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 A PIC microcontroller and a Xilinx FPGA were used to build a monophonic digital synthesizer.  
The MIDI protocol was used for control.  Pitch is controlled by the keys on a keyboard, and a 
rotary control knob is used to change parameters on a bitcrusher effect.  The output is a 
sinusoid with varying degrees of amplitude resolution.  The final deliverable met all the original 
specifications.  Notable design challenges were the MIDI receiver circuit and post-bitcrusher 
amplitude correction. 



Introduction 

Project Overview 
 
The goal of our project was to build a MIDI-controlled monophonic digital synthesizer.  MIDI signals are 

sent from an M-Audio O2 keyboard to a PIC for decoding.  The PIC interprets the signals, determining 

note on / off status, frequency, and control parameters for a bitcrusher (digital quantization distortion) 

effect. These signals will be passed to the FPGA, which will generate a sine wave of corresponding 

frequency, modify the signal with the bitcrusher circuit, and output the result to a D/A converter.  

 

Figure 1: Block Diagram of System 
 
As the bitcrush effect becomes more pronounced, the original sinusoid output looks closer to a series of 

step function, as shown in Figure 2, adding a sheen to the tone. 

 

Figure 2: Sample bitcrushed signal in comparison to original sinusoid output 
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System Partition 
 

The PIC was chosen to receive MIDI messages in order to take advantage of the capabilities of its build-

in USART serial transceiver.  (Note:  please refer to Appendix A for more details about the MIDI 

protocol.)  The MIDI protocol specification calls for an optocoupler circuit on receivers, to separate the 

voltage and current used in transmission from those used as input to the processing circuit and to 

eliminate ground loops between noise-sensitive audio devices.  Such a circuit was implemented from 

the standard schematic provided in the specification, using a 6N138 optocoupler.  MIDI messages are 

decoded on the PIC, producing note number, note on/off, and control message values.  The PIC steps 

through values of an angle theta, representing relative position within one period of a sine wave, and 

sends the values to a sine lookup table on the FPGA when note on is asserted.  Changing the rate at 

which the wave is stepped through produces a different pitch.   

 
The PIC interprets valid control bytes from a rotary control on the keyboard to produce a divisor for use 

in the bitcrusher routine, and passes this value to the FPGA alongside the phase value.  Major 

components on the FPGA are a sine lookup table, a divider and a multiplier, all synthesized with Xilinx 

CoreGen.  Sine wave outputs from the lookup table are passed to the bitcrusher, where they are divided 

by the divisor from the PIC, rounded down, and multiplied by the divisor to make the amplitude closer 

to its original value.  Bitcrushed values are passed to the D/A converter, and the output signal is 

amplified by an LM386 chip-amp driving a generic 8-ohm speaker. A full schematic of the breadboarded 

circuits can be found in Appendix E. 

New Hardware 
 
This project used a digital to analog converter (DAC), model AD558K DACPORT®. The DAC converts the 

digital output from the FPGA into an analog sinusoid for a speaker. The AD558 takes in 8 channels of 



data on pints DB0 to DB7 in parallel, giving it 8-bits of resolution with a numerical range of 0 to 255. In 

this way, a fraction of the reference voltage, Vdd can be output proportional to the digital input. The pin 

configuration of the DIP AD558 is shown in Figure 3 below. 

 

  
Figure 3: AD558 Pin Configuration (DIP) [5] 

 

The AD558 was powered by a +5V source, and outputs between 0 and +2.56 V due to pin-strapping of 

VOUT to VOUTSENSE and VOUTSELECT, shown in Figure 4.  

 

 
Figure 4: Pin-strapping of AD558 to select output voltage range. [5] 

 
 

The DAC works by latching in the input values to the internal registers when chip enable bar (CE    ) or chip 

select bar (CS   ) is set high and converting them into an analog voltage that is sent put out of VOUT when 

they are set low, making the DAC transparent. When both are set low, the chip is transparent and the 

data is continuously converted.  

 



Optocoupler Circuit 
 

The MIDI protocol specification calls for an optocoupler (or opto-isolator) circuit to be used as a buffer 

on input terminals.  An optocoupler uses an LED, powered by the input signal, to switch a 

phototransistor and control current flow on the output.  In the MIDI specification, an optocoupler is 

used to isolate the current and voltage used to transmit between devices from more sensitive devices, 

such as ICs, and to reduce audible distortion from ground loops between devices. 

 
A schematic of the standard MIDI optocoupler circuitry from the protocol specification is shown in 

Figure 5.  The input is connected through a 270-ohm resistor to limit the current to 20mA from the 5.4V 

transmission source, and a 1N914 diode was used to divert back-current from the optocoupler's internal 

LED.    Toggling the input will use the LED to control the phototransistors, thereby toggling the output 

between the high-potential 5V source and the ground sink.  An 0.1uF smoothing capacitor was added 

between power and ground to reduce noise on the optocoupler output. 

 
Figure 5:  Optocoupler circuit for MIDI input, as defined in the protocol specification.  [1] 

Microcontroller Design 
 

The PIC handles MIDI reception and decoding, keeps track of wave position and phase step, and passes 

note on / data ready control signals, theta and divisor values to the FPGA.  MIDI signals were received by 

 



the USART on pin RC7.  The USART transmitter was disabled, and the rest of PORTC was used to output 

the bitcrusher divisor.  Only RB1 and RB0 were used from PORTB, for ready and note on respectively.  

The 13-bit phase value was passed to the FPGA using PORTA (RA4:RA0) for the 5 most significant bits 

and PORTD for the 8 least significant bits.  PORTE was not used. 

 
 
Timer0 was configured to trigger interrupts at a rate of 44.1kHz.  When an interrupt occurs, the PIC 

clears the data ready output flag, computes the new theta from the current value and the step size for 

the current frequency, writes the phase value to PORTA and PORTD, writes the crush divisor to PORTC, 

and re-asserts the ready flag.  Polling for MIDI data was chosen instead of using a second interrupt to 

ensure that generating audio samples would take first priority, thereby reducing discontinuities in the 

output signal. 

 
The PIC code is split in to four main sections:  initialization, MIDI reception, MIDI decoding and sample 

generation.  The initialization section defines variables, sets the tri-state buffers for each port, 

configures USART, timer and interrupt control registers, and initializes outputs to their note-off state.  

The MIDI reception code is a finite state machine that polls for new MIDI bytes and assembles them into 

complete MIDI messages.  The FSM also tracks “running status” messages, a feature of the protocol 

where multiple data values of the same type are sent in rapid succession after a single status byte.  It 

stores the most recent status byte and passes it to the decoder again if the first byte of a new message 

is data (value is < 128).  

 
A subroutine to decode incoming MIDI messages is called by the receiver FSM when it as assembled a 

complete message.  If the status byte denotes a note on event, the value of the phase step per sample is 

changed according to the note number received.  Phase steps are stored in a program memory data 

table, indexed by note number.  The values were computed beforehand using the Python script in 



Appendix B.  Note on messages with zero velocity are interpreted as note off messages.  When a control 

message is received, if it is from the correct control knob and non-zero, it is set as the new bitcrusher 

divisor.  Sample generation code is run every time timer0 issues an interrupt.  The data ready flag is set 

low, a new phase value is computed from the previous phase and the phase step value, the divisor and 

new phase value are written to their respective data ports, and the ready flag is reasserted. 

FPGA Implementation 
 

The FPGA was used to create the sine wave and bitcrush the values according to the dial control on the 

keyboard. This was achieved through the use of three Xilinx CoreGen modules [4]: SinCos, Divider and 

Multiplier. These modules generated a sine value from relative phase position, reduced the resolution of 

the value, and scaled up the divided value, respectively. The timing of the output data was controlled by 

a ready signal from the PIC, representing when the received data bytes were valid. A general block 

diagram is shown in Figure 6. 

 
Figure 6: Block diagram of FPGA functions 

 
 

The first core is SinCos v5.0, a sine function generator. It takes in the input theta, representing the 

fractional position within one period of a sine wave, and outputs the value of the sine function at the 

given position.  The input theta was configured to be thirteen bits wide, in order to maximize the pitch 



resolution of the sine wave. The output was 8 bits wide, to make the eventual output compatible with 

the 8-bit DAC.  

 
The second core used is Divider v5.0, and is used to produce the bitcrusher effect.  The 8-bit output from 

the sine generator is divided by the divisor (crush amount) sent from the PIC. This is proportional to the 

dial on the keyboard. The resulting quotient is also 8-bits, with the remainder ignored.  

 
This value was then scaled back up using the Multiplier v11.2 core. This is done to maximize the 

oscillation magnitude so the signal can be audibly heard when eventually passed through the DAC. The 

divisor was used as the scaling factor in order to recreate a value of similar magnitude to the original 

value. Since the lost resolution cannot be recreated, this results in quantization noise that changes the 

character of the sound.  Output values from the bitcrusher are passed to the D/A converter when they 

become available.   

These values are forwarded conditionally, based on the input ready and note on signal. The ready signal 

indicates the data is valid when it goes low. At the time the signal goes low, the DAC controls for 

CE     andCS    are similarly set low to allow the valid output data to go through. This data is either the 

crushed value from the sine generator or silence, based on whether note on is high or low, respectively. 

This prevents metastable or incorrect data from being outputted. 

Results 
 
The final deliverable met all the goals set out in the project proposal.  The schematics of the 

breadboarded circuits and block diagrams are located in the Appendices. MIDI note and control 

messages are properly received and decoded, samples are generated at 44.1kHz producing a sine wave 

of appropriate frequency when a key is pressed, and the bitcrusher introduces quantization noise to the 



signal as expected.  An additional feature was also added:  if two keys are held at once, when one is 

released the other note resumes playing.   

 
MIDI reception proved to be more difficult to implement than was originally anticipated.  Optocouplers 

are sensitive devices, as was discovered when one was destroyed early in development and went 

unnoticed for a period of time.  The output from the circuit was also inverted from what we expected, 

generating garbage data and framing errors on every byte until the issue was located.  An inverter IC 

was used initially, but removed later once the USART configuration for inverted input was found.  Even 

after the optocoupler circuit was producing clean, accurate signals, receiving MIDI bytes with the USART 

produced inconsistent results with the device in low-speed mode.  Consistent results were achieved 

using the device in high-speed mode with the 16-bit internal timer.  Final configuration values are shown 

in Table 1. 

Table 1:  PIC configuration register values used for MIDI reception.  'x' denotes don't-care. 

Register Value (Bits)  Description 

RCSTA 0b10010000 (7) Enable USART  (6) 8-bit messages  (5) x  (4) Enable receiver   
(3) Disable address detection  (2:0) Clear interrupt flags 

TXSTA 0b01000100 (7) x  (6) 8-bit messages  (5) Disable transmitter  (4) Asynch. mode   
(3) x  (2) High-speed mode  (1:0) Clear interrupt flags 

BAUDCON 0b00101000 (7:6) Clear status bits  (5) RX signal is inverted  (4) TX idle low   
(3) Use 16-bit timer  (2) x  (1) Continuously sample input  (0) Disable auto 
baud-rate detection 

SPBRG 0b10011111 Calculated timer offset for 31250 baud with above settings (see PIC18LF4520 
datasheet) 

 
MIDI reception was further complicated by the presence of unexpected messages in the datastream.  

The protocol supports System Real-Time messages, which are meant to be transmitted at regular 

intervals for timing purposes.  In our case, the keyboard was transmitting a form of heartbeat byte 

called an Active Sensing message every 300ms, at times even in the middle of other messages.  The 

solution implemented adds an extra loop around the poll and receive byte routine that discards bad 

bytes and continues polling until a valid byte is received.  It was also found to be advantageous to 



separate the MIDI reception and decoding processes into two different routines.   This simplified the 

receiver state machine, reducing the code to approximately half its original size, and eliminated several 

large, complex conditional structures.   

 
Several timing and resolution issues were also encountered that were not related to serial reception.  

Original plans called for an 8-bit phase value to drive the sine generator on the FPGA, but additional 

precision was added later on.  This allowed the synthesizer to achieve the desired sample rate without 

rounding errors drastically altering the pitch at lower frequencies.  The final implementation used a 13-

bit phase value, transmitted over PORTD and most of PORTA.  Additionally, the sample timing was tuned 

so that the pitch of notes played matched standard frequencies.  Using an oscilloscope, a timer offset 

value was experimentally determined to ensure proper sample rate timing despite the delay from 

interrupt code execution.   

The FPGA successfully created a sine wave with resolution proportional to the keyboard dial input. The 

distortion was visible on an oscilloscope and produced the predicted audio effect. There was issues with 

the amplitude, as output from the ADC have varying amplitudes in the oscillation based on the size of 

the divider. Whenever the divider was a multiple of two, the signal had the maximum amplitude. 

Otherwise, the amplitude decreased as the divider increased between these powers of two. This was 

due to the method of reintroducing amplitude. The multiplier did not increase the amplitude enough, 

but it was sufficient to be heard over the speaker. 

 
There were significant differences in our original design of the FPGA modules compared to what was 

eventually used. Initially we had only two Xilinx CoreGens, with a priority encoder instead of the 

multiplier to reintroduce the correct amplitude. This led to problems as not enough amplitude was 

reintroduced with a simple priority encoder and upshifter. Therefore the signal did not have enough of 

an oscillation to be heard when the divider was not a power of two. 



 
Additionally, there was a significant amount of noise that was introduced to the signal. This was 

proportional to the amplitude of the signal. Most of the noise was filtered out using an analog low pass 

filter circuit, but a significant amount still remained. Future work looking into solutions for this would 

include the implementation of a better filter as well as looking into the effects of DAC latching on the 

signal output. The drops and increases in the signal noise occurred at the same time the ready signal 

changed. Becuase the DAC controls were tied to ready through the FPGA, we feel that the latching could 

possibly be a large reason for the introduced noise, but the data sheet for the AD558 did not talk much 

about the electrical limitations of the chip.  Unfortunately, this means the signal still does not sound like 

a completely pure tone, but the note is definitely recognizable and had an interesting computerized 

quality. 
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Parts List 
 

Description Part Number Manufacturer Supplier Quantity Price (USD) 

MIDI Cable DIN 5 M/M   CableWholesale 1 1.75 

Keyboard O2 MIDI USB M-Audio M-Audio 1 100 
Optocoupler 6N138QT-ND Fairchild 

Optoelectronics 
Group 

Digikey 1 1.16 

DAC AD558KNZ-ND DACPORT Digikey 1 18.02 
Opamp LM386 National 

Semiconductor 
Digikey 1 1.01 

220Ω Resistor 690700 CIC Components Jameco 1 0.015 

270Ω Resistor 690726 CIC Components Jameco 1 0.015 

1.2kΩ Resistor 690881 CIC Components Jameco 1 0.015 
1kΩ Resistor 690865 CIC Components Jameco 1 0.015 

390Ω Resistor 690769 CIC Components Jameco 1 0.015 

0.1uF Capacitor 25523 Sunrom Technologies Jameco 3 0.08 
0.047uF Capacitor 57621 Panasonic Digikey 1 0.12 

10 uF Capacitor 10882 Panasonic Jameco 1 0.015 

Speaker 57RF05 Std Intl HK Limited Load Parts 1 10 
 
 

  



Appendix A:  Overview of the MIDI Protocol 
 

The Musical Instrument Digital Interface (MIDI) protocol, established in 1983, is a serial transmission 

standard for control signals relevant to musical instruments.  It transmits little-endian 8-bit words plus 

one start bit and one stop bit at 31250 baud over DIN-5 cables with 20mA current at 5.4VDC, idling at 

logic high.  A complete MIDI message is three bytes.  The first byte, known as the status byte, contains 

the type of message and the channel number.   The remaining bytes contain values pertinent to the 

message type.  For note-on messages, the second byte contains the note number, and the third byte 

contains note velocity.  Control messages, triggered by the knobs and faders on a control surface, 

contain the control number in the second byte and the control value in the third.  A note-on with zero 

velocity is equivalent to a note-off. 

 
MIDI was designed specifically for audio control applications, and it is reflected in the standards it calls 

for.  The protocol specifies optocoupler circuits on every receiver, to prevent ground loops from forming 

with potential to cause audible distortion, and to separate transmission voltage and current from the 

processing logic.  As indicated by the high baud rate, the MIDI protocol was designed so that a sequence 

of messages, for example the keys making up a chord on a keyboard, could appear to be sent 

simultaneously.  To this end, the protocol supports “running status” messages, where one status byte 

gives context for a series of data byte pairs.  For example, when a musician plays a chord, the keyboard 

could eliminate overhead by transmitting a single status byte, indicating note-on and its channel, 

followed by only the note number and velocity bytes for each key pressed.  Since all status bytes begin 

with a 1, and thus are greater than or equal to 0x80, while data values are limited to 128 values from 

0x00 to 0x7F, running status support can be implemented without excessive difficulty.   

 
For more information about MIDI, please refer to the complete MIDI specification listed under 

References [1]. 



Appendix B:  Generating Phase Step Values 
 

The following code, written in Python, was used to generate the phase step values (dphase) 

corresponding to each note number. 

bits = 13 % Bit width of phase value 

fs = 44100 % Sample rate (Hz) 

 

for i in range(51,109):  % Valid note numbers for our implementation 

 f = 440*pow(2,(i-69)/12.0) % Compute frequency, with A440 (note 69) as reference 

 dphase = int(round(pow(2,bits)*f/fs)) % Compute dphase = f/fs * 2^bits 

 print str(dphase)+", "  % Print output in format for data table 

 

Appendix C:  Verilog for FPGA Implementation 
 

////////////////////////////////////////////////////////////////////////////////// 

// Leo Altmann and Madeleine Ong 

// E155 Final Project 

// MIDI Synthesizer 

// Fall 2009 

////////////////////////////////////////////////////////////////////////////////// 

module top( input    ready, 

    input    noteoo, 

    input     clk, 

    input   [12:0] theta, 

    input   [5:0] dialone,  

    output  reg [7:0]  crushed, 

    output  reg [1:0] adcctrl); // cebar,csbar 

 

 wire [7:0]  sinevalue;   

 wire [7:0]  newcrushed; 

 wire [1:0]  controls; 

  

 // singen si(theta,sinevalue); 

 singenagain si(theta, clk, sinevalue); 

 // bitcrush (divider) 



 bitcrush bc(sinevalue, dialone, clk, newcrushed); 

  

 // logic 

 assign controls = {noteoo, ready}; 

 assign adctrl = ready; 

  

 always @(*) 

  case (controls) 

   2'bx1: begin    // not valid 

    adcctrl <= ready; // latch the value 

    end 

   2'b00: begin   // note off 

    crushed <= 8'b0; // silence! 

    adcctrl <= 2'b0; // transparent 

    end 

   2'b10: begin   // note on 

    crushed <= newcrushed; // transmit data 

    adcctrl <= 2'b0;  // transparent 

    end 

   default: begin 

    crushed <= 8'b0; 

    adcctrl <= 2'b0;  

    end 

  endcase 

 

endmodule 

 

 

////////////////////////////////////////////////////////////////////////////////// 

// Leo Altmann and Madeleine Ong 

// E155 Final Project 

// MIDI Synthesizer 

// Fall 2009 

// Module: Bitcrush 

// Function: Takes in a sine value, decreases its resolution by dividing it down 

// then scaling it back up with the same factor. Also shifts data into the positive 

// range (un-two's-complements it) 

////////////////////////////////////////////////////////////////////////////////// 

module bitcrush( input  [7:0] dividend, 

      input  [5:0] divisor, 

      input    clk, 

      output  [7:0] crushed); 

 

 wire [5:0] remd; 

 wire [7:0] quot; 

 wire [7:0] shiftone; 

 wire [7:0] shifttwo; 

 wire [7:0] shiftthree; 

 wire [7:0] shiftfour; 



 wire [7:0] shiftfive; 

 reg  [7:0] newcrushed; 

  

 // dividor(sinevalue, dialcontrol, dividedvalue, remainder, clk, readyfordata) 

 divider di(dividend, divisor, quot, remd, clk, rfd);  

 // rescales data (dividedvalue, dialcontrol, clk) 

 multiplier mu(quot,divisor, clk);  

 

 assign crushed = newcrushed + 8'b01000000; 

  

endmodule 

Appendix D:  PIC Program Code 
 

/*  midisynth.c -- MIDI-Controlled Digital Synthesizer 

    Leo Altmann <laltmann@hmc.edu> 

    Madeleine Ong <mong@hmc.edu> 

    ENG 155 Final Project 

    Created:    11/19/2009  

    Modified:   12/08/2009 

 

    Receives MIDI messages, taken from an optocoupler output.  Decodes note on messages that  

    determine pitch, and control messages to change the bitcrusher parameters.  This program  

    sends 22 bits to the FPGA: 13-bit phase value for sinusoid generator, 7-bit divisor for  

    bitcrusher routine, note on and data ready.  

  

  

    DIE CODES:  

    0xFA:  Bad interrupt  

     

*/ 

 

#include <p18f4520.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

// Prototypes 

char getCharMidi(void);  

void isr(void);  

void processMessage(void);  

void die(char message); 

rom unsigned int phasesteps[];  

 

// Globals 

#define SAMPLETIME  143     // Experimentally determined for 44.1kHz, timer0 w/ no prescalar 

#define STATUSMASK  0xF0    // For masking channel voice message 

#define ONMASK      0x01   // Sets note on signal 



#define OFFMASK     0xFE   // Clears note on signal 

#define READYMASK   0x02 // Data ready flag on 

#define UNREADYMASK 0xFD    // Data ready flag off  

#define DIEMASK     0x0C   // Exception alert 

#define CRUSHCONTROL 73     // Which rotary controls the bitcrusher  

  

#define NOTE_ON     0b1001  // Op-codes from status bytes  

#define NOTE_OFF    0b1000  

#define CONTROL     0b1011  

 

unsigned int phase = 0x0000;    // Actually only using 13 bits 

unsigned int dphase = 0x009A;   // Phase step 

unsigned char crush = 1;        // Divisor for bitcrusher  

  

unsigned char statusByte = 0;  

unsigned char dataByte1 = 0;  

unsigned char dataByte2 = 0;  

  

unsigned char midiIn = 0;       // New midi byte  

unsigned char currNote = 0;  

unsigned char lastNote = 0; 

char rcvState = 0;              // MIDI receiver state  

char lastOp = 0;                // Most recent status byte 

 

// Interrupt vector 

#pragma code high_vector = 0x08 

 

void high_interrupt(void) { 

    _asm 

        GOTO isr 

    _endasm 

} 

 

// Main Functions  

#pragma code 

  

void main(void) { 

     

    // PIC Configuration 

 

    /*  

    PORTA 

    5  unused 

    4:0  phase out MSBs 

 

    PORTB 

    5:2  DEBUG LEDs 

    1  DATA READY 

    0  NOTE ON 



 

    PORTC 

    7  MIDI IN (USART) 

    6:0  crush out 

 

    PORTD 

    7:0  phase out LSBs 

  

    PORTE  

    unused 

 

    PORTC, PORTD and PORTE map directly from the PIC to the FPGA. 

     

    */ 

    TRISA = 0b00000000; // Used for debug LEDs 

    TRISB = 0b00000000; 

    TRISC = 0b10000000; // Use PORTC[7] for USART input 

    TRISD = 0b00000000;  

    TRISE = 0b00000000; 

 

    RCSTA = 0b10010000; // Enable USART, in 8-bit mode, x, enable receiver,no address detect, 

                        // clear framing error, clear overrun error, clear 9th bit.  

    TXSTA = 0b01000100; // x, 8-bit mode, disable transmit, asynch mode,??, high speed,x, x   

    BAUDCON = 0b00001000; // clear,clear 0,x,16-bit mode,0, sample continuously, no auto baud  

 

    SPBRG = 159;       // 31250 baud, 16-bit asynch., high speed   

                        // each byte is 320 us at 31250 baud 

      

                        // Timer0: want 113.38 instructions per sample 

    T0CON = 0b11001000; // Enable timer, 8-bit mode, internal clock, low-hi transition, 

                        //    no prescalar 

    TMR0L = SAMPLETIME; // Load and start the timer 

 

    INTCON = 0b10100000; // Use interrupts, enable timer 0 interrupt  

    WDTCON = 0;            // Disable watchdog timer  

  

    PORTA = 0;  

    PORTD = 0;  

    PORTB = 0x03;      // Debug LEDs  

  

    while (1) {  

  

        // MIDI Decoder FSM  

        // Re-written for run-time efficiency and robustness.  

        switch (rcvState) {  

             

            case 0:  // First byte of message  

                midiIn = getCharMidi();  

                //PORTD = 0xF0;  



                if (midiIn > 127) {   

                    statusByte = midiIn >> 4;  

                    rcvState = 1;  

                    PORTA = 1;  

                    break;  

                }   // else: message began with data byte, roll into next state  

             

            case 1:  //  First data byte of message  

                // Only get new byte if old one is processed  

                if (rcvState == 1) { midiIn = getCharMidi(); }   

                 

                dataByte1 = midiIn;  

                rcvState = 2;  

                break;  

             

            case 2: //  Second data byte of message  

                midiIn = getCharMidi();  

                dataByte2 = midiIn;  

                processMessage();   // Decode message  

             

            default: rcvState = 0;  

        }  

    }         

}  

  

void processMessage(void) {  

    // Decodes complete MIDI messages after reception  

    switch (statusByte) {  

        case NOTE_ON:   

            if (dataByte2 > 0) { // Zero velocity denotes note off  

                lastNote = currNote;  

                currNote = dataByte1;  

                dphase = phasesteps[currNote];  

                PORTB = PORTB | ONMASK;  

                break;  

            }   // If it was really note off, roll into next case  

          

        case NOTE_OFF:  

            if (lastNote) {  

                if (lastNote == dataByte1) {  

                    lastNote = 0;  

                } else {  

                    currNote = lastNote;  

                    lastNote = 0;  

                    dphase = phasesteps[currNote];  

                }  

            } else {  

                currNote = 0;  

                PORTB = PORTB & OFFMASK;  



            } break;  

  

        case CONTROL:  

            if ((dataByte1 == CRUSHCONTROL) & (dataByte2 > 0)) {  

                crush = dataByte2;  

            } break;  

  

        default: break;   // Discard byte  

    }  

}         

  

char getCharMidi(void) { 

    // Poll the UART for a new MIDI character input  

          

    while (1) {        // Extra loop to ensure heartbeat bytes don't disrupt the system  

        while (~PIR1bits.RCIF) {} // Poll for new byte  

  

        if (RCSTAbits.FERR)   {   // Framing error  

            PORTB = PORTB | DIEMASK;  

        }  

        if (RCREG != 0xFE) {  // Ignore bad bytes  

            return RCREG;  

        }  

    }  

}  

 

void die(char message) {  

    // Some fatal error has occured.  

    // Stop the program and give the programmer some feedback!  

    INTCON = 0;            // Disable interrupts  

    T0CON = 0;             // Disable timer0 

    PORTD = message;    // Alert programmer 

    PORTB = PORTB | DIEMASK;  

    while (1) {}       // Do no more harm 

}  

 

#pragma interrupt isr 

 

void isr(void) { 

     

    if (INTCONbits.TMR0IF) {   // Timer 0 interrupt  

        PORTB = PORTB & UNREADYMASK;    // Clear ready flag  

        INTCONbits.TMR0IF = 0;            // Clear interrupt flag  

        PORTD = phase;                  // Send data to FPGA  

        PORTA = (phase >> 8); 

        PORTC = (crush & 0x7F);  

        phase += dphase;                // Update the wave phase  

        TMR0L = SAMPLETIME;             // Restart sample timer  

        PORTB = PORTB | READYMASK;      // Set ready flag  



    } else { 

        // How did we get here? 

        die(0xFA); 

    } 

} 

 

#pragma code  

  

rom unsigned int phasesteps[] = {     

    // Table of values for dphase, indexed by note number  

    // Zeros for unused note numbers prevent address errors  

  

    // A4 (440) = MIDI note 69 

    // Frequency = 440 * pow(2.0,(note-69.0)/12.0);  

    // dphase = pow(2, BITS) * frequency / FS;  

    // BITS = 13, FS = 44100  

  

    0, 0, 0, 0, 0, // 0-4  

    0, 0, 0, 0, 0, // 5-9  

    0, 0, 0, 0, 0, // 10-14  

    0, 0, 0, 0, 0, // 15-19  

    0, 0, 0, 0, 0, // 20-24  

    0, 0, 0, 0, 0, // 25-29  

    0, 0, 0, 0, 0, // 30-34  

    0, 0, 0, 0, 0, // 35-39  

    0, 0, 0, 0, 0, // 40-44  

    0, 0, 0, 0, 0, // 45-49  

    0, 29,  31,  32,  34, // 50-54   

    36,  39,  41,  43,  46, // 55-59   

    49,  51,  55,  58,  61, // 60-64    

    65,  69,  73,  77,  82, // 65-69    

    87,  92,  97,  103,  109, // 70-74    

    116,  122,  130,  137,  146, // 75-79   

    154,  163,  173,  183,  194, // 80-84   

    206,  218,  231,  245,  259, // 85-89  

    275,  291,  309,  327,  346, // 90-94   

    367,  389,  412,  436,  462, // 95-99  

    490,  519,  550,  583,  617, // 100-104   

    654,  693,  734,  778       // 100-104   

 

}; 

Appendix E: Breadboarded Schematic 
 

The circuit was constructed in six modules: optocoupler circuit, PIC, FPGA, DAC and amplifier circuit for 

the speaker.  
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