press the keypad as many times as he or she likes without the PIC
registering a guess, since a separate press of a pushbutton (hereafter referred to as the “fire”
button) is necessary for the current number to be entered as a guess. A guess will only be
registered as valid if both the digits are not 10.

Miscellaneous Settings
 The PIC uses Timer0 to control all time-based aspects of the game. INCTON is set to
0xA0 so that interrupts are enabled and the Timer0 overflow is enabled. T0CON is set to 0x81
so that Timr0 is enabled and has a prescalar of 2; this prescalar means that Timer0 increments
once every 0.2 µs and overflows every 13.1 ms. ADCON1 is set to 0x0F so that PORTB can
function as digital I/O instead of analog output.

Placement Stage
 The ships are initialized as arrays of chars with lengths matching the physical length of
each ship. Each ship has an array for the row locations, the column locations, and the damage
status. The row and column arrays are not set to any values since those will be determined by
the user. The damage array is initialized to all zeroes, which is read by the game logic as not hit.
 Upon resetting the PIC, the game begins in placement stage. The keypad is used to select
a square where a ship will start, and DIP switch 1 controls whether the rest of the ship will be
placed to the right of that square or down from that square. Which ship is currently being placed
is communicated to the FPGA by setting the overall value of PORTE; a PORTE<2:0> value of 1
means the destroyer is due to be placed, 2 the submarine, 3 the cruiser, 4 the battleship, and 5 the
aircraft carrier. The ship orientation is given to the FPGA over PORTC<6>, with 0 indicating
“right” and 1 indicating “down.” Once the “fire” button is pressed with valid values for the row
and column digits, the game attempts to place the current ship.

If the player tries to place a ship such that part of it would either be off the game board or
overlapping an already-placed ship, the PIC does not save the location, resets the row/column
values, and waits for the user to make a new attempt. Once a valid placement is given, the PIC
stores the ship’s location and tells the FPGA to display the next ship by changing the value of
PORTE. The ships are always placed in the order of destroyer, submarine, cruiser, battleship,
and aircraft carrier. Player 1 places all of his or her ships in succession, followed by player 2
doing the same. The PIC continually tells the FPGA which player is up by controlling the value
of PORTC<3>; a value of 0 indicates that Player 1 is up while a value of 1 indicates that Player 2
is up.

Guess Stage
 Once all ten ships have been placed, the game enters guess stage. The players take turns
guessing a square to see if one of their opponent’s ships is at that location by entering a

row/column guess and pressing the “fire” button. The PIC checks to see if that row and column
match any of the other player’s ships’ locations, and if so, sets that ship’s damage status to 1 at
the index of the current guess, i.e. if (1,5) occurred at row[2] and colum[2] for a battleship, then
damage[2] would be set to 1. If the guess is a hit, the PIC tells the FPGA that information by
setting PORTC<7> high; otherwise, it remains low, indicating a miss. If the most recent guess
caused a ship to be sunk, the PIC tells the FPGA that information by setting PORTE to
something nonzero; the values and corresponding ship are given above in the “Placement Stage”
section. The PIC concludes the hit logic by setting PORTC<2> high, telling the FPGA that the
guess is official.
 The PIC then pauses for approximately a quarter of a second to ensure smoothness of
gameplay. After the pause is over, the PIC sets PORTC<2> low to inform the FPGA that the
guess has been entered and a new turn is upcoming. If neither player has won yet, the PIC
switches the value of PORTC<3> to change players, resets the row/column values and PORTD
to (10, 10), and sets PORTE to 0.
 Once all of the ships of one player are destroyed, the PIC sets PORTC<4> high,
informing the FPGA that the game is over. The FPGA turns the player indicator green and
begins to flash the player indicator and all the ship status indicators on the winning player’s
board. The PIC and FPGA enter infinite loops and must be manually reset to play again.

Output Functionality
 The FPGA continually draws the game boards, player indicator, and ship statuses on the
VGA monitor. The game boards are 10x10 grids with each square having 30 pixel sides. The
player indicator is 300 pixels wide and 60 pixels tall and is drawn above the game board of the
player who is currently up. The ship status indicators are small representations of the ships, one
set for each player, that are drawn below the game boards and have lengths relative to the size of
the represented ships.
 The FPGA uses that information to highlight the proper square, showing the user where
they would be guessing if he or she pressed the “fire” button. The FPGA does not write any data
unless PORTC<2> is driven high by the FPGA, which indicates that a valid guess has been
entered. After each guess the FPGA resets the highlighted square to the location (0,0), although
the row/column information is reset to its original invalid state, and two buttons must be pressed
before a valid guess can be made.

FPGA Design
The FPGA is used to generate the necessary signals to drive a VGA display. The Verilog

code from the MicroToys VGA project [1] was heavily modified and augmented to fulfill the
requirements of this project’s specific game play. The FPGA takes a 40 MHz internal clock and
16 bits of parallel inputs from the PIC microcontroller and generates HSync, VSync, and the
color (RGB) signals.

Digital Clock Manager
 The first thing the FPGA does is set up a new clock at 25 MHz to be able to drive the
VGA. This is done using a built-in Digital Clock Manager. Using Xilinx tools CoreGen and
Architecture Wizard’s Single DCM option, the FPGA scales the internal clock down by 5/8 to

25MHz. In order to set the scaling factor to 5/8, CLKDV and CLKFX has to be set to 5 and 8
respectively. Then a module with output 25MHz sclk is instantiated for use.

HSync and VSync Generation
Module GenSyncsFullVGA was written to generate horizontal and vertical sync signals that are
used by the VGA to scan effectively through the display. The module takes in the 25MHz clock
and employs several counters to generate these signals. It also takes into account the front and
back porches of each signal. Note that the porch timing and the wire names are slightly modified
from the original MicroToys code, but only for the sake of the writer of the code. Nothing is
effectively changed. This module also outputs a DataValid bit that is asserted when the pixel
data is valid.

Board Display
 A major part of the FPGA’s job is to draw the game boards on the screen. This proved
tricky, however, since in this project the PIC does not constantly update the FPGA with locations
of everything that needs to be drawn on the board. Because the PIC outputs the current grid
number that has been pressed and updates hit or miss only after the fire button is pressed, it is the
FPGA’s job to save this information to display it on the screen. In order to do this, module
GenBlockNum, which was heavily modified from the MicroToys project, was written. This
module uses HSync, VSync, and DataValid from GenSyncsFullVGA to index the rows and
columns of every pixel on the 640x480 display. Furthermore, using the row and column indices,
the board is divided into two adjacent 10x10 grids (used as boards), where each block in the grid
is also index. The left grid (player one’s board) is indexed 0-99, and the right grid is index 100-
199. These are called block numbers, and they are effectively encoded addresses for the RAM
modules.

 When a player pushes the keypad to choose a square to guess, this information is sent to
the FPGA, which uses a module called getBlockNumWAddr to encode these numbers to write
addresses for the board information RAMs. When the player finally fires, the FPGA gets the
write address and the hit bit from the PIC and stores this information in the RAM. Then when
the display is scanned using HSync and VSync, the GenSignals module generates appropriate
color signals for each pixel within the boards based on the contents of the RAM addressed by the
block number.

Other Game Information Display
 GenSignals module also outputs other necessary game information to make the game
more playable. It indicates the block that is currently being guessed (before fire button is
pressed). It produces signals to draw a white bar above the board that is in play. It also calls
other modules to draw the five ships beneath each board, and color them red or green to indicate
if they have been sunk or not. This is done by employing similar RAM logic as is done when
displaying the boards. It calls inWhichShip module to determine where on the board the pixel is
being currently drawn and colors the ship according to RAM data that’s been written with

signals from the PIC. It also uses InBox module that was directly taken from the MicroToys
project to set boundary conditions for each ship displayed. During the placement stage, the ships
are displayed one at a time to show which ship the player is placing on the board.

Win
 When a player wins, a 1Hz pulse is generated using the counter module. It is used to
flash the sunk ships and the white bar of the player’s board to indicate that the player has won
and sunk all of the opponent’s ships.

Results
 The team created a fully functional game that met or exceeded all of the original goals.
In placement stage it is impossible to place a ship in an invalid or already-occupied location, and
no mistakes are made in storing the ship’s location to memory. Guess stage works perfectly,
always recording the correct hit logic and outputting the correct information to the FPGA. The
FPGA draws the board almost perfectly, with the only mistakes occasional faint random lines on
the game boards.
 The most difficult part of the PIC design was the ship placement. It took a good deal of
thinking to figure out the best way to check the current ship’s potential position against the
positions of all of the previously placed ships. On the other hand, the most difficult part of the
FPGA design was in implementing the RAM logic to draw the board. Examples from previous
projects had the PIC updating the FPGA the locations of everything in real time. In this project
we needed a way to store the information on the FPGA. It took a long amount of time to decide
on using RAMs and actually implement it by indexing the blocks within the boards on the screen
to use as addresses.
 A few aspects of the game are different from the original proposal but no less effective.
The proposal called for the ships’ locations to be fixed, but the placement functionality was
added to make the game more involving and enables players to change the ships’ locations
without changing code and reprogramming the PIC. This led to added functionality and logic for
both the PIC and FPGA, as the placement requires somewhat different procedures from the
normal game stage. The proposal also stated that the VGA would be drawing the row and
column digits on the screen, but the team decided to highlight the indicated square on the board
instead. The team feels that this makes it easier to determine where the guess will be since the
player can see exactly where that square is in relation to where he or she has already guessed.

Reference
[1] MicroToys VGA Project
http://www4.hmc.edu:8001/Engineering/microtoys/VGA/MicroToys%20VGA.pdf

Materials
The only materials used were the VGA monitor, keypad, and pushbutton. All of these were
obtained from the MicroP’s lab.

Appendix A: Verilog Code
battle_ship_vga.v

`timescale 1ns / 1ps
// 11-24-09
// Samuel Taeyoung Lee
// tlee@hmc.edu
// This module handles the inputs and outputs as well as calls the instances
of
// modules that produce VGA signals

module battle_ship_vga(input clk, //40MHz clock
 input reset,
 input we,
 input player,
 input hitIn,
 input stage,
 input rightOrDown,
 input win,
 input [2:0] shipSunkIn,
 input [3:0] rightNum,
 input [3:0] leftNum,
 output HSync, VSync,
 output [2:0] Signal);

 wire clkdv, clkfx, clklock, sclk; //sclk = 25MHz
 wire DataValid;
 wire [7:0] blockNumWAddr;

 // Use DCM to create a 25MHz clock
 DCMclk dcm1(clk, reset, clkdv, clkfx, sclk, clklock);

 getBlockNumWAddr getInputBlockNum(clk, rightNum, leftNum,

 blockNumWAddr);

 // Generate monitor timing signals
 GenSyncsFullVGA GenSyncs(sclk, reset, DataValid, HSync, VSync);

 counter getSecond(HSync, second);

 // Generate signal to monitor
 GenSignals GenSignal(sclk, VSync, DataValid, we, player, hitIn,

 blockNumWAddr, shipSunkIn, stage, rightOrDown,
 win, second, Signal);

endmodule

DCMclk.v

///
///
// Copyright (c) 1995-2008 Xilinx, Inc. All rights reserved.
///
///
// ____ ____
// / /\/ /
// /___/ \ / Vendor: Xilinx
// \ \ \/ Version : 10.1.03
// \ \ Application : xaw2verilog
// / / Filename : DCMclk.v
// /___/ /\ Timestamp : 12/06/2009 23:05:46
// \ \ / \
// ___\/___\
//
//Command: xaw2verilog -intstyle C:/Battle Ship/battleship/DCMclk.xaw -st
DCMclk.v
//Design Name: DCMclk
//Device: xc3s400-4tq144
//
// Module DCMclk
// Generated by Xilinx Architecture Wizard
// Written for synthesis tool: SynplifyPro
// Period Jitter (unit interval) for block DCM_INST = 0.03 UI
// Period Jitter (Peak-to-Peak) for block DCM_INST = 1.23 ns
`timescale 1ns / 1ps

module DCMclk(CLKIN_IN,
 RST_IN,
 CLKDV_OUT,
 CLKFX_OUT,
 CLK0_OUT,
 LOCKED_OUT);

 input CLKIN_IN;
 input RST_IN;
 output CLKDV_OUT;
 output CLKFX_OUT;
 output CLK0_OUT;
 output LOCKED_OUT;

 wire CLKDV_BUF;
 wire CLKFB_IN;
 wire CLKFX_BUF;
 wire CLK0_BUF;
 wire GND_BIT;

 assign GND_BIT = 0;
 assign CLK0_OUT = CLKFB_IN;
 BUFG CLKDV_BUFG_INST (.I(CLKDV_BUF),
 .O(CLKDV_OUT));
 BUFG CLKFX_BUFG_INST (.I(CLKFX_BUF),
 .O(CLKFX_OUT));
 BUFG CLK0_BUFG_INST (.I(CLK0_BUF),

 .O(CLKFB_IN));
 DCM DCM_INST (.CLKFB(CLKFB_IN),
 .CLKIN(CLKIN_IN),
 .DSSEN(GND_BIT),
 .PSCLK(GND_BIT),
 .PSEN(GND_BIT),
 .PSINCDEC(GND_BIT),
 .RST(RST_IN),
 .CLKDV(CLKDV_BUF),
 .CLKFX(CLKFX_BUF),
 .CLKFX180(),
 .CLK0(CLK0_BUF),
 .CLK2X(),
 .CLK2X180(),
 .CLK90(),
 .CLK180(),
 .CLK270(),
 .LOCKED(LOCKED_OUT),
 .PSDONE(),
 .STATUS());
 defparam DCM_INST.CLK_FEEDBACK = "1X";
 defparam DCM_INST.CLKDV_DIVIDE = 2.0;
 defparam DCM_INST.CLKFX_DIVIDE = 8;
 defparam DCM_INST.CLKFX_MULTIPLY = 5;
 defparam DCM_INST.CLKIN_DIVIDE_BY_2 = "FALSE";
 defparam DCM_INST.CLKIN_PERIOD = 25.000;
 defparam DCM_INST.CLKOUT_PHASE_SHIFT = "NONE";
 defparam DCM_INST.DESKEW_ADJUST = "SYSTEM_SYNCHRONOUS";
 defparam DCM_INST.DFS_FREQUENCY_MODE = "LOW";
 defparam DCM_INST.DLL_FREQUENCY_MODE = "LOW";
 defparam DCM_INST.DUTY_CYCLE_CORRECTION = "TRUE";
 defparam DCM_INST.FACTORY_JF = 16'h8080;
 defparam DCM_INST.PHASE_SHIFT = 0;
 defparam DCM_INST.STARTUP_WAIT = "FALSE";
endmodule

sumbmodules.v

GenSyncsFullVGA

`timescale 1ns / 1ps
// 11-24-09
//Originally written by Michael Cope & Philip Johnson 1999
//modified by Dan Chan, Nate Pinckney & Dan Rinzler Spring 2005
//Further modified by Samuel Taeyoung Lee Fall 2009 (tlee@hmc.edu)
//This module takes the 25Mhz clock and steps it down to turn on
//HSync and VSync at the correct frequencies. It also determines when
//it is possible to send data for each pixel.
module GenSyncsFullVGA(input clk,
 input reset,
 output DataValid,
 output reg HSync, VSync);

 // DataValid is high when data is ready to flow
 //Hsync = 31470Hz Vsync = 59.94Hz

// counters to slow down for HSync and VSync

 reg [9:0] Hcount, Vcount;
 reg HData; // high when HSync data is ready to flow
 reg VData; // high when VSync data is ready to flow

 always @ (posedge clk)
 begin
 Hcount <= Hcount + 1;
 if ((Hcount == 10'd800) || (reset == 1))
 Hcount <= 0;
 if ((Hcount >= 10'd0) && (Hcount < 10'd96))
 HSync <= 0;
 else
 HSync <= 1;
 if ((Hcount >= 10'd144) && (Hcount < 10'd784))
 HData <= 1;
 else
 HData <= 0;
 end

 //this always block determines when VSync should be driven low,
 //indicating the start of a new screen
 always @ (negedge HSync)
 begin
 Vcount <= Vcount + 1;
 if ((Vcount == 10'd525) || (reset == 1))
 Vcount <= 0;
 if ((Vcount >= 10'd0) && (Vcount < 10'd2))
 VSync <= 0;
 else
 VSync <= 1;
 if ((Vcount >= 10'd35) && (Vcount < 10'd515))
 VData <= 1;
 else
 VData <= 0;
 end

 assign DataValid = HData && VData;
en

dmodule

InBox

// Samuel Lee (tlee@hmc.edu)
// Code taken from... 2006 MicroP's final project Pong
// Based on code by Michael Cope and Philip Johnson 1999
// Modified by Dan Chan, Nate Pinckney and Dan Rinzler Spring 2005
// Further modified by Jonathan Beall and Austin Katzin, Fall 2006
// Given coordinates, the upper left corner of the box, and the size,
// are the coordinates in the box?
module InBox(x, y, x1, y1, width, height, in);
 input [9:0] x, y;
 input [9:0] x1, y1;
 input [9:0] width, height;
 output in;

 wire [9:0] x2, y2;

 assign x2 = x1 + width;
 assign y2 = y1 + height;

 assign in = x >= x1 && x < x2 && y >= y1 && y < y2;
endmodule

counter

// Samuel Taeyoung Lee Fall 2009 (tlee@hmc.edu)
// This module
// counts using HSync and outputs a signal second
// that flashes every second
module counter(input HSync,
 output reg second);

 reg [14:0] count;

 always @ (posedge HSync)
 if (count == 15'd31470)
 begin
 count <= 0;
 second <= ~second;
 end
 else
 count <= count+15'd1;

endmodule

mux2_10bit

// Samuel Taeyoung Lee Fall 2009 (tlee@hmc.edu)
a simple 2 10-bit input mux
module mux2_10bit(input [9:0] d0, d1,
 input sel,
 output [9:0] y);

 assign y = sel ? d1 : d0;

endmodule

getBlockNumWAddr

// Samuel Taeyoung Lee Fall 2009 (tlee@hmc.edu)
// This module gets playe's guessed rightNum and leftNum
// and produces blockNum for the write address of the blockNum RAM
module getBlockNumWAddr(input clk,
 input [3:0] rightNum, leftNum,
 output reg [7:0] blockNumWAddr);

 always @ (posedge clk)
 if ((leftNum != 4'd10) && (rightNum != 4'd10))
 blockNumWAddr <= {4'd0,leftNum}*10 + {4'd0,rightNum};

 else if ((leftNum == 4'd10) || (rightNum == 4'd10))
 blockNumWAddr <= 8'd0;

endmodule

inWhichShip
//12-7-09
//Written by Samuel Taeyoung Lee Fall 2009 (tlee@hmc.edu)
//This module takes different in"ship" which means the coordinates
//of scanner are in the corresponding ship
//and outputs a decoded address for the ship for the RAM
module inWhichShip(input inDest1,inSub1,inCruis1,inBatt1,inCarr1,

input inDest2,inSub2,inCruis2,inBatt2,inCarr2,
 output reg [3:0] ship);

 wire [9:0] ships;

 assign ships = {inCarr2, inBatt2, inCruis2, inSub2, inDest2,
 inCarr1, inBatt1, inCruis1, inSub1, inDest1};

 always @ (*)
 case (ships)
 10'b00_0000_0001: ship = 0;
 10'b00_0000_0010: ship = 1;
 10'b00_0000_0100: ship = 2;
 10'b00_0000_1000: ship = 3;
 10'b00_0001_0000: ship = 4;
 10'b00_0010_0000: ship = 5;
 10'b00_0100_0000: ship = 6;
 10'b00_1000_0000: ship = 7;
 10'b01_0000_0000: ship = 8;
 10'b10_0000_0000: ship = 9;
 default: ship = 0;
 endcase

en

dmodule

GenBlockNum

//11-24-09
//Originally written by Michael Cope & Philip Johnson 1999
//modified by Dan Chan, Nate Pinckney & Dan Rinzler Spring 2005
//Further modified heavily by Samuel Tae Lee Fall 2009 (tlee@hmc.edu)
//This module takes the VSync and DataValid signals and uses them to
//index each block in two squares each composed of 10x10 smaller blocks
module GenBlockNum(input clk,
 input VSync,
 input DataValid,
 output inBounds, inPlayer1, inPlayer2,
 output [7:0] blockNumRAddr,
 output reg [9:0] row, col);

 // one block is 30x30 pixel
 // one large square is 300x300 pixel
 // left margin of the left square is 10

 // both top and bottom margins are 90 each
 parameter BLOCKSIZE = 30;
 parameter BOARDSIZE = BLOCKSIZE*10;
 parameter SIDEMARGIN = (320-BOARDSIZE)/2;
 parameter TOPMARGIN = (480-BOARDSIZE)/2;

 // in square 1, in square 2, below top margin and above bottom margin
 // column and row numbers as HSync and Vsync scans monitor
 // block column indices and block row indices
 wire inBounds1, inBounds2, inRowBounds;
 wire [7:0] blockNum1, blockNum2;
 // block indices
 reg [9:0] temp;

 reg [5:0] coltemp, rowtemp;
 reg [6:0] blockcol1, blockcol2, blockrow;

 // one condition to increase block column index
 assign increaseBlockCol = (rowtemp==0);

 //assign boundary conditions
 assign inBounds2 =((col>=320+SIDEMARGIN)&&

(col<320+SIDEMARGIN+BOARDSIZE)&&
(row>=TOPMARGIN)&&(row<TOPMARGIN+BOARDSIZE));

 assign inBounds1 = ((col>=SIDEMARGIN)&&(col<SIDEMARGIN+BOARDSIZE)
 &&(row>=TOPMARGIN)&&(row<TOPMARGIN+BOARDSIZE));

 assign inBounds = inBounds1 || inBounds2;

 assign inRowBounds = ((row>=TOPMARGIN)&&(row<TOPMARGIN+BOARDSIZE));

 assign inPlayer1 = ((col>=SIDEMARGIN)&&(col<SIDEMARGIN+BOARDSIZE)
 &&(row>=30)&&(row<80));

 assign inPlayer2 = ((col>=320+SIDEMARGIN)&&

 (col<320+SIDEMARGIN+BOARDSIZE)
 &&(row>=30)&&(row<80));

 //This always block assigns column values

//from 0 to 640 as each different
 //pixel is displayed for a particular row
 //It also assigns column indices to each smaller block in the board
 always @ (posedge clk)
 if (DataValid)
 begin
 col <= col + 1;
 if (coltemp == BLOCKSIZE-1)
 begin
 coltemp <= 0;
 if (inBounds1)
 blockcol1 <= blockcol1 + 1;

 if (inBounds2)
 blockcol2 <= blockcol2 + 1;
 end
 else
 if (inBounds)
 coltemp <= coltemp + 1;
 end
 else
 begin
 col <= 0;
 coltemp <=0;
 blockcol1 <= 0;
 blockcol2 <= 0;
 end

 //Like col, temp counts the number of pixels across each row,

//but we then use
 //temp to incriment a row counter

//whenever temp = 'd640. This allows us to
 //reference the rows by a number from 0 to 480.
 // This always block also assigns block row indices
 always @ (posedge clk)
 begin
 if (!VSync) begin
 temp <= 0;
 rowtemp <= 0;
 row <= 0;
 blockrow <= 0;
 end
 else begin
 if (DataValid)
 temp <= temp + 1;
 if (temp == 10'b10_1000_0000) begin
 row <= row + 1;
 temp <= 0;
 if (rowtemp == BLOCKSIZE-1) begin
 rowtemp <= 0;
 if (inRowBounds)
 blockrow <= blockrow + 1;
 end
 else
 if (inRowBounds)
 rowtemp <= rowtemp + 1;
 end
 end
 end

 assign blockNum1 = blockcol1 + 10*blockrow; // block indices for board1
 assign blockNum2 = blockcol2 + 10*blockrow; // block indices for board2

// assign ouput blockNumRAddr according to
// where the Sync is on the screen

 // offset blockNum2 by 100 to save on RAM
 assign blockNumRAddr = inBounds1 ? blockNum1 : blockNum2+8'd100;

endmodule

GenSignals
// 11-24-09
// Samuel Taeyoung Lee (tlee@hmc.edu)
// This module gets VSync, DataValid, we, player, hitIn,
// blockNumWAddr, shipIn, stage, rightOrDownIn, win, and second
// as well as call instances of other modules to create output signal to VGA
module GenSignals(input clk,
 input VSync,
 input DataValid,
 input we,
 input player,
 input hitIn,
 input [7:0] blockNumWAddr,
 input [2:0] shipIn,
 input stage,
 input rightOrDownIn,
 input win,
 input second,
 output [2:0] Signal);

 wire [1:0] hitInTemp, RAMHitIn, status;
 wire [7:0] blockNumRAddr;
 wire [7:0] RAMBlockNumIn;
 wire sunkIn, sunkOut;
 wire inDest1, inSubm1, inCrui1, inBatt1, inCarr1;
 wire inDest2, inSubm2, inCrui2, inBatt2, inCarr2;
 wire [9:0] row, col;
 wire [3:0] ship;
 wire [3:0] shipSunkWAddr;
 wire beingGuessed;

 wire [9:0] destDim1, submDim1, cruiDim1, battDim1, carrDim1;
 wire [9:0] destDim2, submDim2, cruiDim2, battDim2, carrDim2;
 wire [9:0] destLocX1, destLocX2, destLocY;
 wire [9:0] submLocX1, cruiLocX1, battLocX1, carrLocX1;
 wire [9:0] submLocX2, cruiLocX2, battLocX2, carrLocX2;
 wire [9:0] submLocY, cruiLocY, battLocY, carrLocY;
 wire destChoose1, submChoose1, cruiChoose1, battChoose1, carrChoose1;
 wire destChoose2, submChoose2, cruiChoose2, battChoose2, carrChoose2;
 wire rightOrDown;
 wire flash;

 // logic for placing ships
 // stage is high when players place their ships

 assign rightOrDown = stage ? rightOrDownIn : 1'b0;
 assign destLocX1 = 10'd10;
 assign destLocX2 = 10'd330;
 assign destLocY = 10'd400;

 // muxes for showing ships on VGA.

//different when player is placing ships.
 mux2_10bit getDestDim1(10'd20, 10'd10, rightOrDown, destDim1);
 mux2_10bit getSubmDim1(10'd30, 10'd10, rightOrDown, submDim1);
 mux2_10bit getCruiDim1(10'd30, 10'd10, rightOrDown, cruiDim1);
 mux2_10bit getBattDim1(10'd40, 10'd10, rightOrDown, battDim1);
 mux2_10bit getCarrDim1(10'd50, 10'd10, rightOrDown, carrDim1);

 mux2_10bit getDestDim2(10'd20, 10'd10, ~rightOrDown, destDim2);
 mux2_10bit getSubmDim2(10'd30, 10'd10, ~rightOrDown, submDim2);
 mux2_10bit getCruiDim2(10'd30, 10'd10, ~rightOrDown, cruiDim2);
 mux2_10bit getBattDim2(10'd40, 10'd10, ~rightOrDown, battDim2);
 mux2_10bit getCarrDim2(10'd50, 10'd10, ~rightOrDown, carrDim2);

 mux2_10bit getSubmLocX1(10'd10, 10'd25, stage, submLocX1);
 mux2_10bit getCruiLocX1(10'd10, 10'd40, stage, cruiLocX1);
 mux2_10bit getBattLocX1(10'd10, 10'd55, stage, battLocX1);
 mux2_10bit getCarrLocX1(10'd10, 10'd70, stage, carrLocX1);

 mux2_10bit getSubmLocX2(10'd330, 10'd345, stage, submLocX2);
 mux2_10bit getCruiLocX2(10'd330, 10'd360, stage, cruiLocX2);
 mux2_10bit getBattLocX2(10'd330, 10'd375, stage, battLocX2);
 mux2_10bit getCarrLocX2(10'd330, 10'd390, stage, carrLocX2);

 mux2_10bit getSubmLocY(10'd415, 10'd400, stage, submLocY);
 mux2_10bit getCruiLocY(10'd430, 10'd400, stage, cruiLocY);
 mux2_10bit getBattLocY(10'd445, 10'd400, stage, battLocY);
 mux2_10bit getCarrLocY(10'd460, 10'd400, stage, carrLocY);

 // signals for displaying ships when choosing a placement for ship
 assign destChoose1 = inDest1&&stage&&(~player)&&(shipIn==3'd1);
 assign submChoose1 = inSubm1&&stage&&(~player)&&(shipIn==3'd2);
 assign cruiChoose1 = inCrui1&&stage&&(~player)&&(shipIn==3'd3);
 assign battChoose1 = inBatt1&&stage&&(~player)&&(shipIn==3'd4);
 assign carrChoose1 = inCarr1&&stage&&(~player)&&(shipIn==3'd5);

 assign destChoose2 = inDest2&&stage&&(player)&&(shipIn==3'd1);
 assign submChoose2 = inSubm2&&stage&&(player)&&(shipIn==3'd2);
 assign cruiChoose2 = inCrui2&&stage&&(player)&&(shipIn==3'd3);
 assign battChoose2 = inBatt2&&stage&&(player)&&(shipIn==3'd4);
 assign carrChoose2 = inCarr2&&stage&&(player)&&(shipIn==3'd5);

 // signal to indicate when a block is being guessed
 assign beingGuessed = (RAMBlockNumIn == blockNumRAddr) && ~we;

 // logic for displaying ships that are sunk while playing
 // receives ship sunk from PIC, writes it to RAM

// and when that ship address
 // is accessed, outputs 1 for sunk, 0 for not sunk.
 assign sunkIn = (shipIn != 3'd0); // ships are decoded 1-5

 //addr to write when a ship sinks

assign shipSunkWAddr = (player&&sunkIn) ? shipIn + 4'd4
 : {1'd0,shipIn}-4'd1;

 // get address to read ship to display on VGA
 inWhichShip whichShip(inDest1, inSubm1, inCrui1, inBatt1, inCarr1,
 inDest2, inSubm2, inCrui2, inBatt2, inCarr2, ship);

 // ship RAM
 ram2 isShipSunk(clk, we, shipSunkWAddr, ship, sunkIn, sunkOut);

 // check if the coordinates are in each ship boxes
 InBox inDestroyer1(col, row, destLocX1, destLocY,

destDim1, destDim2, inDest1);
 InBox inSubmarine1(col, row, submLocX1, submLocY,

submDim1, submDim2, inSubm1);
 InBox inCruiser1(col, row, cruiLocX1, cruiLocY,

cruiDim1, cruiDim2, inCrui1);
 InBox inBattleship1(col, row, battLocX1, battLocY,

battDim1, battDim2, inBatt1);
 InBox inCarrier1(col, row, carrLocX1, carrLocY,

carrDim1, carrDim2, inCarr1);

 InBox inDestroyer2(col, row, destLocX2, destLocY,

destDim1, destDim2, inDest2);
 InBox inSubmarine2(col, row, submLocX2, submLocY,

submDim1, submDim2, inSubm2);
 InBox inCruiser2(col, row, cruiLocX2, cruiLocY,

cruiDim1, cruiDim2, inCrui2);
 InBox inBattleship2(col, row, battLocX2, battLocY,

battDim1, battDim2, inBatt2);
 InBox inCarrier2(col, row, carrLocX2, carrLocY,

carrDim1, carrDim2, inCarr2);

 // assignment for write addr to RAM
 assign RAMBlockNumIn = player ? blockNumWAddr + 8'd100 : blockNumWAddr;
 // offset player 2's number by 100 to address RAM

 // assignment for din to RAM
 assign hitInTemp = {1'b0, hitIn};
 // make it 2 bit since we have 3 different statuses

 // 0 = not guessed (initial), 1 = missed, 2 = hit
 assign RAMHitIn = hitInTemp+1'b1;

 // get blockNumRAddr for read addr to RAM
 // get inBounds, inPlayer1, inPlayer2 for

// boundary conditions for signal
 GenBlockNum getBlockNum(clk, VSync, DataValid, inBounds, inPlayer1,
 inPlayer2, blockNumRAddr, row, col);

 // write to and read from RAM to use as signal for screen
 ram getstatus(clk, we, RAMBlockNumIn, blockNumRAddr, RAMHitIn, status);

 // flash to flash signals when someone wins
 assign flash = win&&second;

 // output signal assignment
 assign Signal[0] = (status==2'b10)&&inBounds //red
 || (status==2'b01)&&inBounds
 || (~player)&&inPlayer1&&~win
 || player&&inPlayer2&&~win
 || inDest1&&sunkOut&&~stage&&~win
 || inSubm1&&sunkOut&&~stage&&~win
 || inCrui1&&sunkOut&&~stage&&~win
 || inBatt1&&sunkOut&&~stage&&~win
 || inCarr1&&sunkOut&&~stage&&~win
 || inDest2&&sunkOut&&~stage&&~win
 || inSubm2&&sunkOut&&~stage&&~win
 || inCrui2&&sunkOut&&~stage&&~win
 || inBatt2&&sunkOut&&~stage&&~win
 || inCarr2&&sunkOut&&~stage&&~win
 || inDest1&&sunkOut&&~player&&flash
 || inSubm1&&sunkOut&&~player&&flash
 || inCrui1&&sunkOut&&~player&&flash
 || inBatt1&&sunkOut&&~player&&flash
 || inCarr1&&sunkOut&&~player&&flash
 || inDest2&&sunkOut&&player&&flash
 || inSubm2&&sunkOut&&player&&flash
 || inCrui2&&sunkOut&&player&&flash
 || inBatt2&&sunkOut&&player&&flash
 || inCarr2&&sunkOut&&player&&flash;
 assign Signal[1] = (status==2'b01)&&inBounds //green
 || (~player)&&inPlayer1&&~win
 || player&&inPlayer2&&~win
 || (~player)&&inPlayer1&&flash
 || player&&inPlayer2&&flash
 || inDest1&&~sunkOut&&~stage&&~win
 || inSubm1&&~sunkOut&&~stage&&~win
 || inCrui1&&~sunkOut&&~stage&&~win
 || inBatt1&&~sunkOut&&~stage&&~win
 || inCarr1&&~sunkOut&&~stage&&~win
 || inDest2&&~sunkOut&&~stage&&~win
 || inSubm2&&~sunkOut&&~stage&&~win
 || inCrui2&&~sunkOut&&~stage&&~win
 || inBatt2&&~sunkOut&&~stage&&~win
 || inCarr2&&~sunkOut&&~stage&&~win
 || destChoose1
 || submChoose1
 || cruiChoose1
 || battChoose1
 || carrChoose1
 || destChoose2
 || submChoose2
 || cruiChoose2
 || battChoose2
 || carrChoose2
 || (beingGuessed&&(status==2'b00)&&inBounds);
 assign Signal[2] = (status==2'b00)&&inBounds //blue
 || (status==2'b01)&&inBounds
 || (~player)&&inPlayer1&&~win
 || player&&inPlayer2&&~win
 || (beingGuessed&&(status==2'b00)&&inBounds);

en

dmodule

ram
// 11-24-09
// This module holds information for each indexed block of the board
// Samule Lee (tlee@hmc.edu)
module ram
 # (parameter N = 8, M=2)
 (
 input clk,
 input we,
 input [N-1:0] waddr,
 input [N-1:0] raddr,
 input [M-1:0] din,
 output [M-1:0] dout
);

 reg [M-1:0] mem [0:2**N-1];

 always @ (posedge clk)
 if (we) mem[waddr] <= din;

 assign dout = mem[raddr];

endmodule

ram2
// Samuel Taeyoung Lee Fall 2009 (tlee@hmc.edu)
// ram modules to hold ship sunk data
module ram2
 # (parameter N = 4)
 (
 input clk,
 input we,
 input [N-1:0] waddr,
 input [N-1:0] raddr,
 input din,
 output dout
);

 reg mem [0:2**N-1];

 always @ (posedge clk)
 if (we) mem[waddr] <= din;

 assign dout = mem[raddr];

en

dmodule

Appendix B: C Code
//FinalProject2.c
//Kyle Baran kbaran@hmc.edu 12/7/09

/*This program allows 2 players to play Battleship. To get input, the PIC polls a keypad
 that is used to enter the current player's guess, and continuously updates
 the FPGA. A separate button is used to enter that guess.

 The FPGA shows which square will be guessed, which locations have already
 been guessed (along with whether those guesses were hits or misses), which ships
 have been sunk, which player is currently up, and whether or not someone has won,
 as well as the orientation of the current ship to be placed when the game is in placement

mode.

 The PIC constantly tells the FPGA which square is being guessed, which player is up.
 whether the game is in placement or play mode, and whether someone has won.

 When the game starts, the PIC quickly raises and lowers a reset bit to reset the FPGA
 It then enters placement mode, where each player enters places his or her ships

consecutively.

 The guess entered on the keypad represents the starting point of the ship, and
 a signal from an external DIP switch controlled by the user which indicates whether
 the ship will extend right or down from that location. If either player tries to place
 the ship such that part of it will be off the game board or will overlap with an
 already-placed ship, the game ignores that attempt and has the user try again.
 During this mode the PIC constantly tells the FPGA which orientation is currently
 selected so that the FPGA can display that information.

 Once all the ships are placed, the game enters the play stage. During this stage,
 when the player enters a guess, the PIC determines whether that guess hit
 an opponent's ship and updates variables accordingly. The players alternate turns,
 guessing one spot at a time. When a guess is made, the PIC tells the FPGA if the guess
 was a hit, which ship was sunk by that guess (if any), and briefly sets an enable bit

high so that the FPGA knows that an actual guess was high. The bit is dropped low soon
after so that further information is not registered by mistake.

 When all of a player's ships have been sunk, the PIC sets the victory bit high so that

the FPGA can show the users that someone has won. The PIC then enters an infinite loop
so that nothing else can be changed.

*/

#include <p18f4520.h>
#include <stdlib.h>

void main(void);
void isr(void);
void Decode(int currentState);

int poll, update, i;
int toggle, numLeft, numRight;
char num, hit, hitDes, hitSub, hitCru, hitBat, hitCar;
int counter1 = 0;
int counter2 = 0;
int shipsPlaced;
int rightOrDown = 0;
char Grid1 [100] = {0};
char Grid2 [100] = {0};

//Used to control whether TMR0 calls for polls or just counts for a waiting period
int pollingMode;

// Interrupt vector address
#pragma code high_vector = 0x08
void high_interrupt(void)
{
 _asm
 GOTO isr
 _endasm
}

//Main code
#pragma code

void main(void)
{
 //Initialize the ships and set their damage statuses
 char des1Column [2];
 char des1Row [2];
 char des1Damage [2] = {0,0};

 char des2Column [2];
 char des2Row [2];
 char des2Damage [2] = {0,0};

 char sub1Column [3];
 char sub1Row [3];
 char sub1Damage [3] = {0,0,0};

 char sub2Column [3];
 char sub2Row [3];
 char sub2Damage [3] = {0,0,0};

 char cru1Column [3];
 char cru1Row [3];
 char cru1Damage [3] = {0,0,0};

 char cru2Column [3];
 char cru2Row [3];
 char cru2Damage [3] = {0,0,0};

 char bat1Column [4];
 char bat1Row [4];
 char bat1Damage [4] = {0,0,0,0};

 char bat2Column [4];
 char bat2Row [4];
 char bat2Damage [4] = {0,0,0,0};

 char car1Column [5];
 char car1Row [5];
 char car1Damage [5] = {0,0,0,0,0};

 char car2Column [5];
 char car2Row [5];
 char car2Damage [5] = {0,0,0,0,0};

 char des1Sunk = 0;
 char sub1Sunk = 0;
 char cru1Sunk = 0;
 char bat1Sunk = 0;
 char car1Sunk = 0;
 char des2Sunk = 0;
 char sub2Sunk = 0;
 char cru2Sunk = 0;
 char bat2Sunk = 0;
 char car2Sunk = 0;

 int endgame = 0;

 int currentstate = 0;
 int nextstate = 0;
 /* State values
 0 = PollC0
 1 = PollC1
 2 = PollC2
 3 = DecodeC0
 4 = DecodeC1
 5 = DecodeC2
 6 = Hold
 */

 //Used to hold row and column, respectively
 numLeft = 10;
 numRight = 10;

 //Used to trigger an update of the keypap display
 update = 0;

 //Used to determine if the current guess was a hit
 hit = 0;

 //Used for some for loops
 i = 0;

 //New number gotten from the keypad
 num = 10;

 //Haven't placed any ships initially
 shipsPlaced = 0;

 //None of the ships are initially sunk
 hitDes = 0;
 hitSub = 0;
 hitCru = 0;
 hitBat = 0;
 hitCar = 0;

 //Set up interrupts
 INTCON = 0b10100000; //Interrupts are enabled, TMR0 overflow interrupt enables
 INTCON3 = 0b00000000; //Need to do this
 T0CON = 0b10000001; //TMR0 is enabled, 16-bit timer with a prescalar of 2

 TRISA = 0b0100000; //Bit 5 of PORTA is used for getting the "fire" command

ADCON1 = 0b00001111; //Set PORTA to all-digital mode; need to do this or
 PORTA bits won't function as digital inputs

TRISC = 0b01000000; //PORTC is used for outputting information to the FPGA and

 inputting the direction of the ships
 //when placing the ships
 /*
 PORTC[0] controls column 0 of the keypad
 PORTC[1] tells the FPGA whether the game is in ship-placing mode or guess mode
 PORTC[2] tells the FPGA to register the current potential guess as an actual guess
 PORTC[3] tells the FPGA which player is up
 PORTC[4] tells the FPGA that the current player has won
 PORTC[5] clears the FPGA on PIC startup
 PORTC[6] determines, in ship placement, whether the ship is facing right or down
 PORTC[7] tells the FPGA whether the current guess was a hit or not
 */
 TRISB = 0b00001111; //PORTB is used for polling the keypad; the 2 most

 significant bits are for columns 0 and 1
 // and the 4 least significant bits are for the rows, which

 are read from to determine button presses
 TRISD = 0; //PORTD is used for telling the FPGA the current values of

 the row and column guess
 TRISE = 0; //PORTE is used for telling the FPGA which ship is either

 due up to be placed or has just been sunk
 /*
 000 = no ship
 001 = destroyer
 010 = submarine
 011 = cruiser
 100 = battleship
 101 = aircraft carrier
 */

 //Reset all ports
 PORTA = 0;
 PORTB = 0;
 PORTC = 0;

 PORTD = 0b10101010;
 PORTE = 0;

 //Clear FPGA
 PORTCbits.RC5 = 1;
 PORTCbits.RC5 = 0;

 //Start off with player 1 guessing
 PORTCbits.RC3 = 0;

 //Start off polling the keypad
 pollingMode = 1;

 while (!endgame)
 {
 //Update the right/down status from RC6
 rightOrDown = PORTCbits.RC6;

 //Until all ships have been placed, the game is in place mode
 if (shipsPlaced < 10)
 PORTCbits.RC1 = 1;
 else
 PORTCbits.RC1 = 0;

 //If fewer than 5 ships have been placed, then Player 1 is placing; otherwise

 Player 2 is placing
 if (shipsPlaced < 5)
 PORTCbits.RC3 = 0;
 else if (shipsPlaced >= 5 && shipsPlaced < 10) PORTCbits.RC3 = 1;

 //Tells the FPGA which ship is being placed
 if (shipsPlaced == 0 || shipsPlaced == 5) PORTE = 1;
 else if (shipsPlaced == 1 || shipsPlaced == 6) PORTE = 2;
 else if (shipsPlaced == 2 || shipsPlaced == 7) PORTE = 3;
 else if (shipsPlaced == 3 || shipsPlaced == 8) PORTE = 4;
 else if (shipsPlaced == 4 || shipsPlaced == 9) PORTE = 5;

 //Polls a column to determine if a button has been pressed, and if so, determines

 what the display should be updated to
 if (poll)
 {
 //Reset poll bit
 poll = 0;

 //Poll the first column; if there's exactly one high row, then try to

 decode, otherwise poll column 1
 if (currentstate == 0)
 {
 PORTCbits.RC0 = 0;
 PORTBbits.RB5 = 0;
 PORTBbits.RB4 = 1;
 if (PORTBbits.RB0 ^ PORTBbits.RB1 ^ PORTBbits.RB2 ^ PORTBbits.RB3)
 nextstate = 3;
 else nextstate = 1;
 }
 //Poll the second column; if there's exactly one high row, then try to

 decode, otherwise poll column 2
 else if (currentstate == 1)
 {
 PORTCbits.RC0 = 0;
 PORTBbits.RB5 = 1;
 PORTBbits.RB4 = 0;
 if (PORTBbits.RB0 ^ PORTBbits.RB1 ^ PORTBbits.RB2 ^ PORTBbits.RB3)
 nextstate = 4;
 else nextstate = 2;
 }
 //Poll the third column; if there's exactly one high row, then try to

 decode, otherwise poll column 0
 else if (currentstate == 2)
 {

 PORTCbits.RC0 = 1;
 PORTBbits.RB5 = 0;
 PORTBbits.RB4 = 0;
 if (PORTBbits.RB0 ^ PORTBbits.RB1 ^ PORTBbits.RB2 ^ PORTBbits.RB3)
 nextstate = 5;
 else nextstate = 0;
 }

 //If decoding column 0 and still only one high row, then decode, otherwise

 go back and poll column 0
 else if (currentstate == 3)
 {
 PORTCbits.RC0 = 0;
 PORTBbits.RB5 = 0;
 PORTBbits.RB4 = 1;
 if (PORTBbits.RB0 ^ PORTBbits.RB1 ^ PORTBbits.RB2 ^ PORTBbits.RB3)
 {
 nextstate = 6;
 Decode(currentstate);
 }
 else nextstate = 0;
 }
 //If decoding column 1 and still only one high row, then decode, otherwise

 go back and poll column 1
 else if (currentstate == 4)
 {
 PORTCbits.RC0 = 0;
 PORTBbits.RB5 = 1;
 PORTBbits.RB4 = 0;
 if (PORTBbits.RB0 ^ PORTBbits.RB1 ^ PORTBbits.RB2 ^ PORTBbits.RB3)
 {
 nextstate = 6;
 Decode(currentstate);
 }
 else nextstate = 1;

 }
 //If decoding column 2 and still only one high row, then decode, otherwise

 go back and poll column 2
 else if (currentstate == 5)
 {
 PORTCbits.RC0 = 1;
 PORTBbits.RB5 = 0;
 PORTBbits.RB4 = 0;
 if (PORTBbits.RB0 ^ PORTBbits.RB1 ^ PORTBbits.RB2 ^ PORTBbits.RB3)
 {
 nextstate = 6;
 Decode(currentstate);
 }
 else nextstate = 2;

 }
 //Holding state to ensure that holding down a button doesn't register as

 multiple presses
 else if (currentstate == 6)
 {
 if (~PORTBbits.RB0 && ~PORTBbits.RB1 &&

~PORTBbits.RB2 && ~PORTBbits.RB3)
 {
 nextstate = 0;
 }
 else nextstate = 6;
 }

 //Update the current state
 currentstate = nextstate;
 }

 //If the number has changed, update the numbers

 if (update)
 {
 update = 0;
 numLeft = numRight;
 numRight = num;

 //PORTD[7:4] contains the row information and PORTD[3:0] contains the

 column information
 PORTD = ((numLeft*16)+numRight);
 }

 //Controls the initial ship placement
 if (~PORTAbits.RA5 && numLeft != 10 && numRight != 10 && shipsPlaced < 10)
 {

 //Don't want to poll for the moment
 pollingMode = 0;

 //Logic for placing Player 1's destroyer
 //If the player wants it to be placed horizontally (right), check to see

 if it's a valid placement
 //If so, fill in the rest of the spaces horizontally
 if (shipsPlaced == 0 && rightOrDown && ((numLeft + 1) <= 9))
 {
 for (i = 0; i < 2; i++)
 {
 des1Row[i] = numLeft + i;
 des1Column[i] = numRight;
 }
 Grid1[des1Row[0]*10+des1Column[0]] = 1;
 Grid1[des1Row[1]*10+des1Column[1]] = 1;
 shipsPlaced++;
 }
 //If the player wants it to be placed vertically (down), check to see if

 it's a valid placement
 //If so, fill in the rest of the spaces vertically
 else if (shipsPlaced == 0 && !rightOrDown && ((numRight + 1) <= 9))
 {
 for (i = 0; i < 2; i++)
 {
 des1Row[i] = numLeft;
 des1Column[i] = numRight + i;
 }
 Grid1[des1Row[0]*10+des1Column[0]] = 1;
 Grid1[des1Row[1]*10+des1Column[1]] = 1;
 shipsPlaced++;
 }

 //Logic for placing Player 1's submarine
 else if (shipsPlaced == 1 && rightOrDown && ((numLeft + 2) <= 9) &&

 !(Grid1[numLeft*10+numRight] || Grid1[(numLeft+1)*10+numRight] ||
 Grid1[(numLeft+2)*10+numRight]))

 {
 for (i = 0; i < 3; i++)
 {
 sub1Row[i] = numLeft + i;
 sub1Column[i] = numRight;
 }
 Grid1[sub1Row[0]*10+sub1Column[0]] = 1;
 Grid1[sub1Row[1]*10+sub1Column[1]] = 1;
 Grid1[sub1Row[2]*10+sub1Column[2]] = 1;
 shipsPlaced++;
 }
 else if (shipsPlaced == 1 && !rightOrDown && ((numRight + 2) <= 9) &&

 !(Grid1[numLeft*10+numRight] || Grid1[numLeft*10+(numRight+1)] ||
 Grid1[numLeft*10+(numRight+2)]))

 {
 for (i = 0; i < 3; i++)
 {
 sub1Row[i] = numLeft;
 sub1Column[i] = numRight + i;

 }
 Grid1[sub1Row[0]*10+sub1Column[0]] = 1;
 Grid1[sub1Row[1]*10+sub1Column[1]] = 1;
 Grid1[sub1Row[2]*10+sub1Column[2]] = 1;
 shipsPlaced++;
 }

 //Logic for placing Player 1's cruiser
 else if (shipsPlaced == 2 && rightOrDown && ((numLeft + 2) <= 9) &&

 !(Grid1[numLeft*10+numRight] || Grid1[(numLeft+1)*10+numRight] ||
 Grid1[(numLeft+2)*10+numRight]))

 {
 for (i = 0; i < 3; i++)
 {
 cru1Row[i] = numLeft + i;
 cru1Column[i] = numRight;
 }
 Grid1[cru1Row[0]*10+cru1Column[0]] = 1;
 Grid1[cru1Row[1]*10+cru1Column[1]] = 1;
 Grid1[cru1Row[2]*10+cru1Column[2]] = 1;
 shipsPlaced++;
 }
 else if (shipsPlaced == 2 && !rightOrDown && ((numRight + 2) <= 9) &&

 !(Grid1[numLeft*10+numRight] || Grid1[numLeft*10+(numRight+1)] ||
 Grid1[numLeft*10+(numRight+2)]))

 {
 for (i = 0; i < 3; i++)
 {
 cru1Row[i] = numLeft;
 cru1Column[i] = numRight + i;
 }
 Grid1[cru1Row[0]*10+cru1Column[0]] = 1;
 Grid1[cru1Row[1]*10+cru1Column[1]] = 1;
 Grid1[cru1Row[2]*10+cru1Column[2]] = 1;
 shipsPlaced++;
 }

 //Logic for placing Player 1's battleship
 else if (shipsPlaced == 3 && rightOrDown && ((numLeft + 3) <= 9) &&

 !(Grid1[numLeft*10+numRight] || Grid1[(numLeft+1)*10+numRight] ||
 Grid1[(numLeft+2)*10+numRight] || Grid1[(numLeft+3)*10+numRight]))

 {
 for (i = 0; i < 4; i++)
 {
 bat1Row[i] = numLeft + i;
 bat1Column[i] = numRight;
 }
 Grid1[bat1Row[0]*10+bat1Column[0]] = 1;
 Grid1[bat1Row[1]*10+bat1Column[1]] = 1;
 Grid1[bat1Row[2]*10+bat1Column[2]] = 1;
 Grid1[bat1Row[3]*10+bat1Column[3]] = 1;
 shipsPlaced++;
 }
 else if (shipsPlaced == 3 && !rightOrDown && ((numRight + 3) <= 9) &&

 !(Grid1[numLeft*10+numRight] || Grid1[numLeft*10+(numRight+1)] ||
 Grid1[numLeft*10+(numRight+2)] || Grid1[numLeft*10+(numRight+3)]))

 {
 for (i = 0; i < 4; i++)
 {
 bat1Row[i] = numLeft;
 bat1Column[i] = numRight + i;
 }
 Grid1[bat1Row[0]*10+bat1Column[0]]= 1;
 Grid1[bat1Row[1]*10+bat1Column[1]]= 1;
 Grid1[bat1Row[2]*10+bat1Column[2]]= 1;
 Grid1[bat1Row[3]*10+bat1Column[3]] = 1;
 shipsPlaced++;
 }

 //Logic for placing Player 1's aircraft carrier
 else if (shipsPlaced == 4 && rightOrDown && ((numLeft + 4) <= 9) &&

 !(Grid1[numLeft*10+numRight] || Grid1[(numLeft+1)*10+numRight] ||
 Grid1[(numLeft+2)*10+numRight] || Grid1[(numLeft+3)*10+numRight]
 || Grid1[(numLeft+4)*10+numRight]))

 {
 for (i = 0; i < 5; i++)
 {
 car1Row[i] = numLeft + i;
 car1Column[i] = numRight;
 }
 Grid1[car1Row[0]*10+car1Column[0]] = 1;
 Grid1[car1Row[1]*10+car1Column[1]] = 1;
 Grid1[car1Row[2]*10+car1Column[2]] = 1;
 Grid1[car1Row[3]*10+car1Column[3]] = 1;
 Grid1[car1Row[4]*10+car1Column[4]] = 1;
 shipsPlaced++;
 }
 else if (shipsPlaced == 4 && !rightOrDown && ((numRight + 4) <= 9) &&

 !(Grid1[numLeft*10+numRight] || Grid1[numLeft*10+(numRight+1)] ||
 Grid1[numLeft*10+(numRight+2)] || Grid1[numLeft*10+(numRight+3)]
 || Grid1[numLeft*10+(numRight+4)]))

 {
 for (i = 0; i < 5; i++)
 {
 car1Row[i] = numLeft;
 car1Column[i] = numRight + i;
 }
 Grid1[car1Row[0]*10+car1Column[0]] = 1;
 Grid1[car1Row[1]*10+car1Column[1]] = 1;
 Grid1[car1Row[2]*10+car1Column[2]] = 1;
 Grid1[car1Row[3]*10+car1Column[3]] = 1;
 Grid1[car1Row[4]*10+car1Column[4]] = 1;
 shipsPlaced++;
 }

 //Logic for placing Player 2's destroyer
 else if (shipsPlaced == 5 && rightOrDown && ((numLeft + 1) <= 9))
 {
 for (i = 0; i < 2; i++)
 {
 des2Row[i] = numLeft + i;
 des2Column[i] = numRight;
 }
 Grid2[des2Row[0]*10+des2Column[0]] = 1;
 Grid2[des2Row[1]*10+des2Column[1]] = 1;
 shipsPlaced++;
 }
 else if (shipsPlaced == 5 && !rightOrDown && ((numRight + 1) <= 9))
 {
 for (i = 0; i < 2; i++)
 {
 des2Row[i] = numLeft;
 des2Column[i] = numRight + i;
 }
 Grid2[des2Row[0]*10+des2Column[0]] = 1;
 Grid2[des2Row[1]*10+des2Column[1]] = 1;
 shipsPlaced++;
 }

 //Logic for placing Player 2's submarine
 else if (shipsPlaced == 6 && rightOrDown && ((numLeft + 2) <= 9) &&

 !(Grid2[numLeft*10+numRight] || Grid2[(numLeft+1)*10+numRight] ||
 Grid2[(numLeft+2)*10+numRight]))

 {
 for (i = 0; i < 3; i++)
 {
 sub2Row[i] = numLeft + i;
 sub2Column[i] = numRight;
 }
 Grid2[sub2Row[0]*10+des2Column[0]] = 1;
 Grid2[sub2Row[1]*10+des2Column[1]] = 1;

 Grid2[sub2Row[2]*10+des2Column[2]] = 1;
 shipsPlaced++;
 }
 else if (shipsPlaced == 6 && !rightOrDown && ((numRight + 2) <= 9) &&

 !(Grid2[numLeft*10+numRight] || Grid2[numLeft*10+(numRight+1)] ||
 Grid2[numLeft*10+(numRight+2)]))

 {
 for (i = 0; i < 3; i++)
 {
 sub2Row[i] = numLeft;
 sub2Column[i] = numRight + i;
 }
 Grid2[sub2Row[0]*10+des2Column[0]] = 1;
 Grid2[sub2Row[1]*10+des2Column[1]] = 1;
 Grid2[sub2Row[2]*10+des2Column[2]] = 1;
 shipsPlaced++;
 }

 //Logic for placing Player 2's cruiser
 else if (shipsPlaced == 7 && rightOrDown && ((numLeft + 2) <= 9) &&

 !(Grid2[numLeft*10+numRight] || Grid2[(numLeft+1)*10+numRight] ||
 Grid2[(numLeft+2)*10+numRight]))

 {
 for (i = 0; i < 3; i++)
 {
 cru2Row[i] = numLeft + i;
 cru2Column[i] = numRight;
 }
 Grid2[cru2Row[0]*10+cru2Column[0]] = 1;
 Grid2[cru2Row[1]*10+cru2Column[1]] = 1;
 Grid2[cru2Row[2]*10+cru2Column[2]] = 1;
 shipsPlaced++;
 }
 else if (shipsPlaced == 7 && !rightOrDown && ((numRight + 2) <= 9) &&

 !(Grid2[numLeft*10+numRight] || Grid2[numLeft*10+(numRight+1)] ||
 Grid2[numLeft*10+(numRight+2)]))

 {
 for (i = 0; i < 3; i++)
 {
 cru2Row[i] = numLeft;
 cru2Column[i] = numRight + i;
 }
 Grid2[cru2Row[0]*10+cru2Column[0]] = 1;
 Grid2[cru2Row[1]*10+cru2Column[1]] = 1;
 Grid2[cru2Row[2]*10+cru2Column[2]] = 1;
 shipsPlaced++;
 }

 //Logic for placing Player 2's battleship
 else if (shipsPlaced == 8 && rightOrDown && ((numLeft + 3) <= 9) &&

 !(Grid2[numLeft*10+numRight] || Grid2[(numLeft+1)*10+numRight] ||
Grid2[(numLeft+2)*10+numRight] || Grid2[(numLeft+3)*10+numRight]))

 {
 for (i = 0; i < 4; i++)
 {
 bat2Row[i] = numLeft + i;
 bat2Column[i] = numRight;
 }
 Grid2[bat2Row[0]*10+bat2Column[0]] = 1;
 Grid2[bat2Row[1]*10+bat2Column[1]] = 1;
 Grid2[bat2Row[2]*10+bat2Column[2]] = 1;
 Grid2[bat2Row[3]*10+bat2Column[3]] = 1;
 shipsPlaced++;
 }
 else if (shipsPlaced == 8 && !rightOrDown && ((numRight + 3) <= 9) &&

 !(Grid2[numLeft*10+numRight] || Grid2[numLeft*10+(numRight+1)] ||
 Grid2[numLeft*10+(numRight+2)] || Grid2[numLeft*10+(numRight+3)]))

 {
 for (i = 0; i < 4; i++)
 {
 bat2Row[i] = numLeft;

 bat2Column[i] = numRight + i;
 }
 Grid2[bat2Row[0]*10+bat2Column[0]] = 1;
 Grid2[bat2Row[1]*10+bat2Column[1]] = 1;
 Grid2[bat2Row[2]*10+bat2Column[2]] = 1;
 Grid2[bat2Row[3]*10+bat2Column[3]] = 1;
 shipsPlaced++;
 }

 //Logic for placing Player 2's aircraft carrier
 else if (shipsPlaced == 9 && rightOrDown && ((numLeft + 4) <= 9) &&

 !(Grid2[numLeft*10+numRight] || Grid2[(numLeft+1)*10+numRight] ||
 Grid2[(numLeft+2)*10+numRight] || Grid2[(numLeft+3)*10+numRight]
 || Grid2[(numLeft+4)*10+numRight]))

 {
 for (i = 0; i < 5; i++)
 {
 car2Row[i] = numLeft + i;
 car2Column[i] = numRight;
 }
 Grid2[car2Row[0]*10+car2Column[0]] = 1;
 Grid2[car2Row[1]*10+car2Column[1]] = 1;
 Grid2[car2Row[2]*10+car2Column[2]] = 1;
 Grid2[car2Row[3]*10+car2Column[3]] = 1;
 Grid2[car2Row[4]*10+car2Column[4]] = 1;
 shipsPlaced++;
 }
 else if (shipsPlaced == 9 && !rightOrDown && ((numRight + 4) <= 9) &&

 !(Grid2[numLeft*10+numRight] || Grid2[numLeft*10+(numRight+1)] ||
 Grid2[numLeft*10+(numRight+2)] || Grid2[numLeft*10+(numRight+3)]
 || Grid2[numLeft*10+(numRight+4)]))

 {
 for (i = 0; i < 5; i++)
 {
 car2Row[i] = numLeft;
 car2Column[i] = numRight + i;
 }
 Grid2[car2Row[0]*10+car2Column[0]] = 1;
 Grid2[car2Row[1]*10+car2Column[1]] = 1;
 Grid2[car2Row[2]*10+car2Column[2]] = 1;
 Grid2[car2Row[3]*10+car2Column[3]] = 1;
 Grid2[car2Row[4]*10+car2Column[4]] = 1;
 shipsPlaced++;
 }

 if (shipsPlaced == 10)
 {
 //If all the ships have been placed, then reset the ship output and

 set the game to play mode
 PORTE = 0;
 PORTCbits.RC3 = 0;
 }

 //Reset the row and column information after a placememnt attempt
 numLeft = 10;
 numRight = 10;
 PORTD = 0b10101010;
 pollingMode = 1;

 }
 //If "fire" button is pushed and a valid target has been entered (2 digits are

 present) and the game's in play mode
 else if (~PORTAbits.RA5 && numLeft != 10 && numRight != 10 && shipsPlaced == 10)
 {
 //Change TMR0 from calling polls to just waiting
 pollingMode = 0;

 //Reset hit bit
 hit = 0;

 //Hit logic if Player 1 has guessed

 if (~PORTCbits.RC3)
 {
 //Checks if destroyer is hit
 for (i = 0; i < 2; i++)
 {
 if ((des2Row[i] == numLeft) && (des2Column[i] == numRight))

 {
 des2Damage[i] = 1;
 hit = 1;
 hitDes = 1;
 }
 }
 //Checks if cruiser or submarine have been hit
 for (i = 0; i < 3; i++)
 {
 if ((sub2Row[i] == numLeft) && (sub2Column[i] == numRight))

 {
 sub2Damage[i] = 1;
 hit = 1;
 hitSub = 1;
 }
 if ((cru2Row[i] == numLeft) && (cru2Column[i] == numRight))

 {
 cru2Damage[i] = 1;
 hit = 1;
 hitCru = 1;
 }
 }
 //Checks if battleship has been hit
 for (i = 0; i < 4; i++)
 {
 if ((bat2Row[i] == numLeft) && (bat2Column[i] == numRight))

 {
 bat2Damage[i] = 1;
 hit = 1;
 hitBat = 1;
 }
 }
 //Checks if aircraft carrier has been hit
 for (i = 0; i < 5; i++)
 {
 if ((car2Row[i] == numLeft) && (car2Column[i] == numRight))

 {
 car2Damage[i] = 1;
 hit = 1;
 hitCar = 1;
 }
 }

 //Determine if a ship has been sunk this turn, and update both

 internal logic and the FPGA accordingly
 if (des2Damage[0] && des2Damage[1] && hitDes)
 {
 PORTE = 1;
 des2Sunk = 1;
 }
 if (sub2Damage[0] && sub2Damage[1] && sub2Damage[2] && hitSub)
 {
 PORTE = 2;
 sub2Sunk = 1;
 }
 if (cru2Damage[0] && cru2Damage[1] && cru2Damage[2] && hitCru)
 {
 PORTE = 3;
 cru2Sunk = 1;
 }

 if (bat2Damage[0] && bat2Damage[1] && bat2Damage[2] &&
 bat2Damage[3] && hitBat)

 {
 PORTE = 4;
 bat2Sunk = 1;
 }
 if (car2Damage[0] && car2Damage[1] && car2Damage[2] &&

 car2Damage[3] && car2Damage[4] && hitCar)
 {
 PORTE = 5;
 car2Sunk = 1;
 }

 }
 //Hit logic if player 2 has guessed
 else
 {
 //Checks if destroyer is hit
 for (i = 0; i < 2; i++)
 {
 if ((des1Row[i] == numLeft) && (des1Column[i] == numRight))

 {
 des1Damage[i] = 1;
 hit = 1;
 hitDes = 1;
 }
 }
 //Checks if cruiser or submarine have been hit
 for (i = 0; i < 3; i++)
 {
 if ((sub1Row[i] == numLeft) && (sub1Column[i] == numRight))

 {
 sub1Damage[i] = 1;
 hit = 1;
 hitSub = 1;
 }
 if ((cru1Row[i] == numLeft) && (cru1Column[i] == numRight))

 {
 cru1Damage[i] = 1;
 hit = 1;
 hitCru = 1;
 }
 }
 //Checks if battleship has been hit
 for (i = 0; i < 4; i++)
 {
 if ((bat1Row[i] == numLeft) && (bat1Column[i] == numRight))

 {
 bat1Damage[i] = 1;
 hit = 1;
 hitBat = 1;
 }
 }
 //Checks if aircraft carrier has been hit
 for (i = 0; i < 5; i++)
 {
 if ((car1Row[i] == numLeft) && (car1Column[i] == numRight))

 {
 car1Damage[i] = 1;
 hit = 1;
 hitCar = 1;
 }
 }

 //Determine if a ship has been sunk this turn, and update both

 internal logic and the FPGA accordingly

 if (des1Damage[0] && des1Damage[1] && hitDes)
 {
 PORTE = 1;
 des1Sunk = 1;
 }
 if (sub1Damage[0] && sub1Damage[1] && sub1Damage[2] && hitSub)
 {
 PORTE = 2;
 sub1Sunk = 1;
 }
 if (cru1Damage[0] && cru1Damage[1] && cru1Damage[2] && hitCru)
 {
 PORTE = 3;
 cru1Sunk = 1;
 }
 if (bat1Damage[0] && bat1Damage[1] && bat1Damage[2] &&

 bat1Damage[3] && hitBat)
 {
 PORTE = 4;
 bat1Sunk = 1;
 }
 if (car1Damage[0] && car1Damage[1] && car1Damage[2] &&

 car1Damage[3] && car1Damage[4] && hitCar)
 {
 PORTE = 5;
 car1Sunk = 1;
 }
 }

 //If all ships sunk, victory!
 if ((des1Sunk && sub1Sunk && cru1Sunk && bat1Sunk && car1Sunk) |

(des2Sunk && sub2Sunk && cru2Sunk && bat2Sunk && car2Sunk))
 endgame = 1;

 //Tell FPGA if the guess was a hit or not
 if (hit) PORTCbits.RC7 = 1;
 else PORTCbits.RC7 = 0;

 //Tell the FPGA that a guess was confirmed
 PORTCbits.RC2 = 1;

 //Stop polling for now
 pollingMode = 0;

 //Pause so that current player can see result of his/her guess
 while(!pollingMode)
 {}

 //Stop sending valid bit to FPGA
 PORTCbits.RC2 = 0;
 if (!endgame)
 {
 //If the game hasn't ended, switch players
 if (PORTCbits.RC3) PORTCbits.RC3 = 0;
 else PORTCbits.RC3 = 1;

 //Reset row/column information
 numLeft = 10;
 numRight = 10;
 PORTD = 0b10101010;

 //Reset secondary ship hit status
 hitDes = 0;
 hitSub = 0;
 hitCru = 0;
 hitBat = 0;
 hitCar = 0;
 }

 //Reset the ship sunk output
 PORTE =0;

 }

 }

 //Victory condition; just set the victory bit high
 while (1)
 {
 PORTCbits.RC4 = 1;
 }

}

//Decodes the current button press from the current values of PORTB
void Decode(int currentstate)
{
 if (PORTBbits.RB0 ^ PORTBbits.RB1 ^ PORTBbits.RB2 ^ PORTBbits.RB3)
 {
 if (currentstate == 3)
 {
 if (PORTBbits.RB0)
 {
 num = 1;
 update = 1;
 }
 else if (PORTBbits.RB1)
 {
 num = 4;
 update = 1;
 }
 else if (PORTBbits.RB2)
 {
 num = 7;
 update = 1;
 }
 //Row 3 would be E, but we're not using it
 }
 else if (currentstate == 4)
 {
 if (PORTBbits.RB0)
 {
 num = 2;
 update = 1;
 }
 else if (PORTBbits.RB1)
 {
 num = 5;
 update = 1;
 }
 else if (PORTBbits.RB2)
 {
 num = 8;
 update = 1;
 }
 else if (PORTBbits.RB3)
 {
 num = 0;
 update = 1;
 }
 }
 else if (currentstate == 5)
 {
 if (PORTBbits.RB0)
 {
 num = 3;
 update = 1;
 }
 else if (PORTBbits.RB1)
 {
 num = 6;
 update = 1;

 }
 else if (PORTBbits.RB2)
 {
 num = 9;
 update = 1;
 }
 //Row 3 would be F, but we're not using it
 }
 }
}

//Interrupt handler
#pragma interrupt isr
void isr(void)
{
 //TMR0 interrupt logic
 if (INTCONbits.TMR0IF)
 {

 //If TMR0 is being used to poll the keypad
 if (pollingMode)
 {
 poll = 1;
 }
 //If TMR0 is just a wait timer
 else
 {
 counter2++;
 //20 TMR0 overflows- pause after guess is entered
 if (counter2 == 20)
 {
 counter2 = 0;
 //Want to restart polling mode
 pollingMode = 1;
 }
 }

 INTCONbits.TMR0IF = 0;
 }
}

	Abstract
	Introduction
	Extra Hardware: VGA Display

	Schematics
	Microcontroller Design
	Input Functionality
	Miscellaneous Settings
	Placement Stage
	Guess Stage
	Output Functionality

	FPGA Design
	Digital Clock Manager
	HSync and VSync Generation

	Results
	Reference
	Materials
	Appendix A: Verilog Code
	Appendix B: C Code

