Alexandre Amert
Einar Magnusson

FINAL REPORT — RHYTHM GAME - FALL 2009
12/11/2009

David Money Harris — E155

Abstract

The Rhythm Game is a game where the player simulates a guitarist and tries to play a
song as well as possible. The goal is to push the correct buttons at the right time in the song. Our
project is divided into two parts: the PIC which manages the whole game and the FPGA which
displays the interface of the game on a VGA screen. Thanks to four buttons can play different
notes when the VGA screen indicates to do it. Our game is totally functional and the player can
train himself with four different songs: Zelda, Mario, Star Wars and Scarborough Fair. Our only
regret is we did not have time to improve the mechanical part.

Introduction

Rhythm game is widely inspired by the video game Guitar Hero. The user can see
different notes parading on a VGA screen from the top to the bottom. When the notes arrive on
the white bar, the user has to press the button corresponding to the note. When If the player
presses the button at the correct moment, a sound will be generated. If the right button is not
pressed at the right time, no sound will be played and the yellow line will blink red. Each
different note will generate a different sound. Of course the notes are not chosen randomly, they
form a song. If the user plays all the notes correctly he will be able to recognize the song.
Because we cannot play all the tones with only 4 notes, each note is not really equal to one tone
but to a range of tones. The notes will be chosen to represent the tone that is to be played. The
player can try different songs of different difficulty. After each song, the percentage of success is
displayed on the screen. The implementation on the VGA screen is shown below.

Figure 1 — Start Mode

Figure 2 — Game Mode Figure 3 — Score Mode

Our system is composed by two main parts:

e The PIC which manages the whole working of the game, the input buttons, the speaker
and sends data to the FPGA to tell it what to display.

e The FPGA which is responsible for displaying the notes, the score and the begin mode as
long as the game is run. The FPGA has a parallel connection with the PIC and the screen
it is managing is a VGA monitor at a 640x480 resolution.

Figure 4 shows the block diagram of the system:

Buttons %4 > PIC » Speaker
2J£ 4T T1
mode | notes blinking
R >
FPGA © » Monitor
B >

Hsync ¢
Vsync

Figure 4 — Block Diagram

PIC

The PIC has to manage the whole game and send the necessary data to the FPGA. It has
four inputs (the push buttons) and eight outputs (one for the speaker and seven for the FPGA).

Hardware sv Harris Board

1
4

Ra0
PIC Output - mode
R R R R Ral

RbO

Rb1

PIC Input - buttons
Rb2

R

(L C ¢

Rb3

(

Rc0 PIC Output - Speaker
LM386

.

V- ByPass RdO Note 1

RR-4— y+ Vs — 1 Rd1l Note2

PIC Output - notes
] Rd2 Note 3

Gnd Vout ﬁ
Tr c T Rd3 Note 4

— """+ Rd4 PIC Output - blinking

— P1 (FPGA Input) — newNotel

P2 (FPGA Input) — newNote2

P4 (FPGA Input) — newNote3

R =1kQ
R2 - 1kQ P5 (FPGA Input) — newNote4

C =10pF P6 (FPGA Inpu) - flash

g I | P7
(FPGA Input) - mode
P8

VGA Screen

P112

FPGA Output) - R
P113

FPGA Output) - G
P116 (FPGA Output) - B
P118 (FPGA Output) - Hsync
P119 (FPGA Output) - Vsync

Figure 5 — Schematic

Input

The goal is, for each input, to be high when the corresponding button is pressed. To be
sure the input will be seen as a zero when the button is not pressed, we added a pull-down
resistor. If we remove the resistor and the wire which connects the input to the ground, we would
not be sure about the state of the input when it is not connected to the 5V. Different buttons may
be pressed at the same time without disturbing the system. Indeed, the user must sometimes press
several buttons at the same time if he wants to play the correct note.

Output - Speaker

The notes are played on a speaker. Each note is characterized by its frequency and its
duration which are stored in the Data Memory. The output is a square signal which varies as a
function of the note played. The output current from the PIC is not sufficient for the sound to be
audible. That is why we added the audio amplifier which has a gain of twenty. The potentiometer
allows the player to regulate the volume. A capacitor is used to make the speaker oscillate
around its equilibrium point.

Output - FPGA

The game is divided in three parts: the Start Mode when the user chooses his song (see
Figure 1), the Game Mode when the song is running (see Figure 2) and the Score Mode when the
player see his percentage of success (see Figure 3). At any time, the FPGA must know which
mode the game is in, so we need 2 wires to indicate the current mode. The value of mode is zero
at the beginning which represents the start mode. When the user chooses a song, mode turned
into 0x01 which is the Game Mode. At the end of the song, when the score is sent, the mode is
equal to 0x02.

The five other wires are uses to send the notes and manage the bar blinking. Each time a
note has to be displayed, the value of the corresponding button is sent. For instance, if for the
next note the user will have to press button 1 and 3 the value sent will be 0x05 which means the
state of wire one and wire three will be high while the three others will be low. When the bar has
to blink we do not want to resend a new note but we have to modify the value of the last bit. To
do that we use an assembly line code which modifies only the desired bit.

_asm BSF PORTD, 4, 0 endasm

Software

Start Overview of the program

The difficulty of our program was to
manage at the same time the note to display
and the note to play. To do that we used the

Initialization
timers and interrupts.
R A
Details of the functions
Song choice
Initialization
v The main goal of this function is to initialize
[EiEr— the PORTs, variables and enable interruptions.
Define The PORTB is used as an input for the buttons
whereas the PORTA (mode), the PORTC
v (speaker) and the PORTD (notes and blink) are
outputs.
Delay

| Song choice

In this part the program waits for player input

Duration Frequency
control ISR Empty loop control ISR to choose the song. The player has to press one
of the four buttons. If he presses two buttons at
the same time, the song number 4 will be
selected.

Initialization 2 - Define

When the song is chosen the data from the ROM is stored in the program memory to be used.
The function define is necessary to decide which buttons will be used for each note. At the
beginning we simply divided in a general way all the tones by the number of combinations of
buttons we can press (that is to say 10 — 4 singles and 6 pairs). But because the tone may be
really different from a song to another one it did not work correctly. For instance, one song could
be interesting to play whereas for another one the user had to play only two different buttons.
This is why we finally decided the definitions for the buttons more manually. The most frequent
notes are played with only one button and the less common ones need two buttons at the same
time. To play the notes, we need two timers: one for the period and one for the duration. So we
configure Timer3 with a prescale of 8 so each cycle is about 0.105 seconds. Similarly, we
configure Timerl with a prescale of 4 so that each count is 0.8 ps, or half a period unit.

Check button
This function has a double use. The first one is to ensure that the correct button was pressed. If it
did and only if it did, the variable enable will be 1 instead of 0 and the sound of the note will be

emitted. The second use is to avoid a parasitical noise to be played when the frequency is zero
(pause).

Percent
Because the FPGA and the PIC are connected with only 5 wires for sending data, the score sent
by the PIC cannot exceed 2°5-1=31. This is why instead of sending a score, we send the
percentage of success times 31:

score_sent = 31*score/number
where number is the total number of notes of the song.

High priority interrupt function

When all initialization is finished, the main code enters an empty while loop. All the work is
performed in interrupt service routines. The high priority interrupt function is the one that
controls the frequency of the note being played on the speaker. When Timer 1 overflows, the
routine is triggered. If enable is 1, the output bit which controls the speaker is toggled with
assembly code, and a variable that indicates a successfully pushed button is set. After that, Timer
1 is reloaded with the value OxFFFF-“note period” so that it keeps overflowing once per half
period. Then the function checkbutton is used to check if the user is still holding the right
buttons.

Low priority interrupt function

The low priority interrupt function is triggered when Timer 3 overflows. Timer 3 is configured to
run a whole cycle in a certain time which is used as a duration unit for the songs. Each time the
interrupt is triggered, similar things are done for the notes being played and those being
displayed. The function checks to see if the current note has been played/displayed for the right
amount of cycles. If not, it increases the cycle counter. If it has, then it steps to the next note and
resets the counter. For the notes being displayed, when it steps to a new note the corresponding
button value is written to PORT D. For notes being played, it defines which buttons are to be
pressed next, and writes a new value to Timer 3 so that it plays the right frequency. Also, if the
last button combination was never pushed correctly, the fifth bit of PORT D is set to make the
bar go red.

FPGA
The FPGA is used to display the game graphics on a VGA monitor. See appendix for a block

diagram visualization.

Inputs
The inputs to the FPGA are the clock, reset, the four bits that create new notes, the bit that
flashes the bottom bar and the two bits that control the game mode.

Outputs
The only outputs of the FPGA are the ones that go to the VGA monitor; the horizontal sync
signal, the vertical sync signal and three bits for R,G and B.

FPGA function
The FPGA’s DCM is used to generate a 25 MHz clock which is needed to send information

correctly to the VGA monitor. The module hvsync generator takes in the 25 MHz clock and
generates the horizontal and vertical sync signals. In addition, it outputs the coordinates of the
current pixel and a variable inDisplayArea that is set when the current pixel is in the display area
of the monitor. The module operates on the usual VGA standard; the horizontal sync signals
when the electron beam should go to the beginning of the next line and the vertical sync signals
when it should go to the beginning of the first line. A few lines at the top and bottom and pixels
at the beginning and end of each line are defined as outside the display area.

The new note signals are received by shift registers. They are 480 bits wide, each bit
corresponding to a row. The speed is stepped down inside the shift register modules so that a bit
is transferred through the 480 seats in about 13 seconds.

The modules inside makePixel; isString, isBar, isStringXnote, isScoreBar, isScoreBarOutline,
isDiffBox look at the coordinates of the current pixel and output a bit which states whether the
current pixel is part of said object. The strings and the bar are static, so the modules just check
whether the coordinates are within certain limits. The notes, however, are traveling objects. The
module isStringXnote compares the current coordinates to the corresponding shift register, and if
the bit in the shift register corresponding to the current row is set and the current column is in a
certain interval around string X, then the output is set. The way to make a note that is more than
one row high is then to input a string of 1’s into the shift register.

The module PixelColor then takes as input the outputs of the above modules along with the mode
variable and decides based on some priorities what the color of the current pixel is.

The simplicity of the design means that we can use a parallel connection between the PIC and
the FPGA.

Results

Our project works. We created a light version of the Guitar Hero Game as expected using
a PIC and a FPGA. We did everything we planned to and we even did two things which were not
part of the basic requirements: we had the score part which allows the player to know his score
and the difficulty of pressing two buttons at the same time.
One of the main difficulties we had was to synchronize the notes traveling on the FPGA and the
PIC. Indeed the PIC has to send the new notes to the FPGA and, at the same time, check if the
correct button is pressed and play the sound. To fix that problem we used different interrupts.

References

[1] FPGA4Fun’s Pong Game, http://www. fpgad4fun.com/PongGame.html

Parts List

Part Source Vendor Part # Cost

1xSpeaker Stock room Supplied by HMC
1xAudio amplifier LM386 Stock room Supplied by HMC
4xResistors 1kQ Stock room Supplied by HMC
1xPotentiometer 1kQ Stock room Supplied by HMC
4xButtons Stock room Supplied by HMC
1xCapacitor 10uF Stock room Supplied by HMC
1xVGA monitor Stock room Supplied by HMC

Appendices

FPGA Block Diagram

DCM module hvsync_generator » hsync
25 MHz » vsync
clk clkVGA —— ————pf inDisplayArea
CounterX
CounterY
10
mode [1:0] ! :
[flash | — R]
StringNotesSlow
> Stringl
tringDatal
[newNotel |— s
Ing makePixel
StringNotesSlow
> String2 J
stringData2
g
StringNotesSlow 480
| String3
stringData3
kg
StringNotesSlow
String4
L stringData4

Figure 6: Block diagram of the top module

C code and Verilog code

/ Final Project /
/* final.c */
/* Alexandre_Amert@hmc.edu last update: Tuesday, 08 December */
/* Einar_Magnusson@HMC.Edu */
/ /

// Use the 18F452 PIC

#include <pl18f452.h>

// Use the usart and stdio library
#include <stdio.h>

#include <timers.h>

#include <delays.h>

//Functions

void main(void);
void checkb(int);
int define(int);
int percent(int);

void lowisr(void);
void highisr(void);

// Variables

int note,duree,mode,song, init,i,j,button,enable,enable2,tempo,k,i32, startsound, countdurVGA,
countdurSPK, displaying,pushed,score,number;

int delay =1255;

#pragma udata sectionnamel

int durat[70]; //this receives the durations of the notes of the selected song
#pragma udata sectionname2

int freq[70]; //this receives the frequencies of the notes of the selected song
#pragma udata sectionname3

int butto[70]; //this recieves the button combinations of the notes selected
int SWb[33];

rom int SWF[32] = { //Frequencies of the notes of the Star Wars song
Ox37E,

Ox37E,

Ox37E,

Ox29E,

Ox1BF,

Ox1F6,

0x213,

0x255,

Ox14F,

Ox1bf,

Ox1F6,

0x213,

0x255,

Ox14F,

Ox1bf,

0x000,

Ox37E,

Ox37E,

Ox37E,

Ox29E,

Ox1BF,

Ox1F6,

0x213,

0x255,

Ox14F,

Ox1bf,

Ox1F6,

0x213,

0x255,

Ox14F,

Ox1bf,

Ox14F

¥

rom int SWA[32] = { //Durations of the notes of the Star Wars song

YNNNRRRRNRRPRNNRRRRRNRRRRERNRRRNNRRR

#pragma udata section5
rom int MAF[46] = { //Frequencies of the notes of the Mario song
Ox1lda,
Oxlda,
Oxlda,
0x255,
Ox1lda,
0x18e,
0x000,
Ox4AB,
0x000,
0x255,
0x31d,
0x000,
0x3b4,
0x000,
0x26¢c,
0x278,
0x29e,
0x26¢c,
0x000,
0x31d,
Ox1lda,
0x18e,
0x163,
Oxlda,
0x18e,
Ox1lda,
0x255,
Oxlda,
0x278,
0x255,
0x31d,
0x000,
0x3b4,

0x000,
0x26¢c,
0x278,
0x29e,
0x26¢c,
0x000,
0x31d,
Ox1lda,
0x18e,
0x163,
Ox1lda,
0x18e,
Ox1lda

¥

#pragma udata section6
rom int MAd[46] = { //Durations of the notes of Mario song

N -

“NNEFEPNPNRPERPERPENNENNEPENNEERPNMNENERPNRPERPERPENNENNERPENNENNEN

rom int ZDF[70]={ //Frequencies of the notes of Zelda song
Ox14F,
Ox1BE,
0x000,
Ox14F,
Ox12A,

0x10A,
OxOFB,
0OxODF,
0x000,
OxODF,
OxODF,
0x0D3,
0x0BC,
Ox0A7,
0x000,
0x0A7,
0x0A7,
0x000,
0x0BC,
0x0D3,
0x0BC,
0x0D3,
OxODF,
0x000,
0OxODF,
Ox0FB,
OxOFB,
OxODF,
0x0D3,
0x000,
OxODF,
OxOFB,
0x119,
0x119,
OxOFB,
OxODF,
0x000,
Ox0FB,
0x119,
0Ox12A,
0x12A,
0x10A,
OxO0ED,
0x000,
0x0C7,
0OxODF,
0x0DF,
0x000,
OxODF,
OxOFB,
Ox0FB,
OxODF,
0x0D3,
0x000,
OxO0DF,
OxOFB,
0x119,
0x119,
Ox0FB,
OxODF,
0x000,
OxOFB,
0x119,
0Ox12A,
0x12A,
0x10A,
OxOED,
0x000,
0x0C7,
0OxODF

¥

rom int ZDd[70]={ //Durations of the notes of Zelda song

=D

AT A AT A NN AAT AN AAAAN AT ATNAATANNNAATANNNAATATOLTATNAATANNNAATANNNA AT A T 0 A

//Frequencies of the notes of SF song

={

t SFF[33]

rom in

0x850,

0x850,
0x58C,
0x58C,
0x768,
Ox6FD,
0x768,
0x850,
0x000,
0x58C,
Ox4AA,
0x428,
Ox4AA,
0x58C,
Ox4F1,
0x63A,
0x58C,
0x428,
0x428,
Ox4AA,
0x58C,
0x58C,
0x63A,
Ox6FD,
0x768,
0x850,
0x58C,
0x63A,
Ox6FD,
0x768,
0x850,
0x954,
0x850

¥

om int SFA[33]={ //Frequencies of the notes of SF song

r
2
1
2
1
2
1
1
3
1
1
1
2
1
1
1
1
3
2
1
2
1
1
1
1
3
2
1
2
1
1
1
1
3
}

void main

RCONbits. IPEN=1; //Enable interrupt priorities

INTCONbits.GIEH=1; //Enable high priority interrupts
INTCONbits.GIEL=1; //enable low priority
TRISB = OxFF; //PortB Input, button input
TRISD = 0x00; //PortD Output, sends notes to FPGA
TRISC = 0x00; //PORTC Output, speaker output
TRISA = 0x00; //PORTA output, game mode selection (start - game - end)
PORTD = O0;
PORTC = 0;
PORTA = 0; //begin in start mode
enable=0; //enable: tells whether the right buttons are being pressed
startsound=0; //startsound: when set, the notes of the chosen song are played
pushed=0; //goes high if the right buttons have been pushed during a note
score=0; //counts number of right notes
i=0;
song=0;

while(song==0)

{
song=PORTB; //push button to select song
3
PORTA=0x01; //enter game mode
if(song==1)
number=32;
for(init=0; init<number;init++)
{
durat[init]=SWd[init]*6; //scale duration to have suitable difficulty
freq[init]=SWFf[init];
butto[init]=define(SWF[Linit]);
3
3
else if(song==2)
{
number=46;
Ffor(init=0; init<number;init++)
{
durat[init]=MAd[init]*5; //slowdown the song
freq[init]=MAf[init];
butto[init]=define(MAf[init]);
¥
b
else if(song==4)
{
number=33;
for(init=0; init<number;init++)
{
durat[init]=SFd[init]*5; //slowdown the song
freq[init]=SFFfLinit];
butto[init]=define(SFf[init]);
3
3
else
{
number=70;
for(init=0; init<number;init++)
{
durat[init]=zDd[init]*3; //slowdown the song
freq[init]=ZDf[init];
butto[init]=define(ZDf[init]);
3
¥

/*Timerl controls the frequency
Interrupts Off-16 bit mode-instru cycle clk-presc of 4-no external oscil*/

OpenTimerl(TIMER_INT_ON &
T1_16BIT_RW &
T1_SOURCE_INT &
T1PS 1 4 &
T1_OSC1EN_OFF &
T1_SYNC_EXT_OFF);

PIR1bits.TMR1IF=0; //clear flag

//(notes are not played at first)
P1E1bits.TMR11E=0; //disable Timerl interrupt for the time being
IPR1bits.TMR1IP=1; //high priority

//Timer3 to control the duration of the notes, both on VGA and on speaker
//one complete cycle of timer is 2048 * 51.2us
OpenTimer3(TIMER_INT_ON &

T3_16BIT_RW &

T3_SOURCE_INT &

T1_PS_1 8 &

T3_OSC1EN_OFF &

T3_SYNC_EXT_OFF);

IPR2bits.TMR31P=0; //low priority interrupt Timer3

PIR2bits.TMR3I1F=0; //clear Timer3 interrupt flag
PIE2bits.TMR3IE=1; //enable Timer3 interrupt

0; //this tells which note is being PLAYED
0;

] //this tells which note is being DISPLAYED

countdurSPK=0; //counts the duration of notes played on speaker
countdurVGA=0; //counts the duration of notes displayed on VGA
//start by displaying the first note

displaying=1; //displaying: when set, the notes are displayed
PORTD=butto[j]; //output to FPGA notes to be displayed
WriteTimer3(0); //start counting duration of notes

//Einar: 12.75 sec delay:
//We now use the 40Mhz clk so all the delays are doubled

k=1;
while(k<28)
DelaylOKTCYx(delay);
DelaylOKTCYx(delay);
k++;
}
Delayl0OKTCYx(890);
DelaylOKTCYx(890);
//after delay: start playing notes on speaker
startsound=1; //Enable the playing of notes
tempo=OxFFFF-freq[i]; //so that timerl overflows after one (half) period
WriteTimerl(tempo);
PIElbits.TMR11E=1; //enable interrupts for frequency
button=butto[i]; //button to be pushed
enable=0; //start by assuming that the right buttons are not pushed
while(L){} //endless loop: the stuff happens in the interrupts
} //main
void checkb(int but) //check if the correct button is pressed

{
if(PORTB==but & but!=0) //allows to play the note only if the corrected button is pressed

//and the frequency is not 0
enable=1;
}
else
enable=0;
}//checkb

int define(int frequency) //Defines which buttons should be pushed
{ //depending on the frequency
if (frequency==0)
return 0x00;
else if(frequency==0x1DA){
return Ox01;

}
else if(frequency==0x255 || frequency==0x26C){
return 0x8;

}
else if(frequency==0x4AB){
return 0x05;

}
else if(frequency==0x18E || frequency==0x29E){
return 0x02;

}
else if(frequency==0x31D || frequency==0x278){
return 0x04;

3
else if(frequency==0x3B4){
return OxA;

3
else if(frequency==0x163){
return 0x09;

3

//Zelda
else if(frequency==0x14F){
return 0x06;

3
else if(frequency==0x12A || frequency==0x0D3 || frequency==0x0C7){
return 0x2;

3
else if(frequency==0x1BE){
return 0x09;

3
else if(frequency==0x0FB){
return 0x04;

}
else if(frequency==0x0BC || frequency==0x0A7 || frequency==0x119 ||frequency==0x0ED){
return 0x08;

3
else if(frequency==0x10A){
return OxA;

3
else if(frequency==0x0DF){
return 0x01;

//SF
else if(frequency==0x850){
return 0x01;

3
else if(frequency==0x768 || frequency==0x428){
return 0x4;

3
else if(frequency==0x58C){
return 0x02;

3
else if(frequency==0x800){
return 0x05;

}
else if(frequency==0x6FD || frequency==0x4AA || frequency==0x63A){
return 0x08;

3
else if(frequency==0x4F1){
return 0x3;

3
else if(frequency==0x954){
return OxO0A;

//SW

else if(frequency==0x37E){
return 0x01;

3
else if(frequency==0x1F6){
return 0x8;

3
else if(frequency==0x1BF){
return 0x02;

3
else if(frequency==0x213){
return 0x01;

3
else if(frequency==0x14F || frequency==0x29E){
return 0x04;
3
else{
return Ox0C;

3
}//define

int percent(int score)

int score_sent;

score_sent = score=31*score/number;
mode = score_sent;

return score_sent;

#pragma code highinterruptvector = 0x08
void highinterruptvector(void)

{
}

#pragma code

_asm goto highisr _endasm

#pragma code lowinterruptvector =0x18
void lowinterruptvector(void)

{
_asm goto lowisr _endasm
3
#pragma code
#pragma interrupt highisr //interrupt routine for toggling speaker output
void highisr(void) //- generate frequency

if(enable) //toggle speaker output using assembly, probably the fastest way

_asm BTG PORTC, 0,0 _endasm //toggle the speaker output bit
pushed=1; //the right combination has been pushed
}
checkb(button); //check if the right buttons are still pushed
WriteTimerl(tempo); //"reset"” timerl
PIR1bits.TMR11F=0; //clear interrupt flag
}
#pragma interrupt lowisr //interrupt routine
void lowisr(void)
{
if(startsound) //if sound should be played
{
countdurSPK++; //Timer3 has counted one cycle
if(countdurSPK==durat[i]) //if right number of cycles for current note being played

{

i++; //next note

if(i==number) //if song is finished
PORTA=2 M //enter end mode
PIElbits.TMR1I1E=0; //turn off both interrupts

PIE2bits.TMR3I1E=0;
PIR2bits.TMR31F=0;
PIR1bits.-TMR11F=0;
PORTD=percent(score); //send score to FPGA

3
else
{
if(Ipushed) //if the right buttons were not pushed
//-during the last note
_asm BSF PORTD, 4, O _endasm //turn bar red
3
else
{
_asm BCF PORTD, 4, O _endasm //turn bar white
if(button!=0)
score++ //increase score if the right button is pushed
pushed=0; //reset pushed-variable for next note
button=butto[i]; //new button to be played
tempo=0OxFFFF-freq[i]; //new frequency to be played
countdurSPK=0; //reset count
3
3
b
if(displaying) //if notes are to be displayed
countdurVGA++; //Timer3 has counted one cycle
if(countdurVGA==durat[j]) //if right number of cycles for current
{ //-note being displayed
J++; //display next
countdurVGA=0; //reset count
if(J==number) //ift finished
{
PORTD=0; //display no notes
displaying=0; //stop displaying new notes
else
PORTD=butto[j]; //display next note
b
3
3

PIR2bits.TMR31F=0; //clear Timer3 interrupt flag

Fri Dec 11 12:13:09 2009

top.v
1 “timescale 1ns / 1ps
2 L[117/777777777777777/7777/77/77/77/77/7/77/77/7/7/7/7/7/777/777
3 /*
4 Project: Rhythm Game, Final project of E155
5
6 Names: Einar B Magnusson and Alexandre Amert
7
8 top.v:
9 Top module for FPGA part of the game system.
10 */
11 L[117/777777777777777/7777/77/77/77/7/7/7//77//77/7/7/77/7/777/777
12 module top(
13 input clk, reset,newNotel, newNote2, newNote3, newNote4, flash,
14 input [1:0] mode,
15 output R,G,B, hsync, vsync);
16
17
18 wire clkVGA;
19 wire inDisplayArea;
20 wire [9:0] CounterX;
21 wire [8:0] CounterY;
22 wire [479:0] stringldata, string2data, string3data, string4data;
23
24
25 // Instantiate the clock manager
26 clkmod25 clkmng(
27 clk,
28 reset,
29 clkdv_out,
30 clkfx_out,
31 clkVGA,
32 locked_out
33)
34
35 //Make four instances, one for each string
36 stringNotesSlow stringl(clkVGA,reset, newNotel, stringldata);
37 stringNotesSlow string2(clkVGA,reset, newNote2, string2data);
38 stringNotesSlow string3(clkVGA,reset, newNote3, string3data);
39 stringNotesSlow string4(clkVGA,reset, newNote4, string4data);
40
41
42 hvsync_generator hvsync(clkVGA, hsync, vsync, inDisplayArea, CounterX, CounterY);
43
44 makePixel pixel(clk,newNotel,newNote2,newNote3,newNoted4, inDisplayArea,mode, CounterX
CounterY, stringldata, string2data, string3data, string4data, flash, R, G, B);
45
46
47 endmodule
48

Page 1

hvsync_generator2.v Fri Dec 11 12:20:28 2009

1 /1177777777777 777777777777/7/7/7/7/77777777777777/7777/7777
2 /*

3 Project: Rhythm Game, Final project of E155
4 Names: Einar B Magnusson and Alexandre Amert
5

6 hvsync_generator:

7 Generates the horizontal and vertical sync and outputs the coordinates
8 of the current pixel and whether it is in the display area.
9

10 Reference: fpgadfun.com

11 */

12 /1177777777777 777777777777/7/7/7//7//7/7/77/77/7777777/7777/7777
13

14 module hvsync_generator2(

15 input clk,

16 output vga_h_sync, vga_v_sync,

17 output inDisplayArea,

18 output [9:0] CounterXout,

19 output [8:0] CounterYout);

20

21

22 reg [9:0] CounterX;

23 reg [8:0] CounterY;

24 wire CounterXmaxed = (CounterX==10"d800);

25 wire CounterYmaxed = (CounterY==10"d525);

26 reg vga_HS, vga_ VS;

27

28 assign CounterXout=CounterX-40;

29 assign CounterYout=CounterY-25;

30

31 always @(posedge clk)

32 i f(CounterXmaxed)

33 CounterX <= 0;

34 else

35 CounterX <= CounterX + 1;

36

37 always @(posedge clk)

38 if(CounterXmaxed) CounterY <= CounterY + 1;

39

40 always @(posedge clk)

41 begin

42 vga_HS <= (CounterX>704);

43 vga_VS <= (CounterY==500);

44 end

45

46 reg inDisplayArea;

47 always @(posedge clk)

48 iT(CounterX>40 & Counterx<680 & CounterY>25 & CounterY<505)

49 inDisplayArea <=1;

50 else

51 inDisplayArea <=0;

52

53 assign vga _h _sync = ~vga HS;

54 assign vga v_sync = ~vga VS;

55

56 endmodule

57

Page 1

shiftnotes.v

Fri Dec 11 12:16:19 2009

O©CoOo~NOOULA, WNPE

L[117/777777777777777/7777/77/77/77/77/7/77/77/7/7/7/7/7/777/777
/*
Project: Rhythm Game, Final project of E155

Names: Einar B Magnusson and Alexandre Amert

stringNotesSlow:
Shift register to keep the notes of each string,
slowed down to shift a bit through in about 13 seconds
*/
L[117/777777777777777/7777/77/77/77/7/7/7//77//77/7/7/77/7/777/777
module stringNotesSlow(

input clkDisp, reset, newNote,

output reg [479:0] notes);

reg [24:0] count;

always @(posedge clkDisp, posedge reset)
if(reset)
begin
notes<=0;
count <=0;
end
else
begin
if(count == 1250000)
begin
notes <= {notes[478:0],newNote};
count <=0;
end
else
begin
count <= count +1;
end
end

endmodule

Page 1

display_VGA.v Fri Dec 11 12:16:48 2009

1

2 L[117/777777777777777/7777/77/77/77/77/7/77/77/7/7/7/7/7/777/777
3 /*

4 Project: Rhythm Game, Final project of E155

5

6 Names: Einar B Magnusson and Alexandre Amert

7

8 isStringXnote:

9 Determines whether the pixel is on a note on String centered at
10 center.

11 */

12 L[117/777777777777777/7777/77/77/77/77/7/7/7/77/7/77/77/777/777
13 module isStringXnote(

14 input [9:0] center,

15 input [9:0] CounterX,

16 input [8:0] Countery,

17 input [479:0] stringXdata,

18 output stringout);

19
20 assign stringout = (CounterX < center+10) & (CounterX > center+10) &
21 stringXdata[CounterY];
22
23 endmodule
24
25 /1177777777777 777777/7777/77/77/77/77/7/7/7//77/7/77/7/777/777
26 /*
27 Project: Rhythm Game, Final project of E155
28
29 Names: Einar B Magnusson and Alexandre Amert
30
31 isString:
32 Determines whether the pixel is on a string
33 */
34 L[11777777777/7777777/7777/77/77/77/7/7/7//7/7/77/7/77/777/777/777
35 module isString(
36 input [9:0] CounterX,
37 output string);
38
39 assign string = (CounterX==128 | CounterX==256 | CounterX==384 | CounterX==512);
40
41 endmodule
42
43 L[1177777777777777777/7777/77/77/77/77/7/7/7//77/7/7/7/777/77/7/777
44 /*
45 Project: Rhythm Game, Final project of E155
46
47 Names: Einar B Magnusson and Alexandre Amert
48
49 isBar:

50 Determines whether the pixel is on the bottom bar

51 */

52 L[1177777777777777777/7777777/77/77/77/7/77/77/7/77/77/777/777
53 module isBar(

54 input [8:0] Countery,

55 output bar);

56

57 assign bar = (CounterY<433 & CounterY>407);

58

59 endmodule

60

61 /1177777777777 777777/7777777/77/77/77/7/7/7/77/7/7/7/77/777/777

Page 1

display_ VGA.v Fri Dec 11 12:16:48 2009

62 /*

63 Project: Rhythm Game, Final project of E155

64

65 Names: Einar B Magnusson and Alexandre Amert

66

67 isScoreBarOutline:

68 Determines whether the pixel is on the outline of the

69 score bar

70 */

71 L[117/777777777777777/7777/77/77/77/7/7/7//77//77/7/7/77/7/777/777
72 module isScoreBarOutline(

73 input [9:0] CounterX,

74 input [8:0] Countery,

75 output isScoreOutline);

76

77 assign isScoreOutline = (CounterX==256 | CounterX==384 |
78 (Counterx<384 & CounterX>256 &(CounterY%15==0)));
79

80 endmodule

81

82 L[117/777777777777777/7777/77/77/77/77/7/77/77/7/7/7/7/77/77/7/777
83 /*

84 Project: Rhythm Game, Final project of E155

85

86 Names: Einar B Magnusson and Alexandre Amert

87

88 isScoreBar:

89 Determines whether the pixel is on the colored part

90 of the score bar

91 */

92 /1177777777777 777777/7777/77/77/77/77/7/7/7//77/7/77/7/777/777
93 module isScoreBar(

94 input [9:0] CounterX,

95 input [8:0] Countery,

96 input [4:0] data,

97 output isScoreBar);

98

99 assign isScoreBar = ((CounterxX<384 & CounterXx>256)& (CounterY>(480-15*data)));
100

101 endmodule

102

103 [1/17/7777777777777777/7777/77/7777/7777/7/7/77/7/77/777/777/777
104 /*

105 Project: Rhythm Game, Final project of E155

106

107 Names: Einar B Magnusson and Alexandre Amert

108

109 isBar:

110 Determines whether the pixel is on the difficulty

111 selection box centered at center

112 */

113 L[1177777777777777777/7777777/77/77/77/7/77/77/7/77/77/777/777
114 module isDiffBox(

115 input [9:0] center,

116 input [9:0] CounterX,

117 input [8:0] Countery,

118 output isBox);

119

120 assign isBox = (CounterX>center-40 & CounterX <center+40 &
121 CounterY<280 & CounterY>200);

122

Page 2

~display_VGA.v

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

Fri Dec 11 12:16:49 2009

endmodule

L[117/777777777777777/7777/77/77/77/77/7/77/77/7/7/7/7/7/777/777
/*
Project: Rhythm Game, Final project of E155

Names: Einar B Magnusson and Alexandre Amert

PixelColor:
Depending on the which elements the pixel is on and their

different priorities, determines the color.

*/
L[117/777777777777777/7777/77/77/77/77/7/7/7/77/7/77/77/777/777
module PixelColor(

input clk,newNotel,newNote2,newNote3,newNote4, inDisplayArea,
string, stringl, string2, string3, string4, bar, flash,isscoreline,

isscorebar, iseasy, ismedium, ishard, isveryhard,
input [1:0] mode,
output reg [2:0] RGB);

always @(posedge clk)
begin
if(mode==1)
begin
if(~-inDisplayArea)
RGB<=0;
else if(stringl)
RGB<=3"b110;
else if(string2)
RGB<=3"b010;
else if(string3)
RGB<=3"b001;
else if(string4)
RGB<=3"b011;
else if(bar)
begin
if(flash)
RGB<=3"b100;
else
RGB<=3"b111;
end
else if(string)
RGB<=3"b111;
else
RGB<=3"b000;
end
else if(node==2)
begin
if(isscoreline)
RGB<=3"b111;
else if(isscorebar)
RGB<=3"b010;
else
RGB<=0;

end

else

begin
if(iseasy)

Page 3

display VGA.v Fri Dec 11 12:16:50 2009

184 RGB<=3"b010;

185 else if(ismedium)

186 RGB<=3"b001;

187 else if(ishard)

188 RGB<=3"b101;

189 else if(isveryhard)

190 RGB<=3"b100;

191 else

192 RGB<=0;

193 end

194

195

196 end

197

198 endmodule

199

200 /*

201 module RGBsignal(input [2:0] RGB, output R, G, B);

202

203 assign R = RGB[2];

204 assign G = RGB[1];

205 assign B = RGB[O];

206

207 endmodule

208 */

209 /1177777777777 777777/7777/77/77/77/77/7/7/7//77/7/77/7/777/777

210 /*

211 Project: Rhythm Game, Final project of E155

212

213 Names: Einar B Magnusson and Alexandre Amert

214

215 makePixel :

216 Takes i1n all relevant data to determine what the color

217

218 of the current pixel should be.

219 */

220 L[11777777777/7777777/7777/77/77/77/7/7/7//7/7/77/7/77/777/777/777

221 module makePixel(

222 input clk, newNotel, newNote2, newNote3, newNote4, inDisplayArea,
223 input [1:0] mode,

224 input [9:0] CounterX,

225 input [8:0] Countery,

226 input [479:0] stringldata, string2data, string3data, string4data,
227 input flash,

228 output R,G,B

229);

230

231 wire stringl, string2, string3, string4, string, bar,isscoreline;
232 // wire [2:0] RGB;

233

234 wire [9:0] centerl= 128;

235 wire [9:0] center2= 256;

236 wire [9:0] center3= 384;

237 wire [9:0] center4= 512;

238

239 //check if the current pixel is on a note

240 isStringXnote stringlnote(centerl, CounterX, CounterY, stringldata, stringl);
241 isStringXnote string2note(center2, CounterX, CounterY, string2data, string2);
242 isStringXnote string3note(center3, CounterX, CounterY, string3data, string3);
243 isStringXnote string4note(center4, CounterX, CounterY, string4data, string4);
244

Page 4

display VGA.v Fri Dec 11 12:16:50 2009

245 //check if the current pixel is on a string or the bar

246 isString isstring(CounterX, string);

247 isBar isbar(CounterY, bar);

248

249 //for end-of-game mode, check if pixel is on score outlines or score bar
250 isScoreBarOutline isscoreoutl(CounterX,CounterY,isscoreline);

251 isScoreBar isscoreb(CounterX,CounterY,{flash,newNote4,newNote3,newNote2,
252 newNotel}, isscorebar);

253

254 //for beginning-of-game mode

255 isDiffBox isE(centerl,CounterX,CounterY,iseasy);

256 isDiffBox isM(center2,CounterX,CounterY,ismedium);

257 isDiffBox isH(center3,CounterX,CounterY,ishard);

258 isDiffBox isVH(center4,CounterX,CounterY, isveryhard);

259

260 //determine the color of the current pixel

261 PixelColor determineColor(clk,newNotel,newNote2,newNote3,newNote4, inDisplayArea,
262 string, stringl, string2, string3, string4, bar, flash, isscoreline,isscorebar,
263 iseasy, ismedium, ishard, isveryhard,mode, {R,G,B});

264 // RGBsignal splitThem(RGB,R,G,B);

265

266 endmodule

Page 5

	Final report v2.pdf
	top
	hvsync
	shiftregister
	displayVGA

