
HARVEY MUDD COLLEGE

Monophonic Digital MIDI-
Controlled Synthesizer
with Bitcrusher Effect

E155 Final Report

Leo Altmann and Madeleine Ong

12/11/2009

 A PIC microcontroller and a Xilinx FPGA were used to build a monophonic digital synthesizer.
The MIDI protocol was used for control. Pitch is controlled by the keys on a keyboard, and a
rotary control knob is used to change parameters on a bitcrusher effect. The output is a
sinusoid with varying degrees of amplitude resolution. The final deliverable met all the original
specifications. Notable design challenges were the MIDI receiver circuit and post-bitcrusher
amplitude correction.

Introduction

Project Overview

The goal of our project was to build a MIDI-controlled monophonic digital synthesizer. MIDI signals are

sent from an M-Audio O2 keyboard to a PIC for decoding. The PIC interprets the signals, determining

note on / off status, frequency, and control parameters for a bitcrusher (digital quantization distortion)

effect. These signals will be passed to the FPGA, which will generate a sine wave of corresponding

frequency, modify the signal with the bitcrusher circuit, and output the result to a D/A converter.

Figure 1: Block Diagram of System

As the bitcrush effect becomes more pronounced, the original sinusoid output looks closer to a series of

step function, as shown in Figure 2, adding a sheen to the tone.

Figure 2: Sample bitcrushed signal in comparison to original sinusoid output

MIDI Input
from

Keyboard

MIDI
Decoder

Tone
Generator

Bitcrusher

Effect

D/A
Converter

Amplifier Speaker

System Partition

The PIC was chosen to receive MIDI messages in order to take advantage of the capabilities of its build-

in USART serial transceiver. (Note: please refer to Appendix A for more details about the MIDI

protocol.) The MIDI protocol specification calls for an optocoupler circuit on receivers, to separate the

voltage and current used in transmission from those used as input to the processing circuit and to

eliminate ground loops between noise-sensitive audio devices. Such a circuit was implemented from

the standard schematic provided in the specification, using a 6N138 optocoupler. MIDI messages are

decoded on the PIC, producing note number, note on/off, and control message values. The PIC steps

through values of an angle theta, representing relative position within one period of a sine wave, and

sends the values to a sine lookup table on the FPGA when note on is asserted. Changing the rate at

which the wave is stepped through produces a different pitch.

The PIC interprets valid control bytes from a rotary control on the keyboard to produce a divisor for use

in the bitcrusher routine, and passes this value to the FPGA alongside the phase value. Major

components on the FPGA are a sine lookup table, a divider and a multiplier, all synthesized with Xilinx

CoreGen. Sine wave outputs from the lookup table are passed to the bitcrusher, where they are divided

by the divisor from the PIC, rounded down, and multiplied by the divisor to make the amplitude closer

to its original value. Bitcrushed values are passed to the D/A converter, and the output signal is

amplified by an LM386 chip-amp driving a generic 8-ohm speaker. A full schematic of the breadboarded

circuits can be found in Appendix E.

New Hardware

This project used a digital to analog converter (DAC), model AD558K DACPORT®. The DAC converts the

digital output from the FPGA into an analog sinusoid for a speaker. The AD558 takes in 8 channels of

data on pints DB0 to DB7 in parallel, giving it 8-bits of resolution with a numerical range of 0 to 255. In

this way, a fraction of the reference voltage, Vdd can be output proportional to the digital input. The pin

configuration of the DIP AD558 is shown in Figure 3 below.

Figure 3: AD558 Pin Configuration (DIP) [5]

The AD558 was powered by a +5V source, and outputs between 0 and +2.56 V due to pin-strapping of

VOUT to VOUTSENSE and VOUTSELECT, shown in Figure 4.

Figure 4: Pin-strapping of AD558 to select output voltage range. [5]

The DAC works by latching in the input values to the internal registers when chip enable bar (CE) or chip

select bar (CS) is set high and converting them into an analog voltage that is sent put out of VOUT when

they are set low, making the DAC transparent. When both are set low, the chip is transparent and the

data is continuously converted.

Optocoupler Circuit

The MIDI protocol specification calls for an optocoupler (or opto-isolator) circuit to be used as a buffer

on input terminals. An optocoupler uses an LED, powered by the input signal, to switch a

phototransistor and control current flow on the output. In the MIDI specification, an optocoupler is

used to isolate the current and voltage used to transmit between devices from more sensitive devices,

such as ICs, and to reduce audible distortion from ground loops between devices.

A schematic of the standard MIDI optocoupler circuitry from the protocol specification is shown in

Figure 5. The input is connected through a 270-ohm resistor to limit the current to 20mA from the 5.4V

transmission source, and a 1N914 diode was used to divert back-current from the optocoupler's internal

LED. Toggling the input will use the LED to control the phototransistors, thereby toggling the output

between the high-potential 5V source and the ground sink. An 0.1uF smoothing capacitor was added

between power and ground to reduce noise on the optocoupler output.

Figure 5: Optocoupler circuit for MIDI input, as defined in the protocol specification. [1]

Microcontroller Design

The PIC handles MIDI reception and decoding, keeps track of wave position and phase step, and passes

note on / data ready control signals, theta and divisor values to the FPGA. MIDI signals were received by

the USART on pin RC7. The USART transmitter was disabled, and the rest of PORTC was used to output

the bitcrusher divisor. Only RB1 and RB0 were used from PORTB, for ready and note on respectively.

The 13-bit phase value was passed to the FPGA using PORTA (RA4:RA0) for the 5 most significant bits

and PORTD for the 8 least significant bits. PORTE was not used.

Timer0 was configured to trigger interrupts at a rate of 44.1kHz. When an interrupt occurs, the PIC

clears the data ready output flag, computes the new theta from the current value and the step size for

the current frequency, writes the phase value to PORTA and PORTD, writes the crush divisor to PORTC,

and re-asserts the ready flag. Polling for MIDI data was chosen instead of using a second interrupt to

ensure that generating audio samples would take first priority, thereby reducing discontinuities in the

output signal.

The PIC code is split in to four main sections: initialization, MIDI reception, MIDI decoding and sample

generation. The initialization section defines variables, sets the tri-state buffers for each port,

configures USART, timer and interrupt control registers, and initializes outputs to their note-off state.

The MIDI reception code is a finite state machine that polls for new MIDI bytes and assembles them into

complete MIDI messages. The FSM also tracks “running status” messages, a feature of the protocol

where multiple data values of the same type are sent in rapid succession after a single status byte. It

stores the most recent status byte and passes it to the decoder again if the first byte of a new message

is data (value is < 128).

A subroutine to decode incoming MIDI messages is called by the receiver FSM when it as assembled a

complete message. If the status byte denotes a note on event, the value of the phase step per sample is

changed according to the note number received. Phase steps are stored in a program memory data

table, indexed by note number. The values were computed beforehand using the Python script in

Appendix B. Note on messages with zero velocity are interpreted as note off messages. When a control

message is received, if it is from the correct control knob and non-zero, it is set as the new bitcrusher

divisor. Sample generation code is run every time timer0 issues an interrupt. The data ready flag is set

low, a new phase value is computed from the previous phase and the phase step value, the divisor and

new phase value are written to their respective data ports, and the ready flag is reasserted.

FPGA Implementation

The FPGA was used to create the sine wave and bitcrush the values according to the dial control on the

keyboard. This was achieved through the use of three Xilinx CoreGen modules [4]: SinCos, Divider and

Multiplier. These modules generated a sine value from relative phase position, reduced the resolution of

the value, and scaled up the divided value, respectively. The timing of the output data was controlled by

a ready signal from the PIC, representing when the received data bytes were valid. A general block

diagram is shown in Figure 6.

Figure 6: Block diagram of FPGA functions

The first core is SinCos v5.0, a sine function generator. It takes in the input theta, representing the

fractional position within one period of a sine wave, and outputs the value of the sine function at the

given position. The input theta was configured to be thirteen bits wide, in order to maximize the pitch

resolution of the sine wave. The output was 8 bits wide, to make the eventual output compatible with

the 8-bit DAC.

The second core used is Divider v5.0, and is used to produce the bitcrusher effect. The 8-bit output from

the sine generator is divided by the divisor (crush amount) sent from the PIC. This is proportional to the

dial on the keyboard. The resulting quotient is also 8-bits, with the remainder ignored.

This value was then scaled back up using the Multiplier v11.2 core. This is done to maximize the

oscillation magnitude so the signal can be audibly heard when eventually passed through the DAC. The

divisor was used as the scaling factor in order to recreate a value of similar magnitude to the original

value. Since the lost resolution cannot be recreated, this results in quantization noise that changes the

character of the sound. Output values from the bitcrusher are passed to the D/A converter when they

become available.

These values are forwarded conditionally, based on the input ready and note on signal. The ready signal

indicates the data is valid when it goes low. At the time the signal goes low, the DAC controls for

CE andCS are similarly set low to allow the valid output data to go through. This data is either the

crushed value from the sine generator or silence, based on whether note on is high or low, respectively.

This prevents metastable or incorrect data from being outputted.

Results

The final deliverable met all the goals set out in the project proposal. The schematics of the

breadboarded circuits and block diagrams are located in the Appendices. MIDI note and control

messages are properly received and decoded, samples are generated at 44.1kHz producing a sine wave

of appropriate frequency when a key is pressed, and the bitcrusher introduces quantization noise to the

signal as expected. An additional feature was also added: if two keys are held at once, when one is

released the other note resumes playing.

MIDI reception proved to be more difficult to implement than was originally anticipated. Optocouplers

are sensitive devices, as was discovered when one was destroyed early in development and went

unnoticed for a period of time. The output from the circuit was also inverted from what we expected,

generating garbage data and framing errors on every byte until the issue was located. An inverter IC

was used initially, but removed later once the USART configuration for inverted input was found. Even

after the optocoupler circuit was producing clean, accurate signals, receiving MIDI bytes with the USART

produced inconsistent results with the device in low-speed mode. Consistent results were achieved

using the device in high-speed mode with the 16-bit internal timer. Final configuration values are shown

in Table 1.

Table 1: PIC configuration register values used for MIDI reception. 'x' denotes don't-care.

Register Value (Bits) Description

RCSTA 0b10010000 (7) Enable USART (6) 8-bit messages (5) x (4) Enable receiver
(3) Disable address detection (2:0) Clear interrupt flags

TXSTA 0b01000100 (7) x (6) 8-bit messages (5) Disable transmitter (4) Asynch. mode
(3) x (2) High-speed mode (1:0) Clear interrupt flags

BAUDCON 0b00101000 (7:6) Clear status bits (5) RX signal is inverted (4) TX idle low
(3) Use 16-bit timer (2) x (1) Continuously sample input (0) Disable auto
baud-rate detection

SPBRG 0b10011111 Calculated timer offset for 31250 baud with above settings (see PIC18LF4520
datasheet)

MIDI reception was further complicated by the presence of unexpected messages in the datastream.

The protocol supports System Real-Time messages, which are meant to be transmitted at regular

intervals for timing purposes. In our case, the keyboard was transmitting a form of heartbeat byte

called an Active Sensing message every 300ms, at times even in the middle of other messages. The

solution implemented adds an extra loop around the poll and receive byte routine that discards bad

bytes and continues polling until a valid byte is received. It was also found to be advantageous to

separate the MIDI reception and decoding processes into two different routines. This simplified the

receiver state machine, reducing the code to approximately half its original size, and eliminated several

large, complex conditional structures.

Several timing and resolution issues were also encountered that were not related to serial reception.

Original plans called for an 8-bit phase value to drive the sine generator on the FPGA, but additional

precision was added later on. This allowed the synthesizer to achieve the desired sample rate without

rounding errors drastically altering the pitch at lower frequencies. The final implementation used a 13-

bit phase value, transmitted over PORTD and most of PORTA. Additionally, the sample timing was tuned

so that the pitch of notes played matched standard frequencies. Using an oscilloscope, a timer offset

value was experimentally determined to ensure proper sample rate timing despite the delay from

interrupt code execution.

The FPGA successfully created a sine wave with resolution proportional to the keyboard dial input. The

distortion was visible on an oscilloscope and produced the predicted audio effect. There was issues with

the amplitude, as output from the ADC have varying amplitudes in the oscillation based on the size of

the divider. Whenever the divider was a multiple of two, the signal had the maximum amplitude.

Otherwise, the amplitude decreased as the divider increased between these powers of two. This was

due to the method of reintroducing amplitude. The multiplier did not increase the amplitude enough,

but it was sufficient to be heard over the speaker.

There were significant differences in our original design of the FPGA modules compared to what was

eventually used. Initially we had only two Xilinx CoreGens, with a priority encoder instead of the

multiplier to reintroduce the correct amplitude. This led to problems as not enough amplitude was

reintroduced with a simple priority encoder and upshifter. Therefore the signal did not have enough of

an oscillation to be heard when the divider was not a power of two.

Additionally, there was a significant amount of noise that was introduced to the signal. This was

proportional to the amplitude of the signal. Most of the noise was filtered out using an analog low pass

filter circuit, but a significant amount still remained. Future work looking into solutions for this would

include the implementation of a better filter as well as looking into the effects of DAC latching on the

signal output. The drops and increases in the signal noise occurred at the same time the ready signal

changed. Becuase the DAC controls were tied to ready through the FPGA, we feel that the latching could

possibly be a large reason for the introduced noise, but the data sheet for the AD558 did not talk much

about the electrical limitations of the chip. Unfortunately, this means the signal still does not sound like

a completely pure tone, but the note is definitely recognizable and had an interesting computerized

quality.

References

[1] http://www.midi.org/techspecs/index.php
[2] http://www.ibiblio.org/emusic-l/info-docs-FAQs/MIDI-doc/MIDI-Statusbytes.txt
[3] http://www.phys.unsw.edu.au/jw/notes.html
[4] http://www.xilinx.com/ipcenter/index.htm

http://www.midi.org/techspecs/index.php
http://www.ibiblio.org/emusic-l/info-docs-FAQs/MIDI-doc/MIDI-Statusbytes.txt
http://www.phys.unsw.edu.au/jw/notes.html
http://www.xilinx.com/ipcenter/index.htm

Parts List

Description Part Number Manufacturer Supplier Quantity Price (USD)

MIDI Cable DIN 5 M/M CableWholesale 1 1.75

Keyboard O2 MIDI USB M-Audio M-Audio 1 100
Optocoupler 6N138QT-ND Fairchild

Optoelectronics
Group

Digikey 1 1.16

DAC AD558KNZ-ND DACPORT Digikey 1 18.02
Opamp LM386 National

Semiconductor
Digikey 1 1.01

220Ω Resistor 690700 CIC Components Jameco 1 0.015

270Ω Resistor 690726 CIC Components Jameco 1 0.015

1.2kΩ Resistor 690881 CIC Components Jameco 1 0.015
1kΩ Resistor 690865 CIC Components Jameco 1 0.015

390Ω Resistor 690769 CIC Components Jameco 1 0.015

0.1uF Capacitor 25523 Sunrom Technologies Jameco 3 0.08
0.047uF Capacitor 57621 Panasonic Digikey 1 0.12

10 uF Capacitor 10882 Panasonic Jameco 1 0.015

Speaker 57RF05 Std Intl HK Limited Load Parts 1 10

Appendix A: Overview of the MIDI Protocol

The Musical Instrument Digital Interface (MIDI) protocol, established in 1983, is a serial transmission

standard for control signals relevant to musical instruments. It transmits little-endian 8-bit words plus

one start bit and one stop bit at 31250 baud over DIN-5 cables with 20mA current at 5.4VDC, idling at

logic high. A complete MIDI message is three bytes. The first byte, known as the status byte, contains

the type of message and the channel number. The remaining bytes contain values pertinent to the

message type. For note-on messages, the second byte contains the note number, and the third byte

contains note velocity. Control messages, triggered by the knobs and faders on a control surface,

contain the control number in the second byte and the control value in the third. A note-on with zero

velocity is equivalent to a note-off.

MIDI was designed specifically for audio control applications, and it is reflected in the standards it calls

for. The protocol specifies optocoupler circuits on every receiver, to prevent ground loops from forming

with potential to cause audible distortion, and to separate transmission voltage and current from the

processing logic. As indicated by the high baud rate, the MIDI protocol was designed so that a sequence

of messages, for example the keys making up a chord on a keyboard, could appear to be sent

simultaneously. To this end, the protocol supports “running status” messages, where one status byte

gives context for a series of data byte pairs. For example, when a musician plays a chord, the keyboard

could eliminate overhead by transmitting a single status byte, indicating note-on and its channel,

followed by only the note number and velocity bytes for each key pressed. Since all status bytes begin

with a 1, and thus are greater than or equal to 0x80, while data values are limited to 128 values from

0x00 to 0x7F, running status support can be implemented without excessive difficulty.

For more information about MIDI, please refer to the complete MIDI specification listed under

References [1].

Appendix B: Generating Phase Step Values

The following code, written in Python, was used to generate the phase step values (dphase)

corresponding to each note number.

bits = 13 % Bit width of phase value

fs = 44100 % Sample rate (Hz)

for i in range(51,109): % Valid note numbers for our implementation

 f = 440*pow(2,(i-69)/12.0) % Compute frequency, with A440 (note 69) as reference

 dphase = int(round(pow(2,bits)*f/fs)) % Compute dphase = f/fs * 2^bits

 print str(dphase)+", " % Print output in format for data table

Appendix C: Verilog for FPGA Implementation

//

// Leo Altmann and Madeleine Ong

// E155 Final Project

// MIDI Synthesizer

// Fall 2009

//

module top(input ready,

 input noteoo,

 input clk,

 input [12:0] theta,

 input [5:0] dialone,

 output reg [7:0] crushed,

 output reg [1:0] adcctrl); // cebar,csbar

 wire [7:0] sinevalue;

 wire [7:0] newcrushed;

 wire [1:0] controls;

 // singen si(theta,sinevalue);

 singenagain si(theta, clk, sinevalue);

 // bitcrush (divider)

 bitcrush bc(sinevalue, dialone, clk, newcrushed);

 // logic

 assign controls = {noteoo, ready};

 assign adctrl = ready;

 always @(*)

 case (controls)

 2'bx1: begin // not valid

 adcctrl <= ready; // latch the value

 end

 2'b00: begin // note off

 crushed <= 8'b0; // silence!

 adcctrl <= 2'b0; // transparent

 end

 2'b10: begin // note on

 crushed <= newcrushed; // transmit data

 adcctrl <= 2'b0; // transparent

 end

 default: begin

 crushed <= 8'b0;

 adcctrl <= 2'b0;

 end

 endcase

endmodule

//

// Leo Altmann and Madeleine Ong

// E155 Final Project

// MIDI Synthesizer

// Fall 2009

// Module: Bitcrush

// Function: Takes in a sine value, decreases its resolution by dividing it down

// then scaling it back up with the same factor. Also shifts data into the positive

// range (un-two's-complements it)

//

module bitcrush(input [7:0] dividend,

 input [5:0] divisor,

 input clk,

 output [7:0] crushed);

 wire [5:0] remd;

 wire [7:0] quot;

 wire [7:0] shiftone;

 wire [7:0] shifttwo;

 wire [7:0] shiftthree;

 wire [7:0] shiftfour;

 wire [7:0] shiftfive;

 reg [7:0] newcrushed;

 // dividor(sinevalue, dialcontrol, dividedvalue, remainder, clk, readyfordata)

 divider di(dividend, divisor, quot, remd, clk, rfd);

 // rescales data (dividedvalue, dialcontrol, clk)

 multiplier mu(quot,divisor, clk);

 assign crushed = newcrushed + 8'b01000000;

endmodule

Appendix D: PIC Program Code

/* midisynth.c -- MIDI-Controlled Digital Synthesizer

 Leo Altmann <laltmann@hmc.edu>

 Madeleine Ong <mong@hmc.edu>

 ENG 155 Final Project

 Created: 11/19/2009

 Modified: 12/08/2009

 Receives MIDI messages, taken from an optocoupler output. Decodes note on messages that

 determine pitch, and control messages to change the bitcrusher parameters. This program

 sends 22 bits to the FPGA: 13-bit phase value for sinusoid generator, 7-bit divisor for

 bitcrusher routine, note on and data ready.

 DIE CODES:

 0xFA: Bad interrupt

*/

#include <p18f4520.h>

#include <stdio.h>

#include <stdlib.h>

// Prototypes

char getCharMidi(void);

void isr(void);

void processMessage(void);

void die(char message);

rom unsigned int phasesteps[];

// Globals

#define SAMPLETIME 143 // Experimentally determined for 44.1kHz, timer0 w/ no prescalar

#define STATUSMASK 0xF0 // For masking channel voice message

#define ONMASK 0x01 // Sets note on signal

#define OFFMASK 0xFE // Clears note on signal

#define READYMASK 0x02 // Data ready flag on

#define UNREADYMASK 0xFD // Data ready flag off

#define DIEMASK 0x0C // Exception alert

#define CRUSHCONTROL 73 // Which rotary controls the bitcrusher

#define NOTE_ON 0b1001 // Op-codes from status bytes

#define NOTE_OFF 0b1000

#define CONTROL 0b1011

unsigned int phase = 0x0000; // Actually only using 13 bits

unsigned int dphase = 0x009A; // Phase step

unsigned char crush = 1; // Divisor for bitcrusher

unsigned char statusByte = 0;

unsigned char dataByte1 = 0;

unsigned char dataByte2 = 0;

unsigned char midiIn = 0; // New midi byte

unsigned char currNote = 0;

unsigned char lastNote = 0;

char rcvState = 0; // MIDI receiver state

char lastOp = 0; // Most recent status byte

// Interrupt vector

#pragma code high_vector = 0x08

void high_interrupt(void) {

 _asm

 GOTO isr

 _endasm

}

// Main Functions

#pragma code

void main(void) {

 // PIC Configuration

 /*

 PORTA

 5 unused

 4:0 phase out MSBs

 PORTB

 5:2 DEBUG LEDs

 1 DATA READY

 0 NOTE ON

 PORTC

 7 MIDI IN (USART)

 6:0 crush out

 PORTD

 7:0 phase out LSBs

 PORTE

 unused

 PORTC, PORTD and PORTE map directly from the PIC to the FPGA.

 */

 TRISA = 0b00000000; // Used for debug LEDs

 TRISB = 0b00000000;

 TRISC = 0b10000000; // Use PORTC[7] for USART input

 TRISD = 0b00000000;

 TRISE = 0b00000000;

 RCSTA = 0b10010000; // Enable USART, in 8-bit mode, x, enable receiver,no address detect,

 // clear framing error, clear overrun error, clear 9th bit.

 TXSTA = 0b01000100; // x, 8-bit mode, disable transmit, asynch mode,??, high speed,x, x

 BAUDCON = 0b00001000; // clear,clear 0,x,16-bit mode,0, sample continuously, no auto baud

 SPBRG = 159; // 31250 baud, 16-bit asynch., high speed

 // each byte is 320 us at 31250 baud

 // Timer0: want 113.38 instructions per sample

 T0CON = 0b11001000; // Enable timer, 8-bit mode, internal clock, low-hi transition,

 // no prescalar

 TMR0L = SAMPLETIME; // Load and start the timer

 INTCON = 0b10100000; // Use interrupts, enable timer 0 interrupt

 WDTCON = 0; // Disable watchdog timer

 PORTA = 0;

 PORTD = 0;

 PORTB = 0x03; // Debug LEDs

 while (1) {

 // MIDI Decoder FSM

 // Re-written for run-time efficiency and robustness.

 switch (rcvState) {

 case 0: // First byte of message

 midiIn = getCharMidi();

 //PORTD = 0xF0;

 if (midiIn > 127) {

 statusByte = midiIn >> 4;

 rcvState = 1;

 PORTA = 1;

 break;

 } // else: message began with data byte, roll into next state

 case 1: // First data byte of message

 // Only get new byte if old one is processed

 if (rcvState == 1) { midiIn = getCharMidi(); }

 dataByte1 = midiIn;

 rcvState = 2;

 break;

 case 2: // Second data byte of message

 midiIn = getCharMidi();

 dataByte2 = midiIn;

 processMessage(); // Decode message

 default: rcvState = 0;

 }

 }

}

void processMessage(void) {

 // Decodes complete MIDI messages after reception

 switch (statusByte) {

 case NOTE_ON:

 if (dataByte2 > 0) { // Zero velocity denotes note off

 lastNote = currNote;

 currNote = dataByte1;

 dphase = phasesteps[currNote];

 PORTB = PORTB | ONMASK;

 break;

 } // If it was really note off, roll into next case

 case NOTE_OFF:

 if (lastNote) {

 if (lastNote == dataByte1) {

 lastNote = 0;

 } else {

 currNote = lastNote;

 lastNote = 0;

 dphase = phasesteps[currNote];

 }

 } else {

 currNote = 0;

 PORTB = PORTB & OFFMASK;

 } break;

 case CONTROL:

 if ((dataByte1 == CRUSHCONTROL) & (dataByte2 > 0)) {

 crush = dataByte2;

 } break;

 default: break; // Discard byte

 }

}

char getCharMidi(void) {

 // Poll the UART for a new MIDI character input

 while (1) { // Extra loop to ensure heartbeat bytes don't disrupt the system

 while (~PIR1bits.RCIF) {} // Poll for new byte

 if (RCSTAbits.FERR) { // Framing error

 PORTB = PORTB | DIEMASK;

 }

 if (RCREG != 0xFE) { // Ignore bad bytes

 return RCREG;

 }

 }

}

void die(char message) {

 // Some fatal error has occured.

 // Stop the program and give the programmer some feedback!

 INTCON = 0; // Disable interrupts

 T0CON = 0; // Disable timer0

 PORTD = message; // Alert programmer

 PORTB = PORTB | DIEMASK;

 while (1) {} // Do no more harm

}

#pragma interrupt isr

void isr(void) {

 if (INTCONbits.TMR0IF) { // Timer 0 interrupt

 PORTB = PORTB & UNREADYMASK; // Clear ready flag

 INTCONbits.TMR0IF = 0; // Clear interrupt flag

 PORTD = phase; // Send data to FPGA

 PORTA = (phase >> 8);

 PORTC = (crush & 0x7F);

 phase += dphase; // Update the wave phase

 TMR0L = SAMPLETIME; // Restart sample timer

 PORTB = PORTB | READYMASK; // Set ready flag

 } else {

 // How did we get here?

 die(0xFA);

 }

}

#pragma code

rom unsigned int phasesteps[] = {

 // Table of values for dphase, indexed by note number

 // Zeros for unused note numbers prevent address errors

 // A4 (440) = MIDI note 69

 // Frequency = 440 * pow(2.0,(note-69.0)/12.0);

 // dphase = pow(2, BITS) * frequency / FS;

 // BITS = 13, FS = 44100

 0, 0, 0, 0, 0, // 0-4

 0, 0, 0, 0, 0, // 5-9

 0, 0, 0, 0, 0, // 10-14

 0, 0, 0, 0, 0, // 15-19

 0, 0, 0, 0, 0, // 20-24

 0, 0, 0, 0, 0, // 25-29

 0, 0, 0, 0, 0, // 30-34

 0, 0, 0, 0, 0, // 35-39

 0, 0, 0, 0, 0, // 40-44

 0, 0, 0, 0, 0, // 45-49

 0, 29, 31, 32, 34, // 50-54

 36, 39, 41, 43, 46, // 55-59

 49, 51, 55, 58, 61, // 60-64

 65, 69, 73, 77, 82, // 65-69

 87, 92, 97, 103, 109, // 70-74

 116, 122, 130, 137, 146, // 75-79

 154, 163, 173, 183, 194, // 80-84

 206, 218, 231, 245, 259, // 85-89

 275, 291, 309, 327, 346, // 90-94

 367, 389, 412, 436, 462, // 95-99

 490, 519, 550, 583, 617, // 100-104

 654, 693, 734, 778 // 100-104

};

Appendix E: Breadboarded Schematic

The circuit was constructed in six modules: optocoupler circuit, PIC, FPGA, DAC and amplifier circuit for

the speaker.

LM386N

1 8

2 7

3 6

4 5

 1

2

3

5

6

7

8

10

11

12

13

14

15

82

83

84

85

86

87

89

97

98

99

100

102

103

104

105

112

113

116

118

119

390Ω

PIC Pin 34 (Ready)

Crushed [7:0]

SPARTAN

FPGA 3.3V Regulator

PIC

18F452

1 Vpp PGD 40

2 RA0 PGC 39

3 RA1 38

4 RA2 37

5 RA3 36

6 RA4 35

7 RA5 RB1 34

8 RB0 33

9 Power 32

10 Ground 31

11 Power RD7 30

12 Ground RD6 29

13 Clock RD5 28

14 RD4 27

15 RC0 RC7 26

16 RC1 RC6 25

17 RC2 RC5 24

18 RC3 RC4 23

19 RD0 RD3 22

20 RD1 RD2 21

5V Regulator

Dialone[6]

3.3V Regulator

Dialone[0]

Phase[3]

Dialone[4]

Dialone[5]

Phase[4]

Phase[5]

Phase[6]

Phase[7]

Phase[1]

Phase[0]

Dialone[3]

Dialone[2]

Dialone[1]

Phase[2]

3.3V Regulator

Note on/off

ReadyPIC Pin 33 (Note on/off)

RC0

7

Dialone[6:0]

RC1

RC2

RC3

RC4

RC5

RC6

4

Dialone[3:0]

3

Dialone[6:4]

RD0

RD1

RD2

RD3

RD4

RD5

RD6

RD6

8

Phase[7:0]

2

Phase[1:0]

6

Phase[7:2]

Phase[7:4]

4

DAC P8

DAC P7

DAC P6

DAC P5

DAC P4

DAC P3

DAC P2

DAC P1

1 16

2 15

3 14

4 13

5 12

6 11

7 CS 10

8 CE 9

8

DAC AD558

5V Regulator

VoutDAC P9 & P10

FPGA P1

FPGA P2

Sharp

6N138

1 8

2 7

3 6

4 5

5V Regulator

MIDI P5

220Ω 0.1uF270Ω

0.1uF10 uF

0.047uF

FPGA P112

FPGA P113

FPGA P116

FPGA P118

FPGA P119

PIC RA0

PIC RA1

PIC RA2

PIC RA3

PIC RA4

5

Phase[12:8]

5

Phase[12:8]

MIDI P4

1.2kΩ 0.1uF

1kΩ

MIDI

MIDI

0.1uF

	e155 finalreport
	mola schematic(2).pdf
	mola schematic(2).vsd
	Page-1

