
Pivonka and Pugh
-1-

Three-Stage Coil Gun

Final Project Report
December 8, 2006

E155

Dan Pivonka and Michael Pugh

Abstract:

A coil gun is an electronic gun that fires a projectile by means of the magnetic field
generated when a large pulse of current is run through a coil. In this project, a projectile
was propelled by three separate coils that were precisely fired to maximize acceleration.
Sets of two DC capacitors in series drove the large pulses of current through coils
constructed from magnetic wire. Before both the second and the third coils, a pair of
laser diodes and photo sensors measured the velocity of the projectile, which was used to
compute the optimum firing time for the next coil. Two final sets of lasers and photo
sensors gauged the exit velocity, and this was shown on a seven-segment display. During
testing and demonstration, the gun successfully fired all three coils; however, due to
weak laser diodes, the system occasionally would incorrectly measure exit velocity and
not completely reset, preventing immediate, repeat firing.

Pivonka and Pugh
-2-

Introduction

 The idea of electromagnetic guns has been around since roughly the 1900s, but

they have not been developed into many practical applications. They have been proposed

for applications such as delivering payloads into space; however this technology has not

yet been developed. There are two main types of electromagnetic guns: coil guns and rail

guns. Both have been shown to reach supersonic speeds, however this coil gun was not

designed to exceed velocities of a few meters per second due to safety concerns.

 In this project, the team created control and velocity measurement circuitry for a

coil gun powered by DC capacitors and coils. The coil gun accelerates the projectile by

running a strong impulse of current through a coil of wire with many turns, creating a

powerful magnetic field that accelerates a metal projectile. To provide the impulse of

current, a large DC capacitor discharges very quickly through the coil of wire. In order to

optimize the acceleration of the object, the pulse of current should fire as the projectile

approaches the coil, but should last no longer than the time it takes for the object to reach

the center of the coil. To increase exit velocity, the team created three separate coils

along the barrel of the gun; however, each of these needs to be precisely activated. The

specific firing time is determined by a velocity measurement between two photo sensors.

A final velocity measurement is performed after the last coil fires, and the velocity is

displayed on a seven-segment display. The entire system has been set up to reset after

each shot and recharge the capacitors so that the time between shots is only constrained

by the capacitors’ charging time. A basic outline of the system is shown in the block

diagram in Figure 1.

Pivonka and Pugh
-3-

Figure 1: Block Diagram of Firing Circuitry for Coil Gun

 The digital part of the project focuses on the control and firing circuitry for the

overall system. It starts by measuring the charge on the firing capacitors through a

voltage division circuit and the A/D converter on the PIC. Based on this measurement,

the PIC continuously provides a signal to the FPGA indicating whether the system is

ready. The FPGA then waits for the trigger signal from the user to fire the first coil. The

projectile fires through the barrel and sequentially blocks the first pair of laser diodes and

photo sensors. The FPGA receives the outputs from the photo sensors digitally and sends

an interrupt signal to the PIC as each photo sensor is blocked. The PIC starts a timer

when it receives the first interrupt from the FPGA and measures the timer on the second

interrupt, and it can then calculate the velocity of the projectile. From this velocity, the

PIC determines the exact time it needs to fire the next coil and generates an interrupt

when this time is reached. This interrupt sends a signal to the FPGA, and the FGPA then

fires the next coil in line. The fire signals from the PIC are amplified with operational

amplifiers to 15V, which is then applied to the gate of a power MOSFET to open the

channel and fire the coil.

Pivonka and Pugh
-4-

Schematics

Figure 2: Overall System Schematic

Pivonka and Pugh
-5-

17 V -17 V

17 V -17 V

17 V -17 V

Fi
gu

re
 3

:
C

ha
rg

in
g

an
d

Fi
ri

ng
 C

ir
cu

itr
y

Sc
he

m
at

ic

Pivonka and Pugh
-6-

3.3V

800 ohm

Digital
Output

Photosensitive
Transistor

Figure 4: Single Photo Sensor Schematic (6used)

Figure 5: Seven Segment Display Schematic

Microcontroller Design

 The PIC microcontroller has two primary functions in this design. The first is to

measure the charge of the capacitor banks and allow firing of the coils only when they are

completely charged. This is accomplished using the PIC’s built in A/D converter. As

Pivonka and Pugh
-7-

shown in Figure 6, two resistors in series were connected from the power supply line to

ground, creating a voltage divider that would divide a 50 V drop across both resistors into

an approximately 2.6 V drop across the second resistor. The PIC’s A/D converter was

connected between the resistors and programmed to use the internal 3.3 V and ground as

the reference high and low voltages. After initializing these settings, the PIC waits in a

while loop and samples the A/D input as quickly as possible. When it finally reads a

value greater than the number corresponding to 2.5 V, the PIC knows the capacitor banks

are charged. It sends a signal telling the FPGA that the system is ready to fire and moves

into the next module of code.

 The second function of the PIC is to calculate velocity values using the inputs

from the photo sensors and to predict the best time to fire the secondary coils. The FPGA

helps simplify these tasks by combining all the photo sensor outputs into a single

interrupt sent to the PIC and by firing the correct coil from only a single fire output from

the PIC. This allows the same procedure to be used regardless of which photo sensor pair

was triggered. The second module of code begins by setting up an interrupt to trigger on

the rising edge of an input to port INT0 and initializing a counter at a value of six. The

main code then continually loops until the counter reaches zero.

When port INT0, which is connected to the interrupt output of the FPGA, goes

high, the PIC jumps to an interrupt section. Here, the PIC uses the value of the counter to

determine whether the interrupt came from the first or second sensor in a pair. If it is the

first sensor, i.e. the counter is even, an internal timer is set to zero and initiated. However,

if it is the second sensor, the time is recorded from the sensor and two calculations are

performed. The velocity of the projectile is determined by dividing the distance between

sensors by the recorded time and is sent to the FPGA via the serial port. The optimum

time to fire is then calculated by dividing the distance to the center of the coil by the

projectile’s velocity and subtracting the coil’s firing time. This calculation makes the

assumption that the deceleration due to friction is small enough and the period of

acceleration when the coil fires is short enough so that the velocity of the projectile can

be treated as constant. The result is loaded into a compare register, and compare

interrupts are enabled. Regardless of which photo sensor was fired, the counter is

decremented by one.

Pivonka and Pugh
-8-

 If the device is functioning properly, after every two photo sensor interrupts the

timer should reach the determined firing time, and a compare interrupt triggers. While

both compare and photo sensor interrupts jump to the same code, a simple “if statement”

distinguishes the two. On compare interrupts, a fire signal is briefly turned on, the timer

is stopped, and compare interrupts are disabled. This leaves the PIC in a state ready to

accept interrupts from another sensor pair. Ultimately, the counter is reduced to zero,

breaking the while loop in the main code and sending the PIC back to measuring the

capacitor charge. This allows the whole process to repeat. A flow chart showing the

general algorithm used by the PIC is shown in Figure 6.

Figure 6: General Algorithm for PIC

FPGA

 The system has been designed with the simplest possible interrupt and fire signals

for the PIC, and much of this simplification is in the usage of the FPGA. On the FPGA,

the team employs two separate finite state machines (FSMs) that allow the photo sensor

Pivonka and Pugh
-9-

interrupts and the fire signal for each stage to be consolidated to a single PIC pin each.

The firing FSM, shown in Figure 7, will send signals to each of the three capacitor sets,

discharging them at the correct time. The FSM waits in the first state until both the

charge ready signal from the PIC and the trigger signal from the user go high. When this

occurs, the discharge signal for only the first coil, Coil[0], will turn on. The rest of the

firing sequence is controlled by the Fire input from the PIC. As explained in the

Microcontroller Design section, this signal briefly goes high at the instant the PIC

calculates to be the optimum firing time for the secondary coils. The third state is reached

when Fire rises for the first time and turns on the discharge signal for the second coil,

Coil[1]. An intermediate state, which is only reached when the fire signal goes low again,

prevents the third coil from immediately firing. The same procedure is used for the final

two states, allowing the next rise and fall of the Fire signal to discharge the last coil via

Coil[2]. Finally, a third Fire signal, calculated by the PIC as the best time to discharge a

non-existent fourth coil, indicates that the projectile has completely passed through the

third coil, and the FSM returns to the initial state, shutting off all three of the Coil

outputs.

Pivonka and Pugh
-10-

Figure 7: State Transition Diagram for the Coil Firing

The second FSM generates an interrupt signal for the PIC based on the inputs

from the photo sensors. The photo sensor inputs are represented by the bits photo[5:0].

The FSM remains in its initial state until both the first coil has fired and the first photo

sensor had been blocked. When both of these conditions are met, it moves into its next

state, which sends a digital interrupt to the PIC. The system then immediately moves into

its third state, in which the interrupt signal is set low. It remains in the third state until

the second photo sensor is blocked, and it then moves into a state in which the digital

interrupt is again set high. This process is repeated until the system has sent a digital

interrupt for each photo sensor. After all of the interrupts have occurred, the FSM returns

to its initial state and waits for both a trigger input from the user and for the first photo

sensor to again be blocked by the projectile. A state diagram is shown in Figure 8.

Pivonka and Pugh
-11-

Figure 8: State Transition Diagram for Photo Sensor Interrupts

 Finally, the FPGA receives the calculated exit velocities from the serial port on

the PIC and shows the result in hexadecimal on a dual seven-segment display. These

modules are attached in appendix B.

Pivonka and Pugh
-12-

Results

 The coil gun successfully fired and there was significant improvement with each

successive stage. It was able to measure the charge on the capacitors, to take the trigger

input from the user, and to measure the velocity and precisely fire the second and third

stages. The projectile reached speeds of approximately 4m/s, which was near the

expectation. Despite many successful demonstrations, the system did experience a lack

of robustness due to the fairly dim laser diodes and problems with alignment in the photo

sensors. To remedy these problems, the team ran the laser diodes well above their rated

voltage, and with this change every part of the system did function properly most of the

time. However, the laser diodes could not be left on because of the danger of burning

them out, and turning the lasers on and off made continuous firing without reset difficult.

Pivonka and Pugh
-13-

References

IN5408 Data Sheet
http://www.datasheetcatalog.com/datasheets_pdf/I/N/5/4/IN5408.shtml

Laser Diode Catalog sheet
http://dkc3.digikey.com/PDF/T063/1933.pdf

Coil Gun Information
http://www.oz.net/~coilgun/home.htm

Special thanks to Ted Jiang for his work on the analog circuitry.

Parts List:

Item Description Source Cost
17mF DC Capacitors Stock Room $0.00
Power Supplies Stock Room $0.00
IN5408 Diodes Stock Room $0.00
5mW Laser Diodes (6) Digi-Key $32.00
Photo Transistors (6) Digi-Key $2.50
MOSFET Transistors Digi-Key $30.00
15 Gauge Magnetic Wire RVac $25.00

Pivonka and Pugh
-14-

Appendix A: Micro Chip Code

// Dan Pivonka and Michael Pugh
// ALong with FPGA controls the firing of three stage coil gun

// Load files for PIC
#include <p18f452.h>
#include <timers.h>

/* Global Variables*/
// (5 cm)Distance between set of sensors in meters/(1.6 e-5)
unsigned int sDist = 0xC35;
// (15 cm)Distance from 1st sensors to coil in meters/(1.6 e-5)
unsigned int cDist = 0x249F;
// (.01s)Time of pulse in 2nd coil in seconds/(1.6 e-6)
unsigned int pTime = 0x186A;
// Temp variable
unsigned int time;
// Counter for photo sensor interrupts
char counter = 6;
// Min value A/D converter will read when caps charged
unsigned int voltage = 0xBE00, a = 0x00;

/* Function Prototypes */
void main(void);
void isr(void);

// Interrupts jump to isr method
#pragma code low_vector = 0x18
void low_interrupt(void) {
 _asm
 GOTO isr
 _endasm
}

#pragma code
void main(void)
{

 TRISE = 0x00;
 TRISA = 0xff;
 TRISC = 0x00;
 TRISD = 0x00;
 PORTD = 0x00;
 ADCON1 = 0x00;
 ADCON0 = 0x8d;
 SSPCON1 = 0x20; //enables serial port
 SSPSTAT = 0xC0; //Data on rising edge

 while(1)
 {
 // PORT E tells FPGA when capacitors are charging
 // (1 = charging, 0 = system ready to fire)
 PORTE = 0x01;
 while (a < voltage)
 {

Pivonka and Pugh
-15-

 while ((ADCON0 > 0x89))
 {
 }
 a = (ADRESH*0x100)+ADRESL;
 ADCON0 = 0x8d;
 }
 // Once charge is reached we reset the analog measurement
 // and turn off PORT E
 a = 0x0000;
 PORTE = 0x00;

 TRISB = 1; // Read interrupt signal from port B0(int0)

 // Set up compare register
 CCP1CON = 0x0A;
 CCPR1L = 0x00;
 CCPR1H = 0x00;

 // Interrupt when timer1 compares to CCP1 or INT0 rises
 INTCON = 0xD0; // enable global, peripheral,
 // and INT0 external intrpts
 INTCON2 = 0x40; // sets external intrpt to rising edge
 PIR1 = 0x00; // Clears peripheral flags

 // Set timer1 to 16-bit read/write and 1:8 prescale
 T1CON = 0xB0;

 counter = 0x06;
 // Loop until counter reaches zero,
 // indicating 6 photo sensor intrpts
 while(counter > 0x00)
 {
 }

 }
}

#pragma interruptlow isr
void isr(void) {
 if (INTCONbits.INT0IF) { // If next sensor was triggered
 if ((counter & 0x01)) { // If second of sensor pair
 time = TMR1L; // Take time from timer
 time = time + (TMR1H * 0x100);
 // Calculate velocity in m/s, send to FPGA
 SSPBUF = (sDist*0xA)/(time);
 // Calculate firing time
 time = (cDist/sDist)*time-pTime;
 // Load firing time into compare register
 CCPR1L = time;
 CCPR1H = time/0x100;
 PIE1 = 0x04; // enable compare interrupt
 }
 else { //if first of sensor pair
 TMR1H = 0x00; // Clear timer
 TMR1L = 0x00;
 T1CONbits.TMR1ON = 1; // Turn it on

Pivonka and Pugh
-16-

 PORTE = 0x01; // Disable ready signal
 }
 INTCONbits.INT0IF = 0; // Resets flag for external intrpt
 counter--; // Decrement counter
 }
 else {
 PORTD = 0x01; // Send fire signal
 T1CONbits.TMR1ON = 0; // Turn off timer
 PIR1bits.CCP1IF = 0; // Resets flag for compare intrpt
 PORTD = 0x00; // Turn off fire signal
 PIE1 = 0x00; // disable compare interrupt

 }
 return;
}

Pivonka and Pugh
-17-

Appendix B: Verilog Code

// Top Level Module
module Main(clk, reset, SCK, data, photo, trigger, ready, interrupt, fire, coil, seg, d1, d2);
 input clk;
 input reset;
 input SCK;
 input data;
 input ready;
 input fire;
 input [5:0] photo;
 input trigger;
 output interrupt;
 output [2:0] coil;
 output [6:0] seg;
 output d1;
 output d2;

 wire [7:0] num;

 serialdata serialdata1(SCK, data, reset, num);
 sevensegout sevensegout1(clk, reset, num, seg, d1, d2);
 photo photo1(clk, reset, photo, coil[0], interrupt);
 fire fire1(clk, reset, fire, ready, trigger, coil);

endmodule

// Photo Sensor Interrupts Module
module photo(clk, reset, p, firing, intrpt);

input clk;
 input reset;
 input [5:0] p;
 input firing;
 output intrpt;

 reg[3:0] state, nextstate;

 parameter s0 = 4'b1100;
 parameter s1 = 4'b0001;
 parameter s2 = 4'b0010;
 parameter s3 = 4'b0011;
 parameter s4 = 4'b0100;
 parameter s5 = 4'b0101;
 parameter s6 = 4'b0110;
 parameter s7 = 4'b0111;

Pivonka and Pugh
-18-

 parameter s8 = 4'b1000;
 parameter s9 = 4'b1001;
 parameter s10 = 4'b1010;
 parameter s11 = 4'b1011;

 // State register
 always @(posedge clk, posedge reset)
 if (reset) state <= s0;
 else state <= nextstate;

 // Next state
 always @(*)
 if (state[0])
 nextstate = state + 1;
 else
 case(state)
 s0: if(p[0] & firing) nextstate = s1;
 else nextstate = s0;
 s2: if(p[1]) nextstate = s3;
 else nextstate = s2;
 s4: if(p[2]) nextstate = s5;
 else nextstate = s4;
 s6: if(p[3]) nextstate = s7;
 else nextstate = s6;
 s8: if(p[4]) nextstate = s9;
 else nextstate = s8;
 s10: if(p[5]) nextstate = s11;
 else nextstate = s10;
 default: nextstate = s0;
 endcase

 // Ouput logic
 assign intrpt = state[0];

endmodule

// Firing Module
module fire(clk, reset, fire, ready, trigger, c);
 input clk;
 input reset;
 input fire;
 input ready;
 input trigger;
 output [2:0] c;

Pivonka and Pugh
-19-

 reg[3:0] state, nextstate;

 parameter s0 = 4'b0000;
 parameter s1 = 4'b0001;
 parameter s2 = 4'b0011;
 parameter s3 = 4'b1011;
 parameter s4 = 4'b0111;
 parameter s5 = 4'b1111;

 // State register
 always @(posedge clk, posedge reset)
 if (reset) state <= s0;
 else state <= nextstate;

 // Next state
 always @(*)
 case(state)
 s0: if(~ready & trigger) nextstate = s1;
 else nextstate = s0;
 s1: if(fire) nextstate = s2;
 else nextstate = s1;
 s2: if(fire) nextstate = s2;
 else nextstate = s3;
 s3: if(fire) nextstate = s4;
 else nextstate = s3;
 s4: if(fire) nextstate = s4;
 else nextstate = s5;
 s5: if(fire) nextstate = s0;
 else nextstate = s5;
 default: nextstate = s0;
 endcase

 // Output logic
 assign c = state[2:0];

endmodule

// Serial Data Module
module serialdata(SCK,data,reset,shift);
 input SCK;
 input data;
 input reset;
 output reg [7:0] shift;

 always@(posedge SCK, posedge reset)

Pivonka and Pugh
-20-

 begin
 if (reset) shift <= 8'b00000000;
 else
 begin
 shift[0]<= data;
 shift[1]<= shift[0];
 shift[2]<= shift[1];
 shift[3]<= shift[2];
 shift[4]<= shift[3];
 shift[5]<= shift[4];
 shift[6]<= shift[5];
 shift[7]<= shift[6];
 end
 end
endmodule

// Seven Segment Module
module sevensegout(clk, reset, num, seg, d1, d2);
 input clk;
 input reset;
 input [7:0] num;
 output reg [6:0] seg;
 output reg d1;
 output reg d2;

 reg [16:0] m;
 reg [3:0] display;

 //10 bit counter to slow the clock
 always@(posedge clk, posedge reset)
 begin
 if (reset) m = 0;
 else m = (m+1);

 d1 = m[16];
 d2 = ~m[16];
 end

 //multiplexor selects output
 always@(*)
 begin
 if (reset)
 display = 4'b0000;
 else if (m[16])
 display = num[3:0];

Pivonka and Pugh
-21-

 else if (~m[16])
 display = num[7:4];

 // case statement for the seg output
 case(display)
 0: seg = 7'b000_0001;
 1: seg = 7'b100_1111;
 2: seg = 7'b001_0010;
 3: seg = 7'b000_0110;
 4: seg = 7'b100_1100;
 5: seg = 7'b010_0100;
 6: seg = 7'b010_0000;
 7: seg = 7'b000_1111;
 8: seg = 7'b000_0000;
 9: seg = 7'b000_0100;
 10: seg = 7'b000_1000;
 11: seg = 7'b110_0000;
 12: seg = 7'b111_0010;
 13: seg = 7'b100_0010;
 14: seg = 7'b011_0000;
 15: seg = 7'b011_1000;
 default: seg = 7'b111_1111;
 endcase
 end

endmodule

