
Audio Spectrum Analyzer
Final Report

Corey O’Connor
Josh Smallman

December 15, 2003

Abstract

Our final project was to build a simple audio spectrum analyzer. The device will take line-
level stereo audio input and display the spectrum on a bank of LED arrays. There will be
seven frequency bands for both the left and right channels for a total of 14 bands. The first
major element of our system is the input processing section. This section is responsible for
splitting the audio signal into the 14 bands with 7 parallel bandpass filters for each channel.
This section then multiplexes the signals into a PIC through a set of logarithmic converters
for sampling. The sampled values are then sent serially to the FPGA which drives a series
of multiplexed LED arrays.

We successfully completed the PIC program, the input multiplexing, and the FPGA LED
driver. We were unable to complete the bandpass filters for the input processing section.
Instead we simplified the hardware to monitor amplitudes of 8 distinct stereo inputs. We
also designed and built a custom PC board for our LED display.

Introduction

When working with audio it’s important to have good feedback. The frequency spectrum
of an audio signal is useful for finding which component frequencies might be too loud or
too soft to in order to get a properly equalized and balanced audio source.. Having a stand-
alone system to display the spectrum from standard audio sources is a useful tool for anybody
working with audio.

Our system is composed of an input processing section, a PIC for sampling, and an FPGA
configured as an LED display controller. Our initial plan for the input processing section
would take a stereo input and first separate each channel into seven separate bands. Given
a stereo signal this would of made a total of 14 bands. Each copy of the signal would have
been processed by a set of bandpass filters and then logarithmic converters before being
sampled by the PIC. The logarithmic converters would have converted the AC signal into
a DC representation of the volume. Each channel would have had the same set of seven
bandpass filters which would have been configured with center frequencies approximately
equal to: 60 Hz, 120 Hz, 400 Hz, 1 kHz, 2.5 kHz, 6.25 kHz, and 16 kHz.

The system we actually built was designed to handle 8 separate stereo inputs instead of
one input split into 7 frequency bands per channel. Instead of using logarithmic conversion
to get the volume level we sampled the half-wave rectification to get the amplitude of the
signals.

The PIC microcontroller is used to sample from each input 30 times a second. This means
the PIC would have sampled at 420 Hz in order to sample 14 inputs at the desired rate.
Since we actually built the system to handle 8 stereo inputs this means the PIC must sample
at 480 Hz. The PIC is also responsible for controlling the multiplexing IC’s since there are
not enough physical connectors on the PIC’s A-to-D port to handle more than 8 inputs at
once. Once a given input has been sampled the value is sent over the serial line to the FPGA.
The PIC samples to a 10 bit resolution, but only the top 8 bits are sent since this is more
convenient and we only needed the top 4 bits for our bargraph-style display.

The FPGA is continuously multiplexing the LED arrays for the display where each LED
array represents a value from the PIC. The LED arrays are driven in groups of two at a
time: One array for the left channel, one for the right channel. After 8 FPGA clock cycles
the next two LED arrays for the next two inputs are driven. This repeats indefinitely. Each
value received over the serial line is written into a register file containing the current values
for each input.

1

New Hardware

The PIC only has 8 analog inputs, and we needed 16. In order to sample from all 16 inputs
we used two eight-channel analog multiplexers. These are essentially an SP8T solid state
switch. The CS4051 set of chips implement this nicely for a cheap price. For our project we
used the MC140551B (Which is equivalent to the CS4051). These worked well, except as
side test revealed these are unsuitable for multiplexing the audio input directly. They had a
frequency response that attenuated the higher frequencies significantly.

The bandpass filters were to be implemented using a set of active filters. We chose a
resistor programmable universal filter IC. These are active filters that can operate as a
several different types of filters. Exactly which filters an active filter IC implements depends
largely on the manufacturer. There are several varieties available, but we chose the Mixed
Signal Integration MSU2F. These are dual filter, switch-capacitor, resistor programmable
IC’s. They can implement lowpass, highpass, bandpass and allpass among other things. On
each IC, both filter’s center or cutoff frequency depends on the frequency of the clock input
times some multiplier.

The MSU2F promised to be an extremely flexible chip. With a clock programmable
center frequency we could use a single IC to implement several different bandpass filters.
Simply changing the input clock would change the center frequency. Sadly the datasheet was
inconsistent and very unclear. For instance, The symbol f0 is used to represent a constant,
the input for a clock multiplier setting, and the center frequency. In fact the input voltages
for the clock were specified as 0 to 2.5 volts for dual supply on the datasheet, but should have
been specified as -2.5 to 2.5 volts. Even with tech support from Mixed Signal Interactions
we were unable to get the filters operating correctly. A better choice would have been to use
the LMF100 from National Semiconductor, or one of the many similar chips from Maxim
IC. The datasheets for both IC’s are very clear and helpful.

2

Schematics

Figure 1 shows the schematic for a multiplexing circuit containing 2 channels of 8 LED
arrays. Each single LED array consists of 10 LEDs, connected in a common-anode config-
uration. Each LED is either on or off, depending on which pin is pulled high or low. Pins
1-10 of the standard IDE ribbon cable connector control the value displayed on the left,
while pins 31-40 control the right side. Each line is pulled through a 330 Ohm resistor to
prevent too much current from flowing through the the LEDs. Pins 13-20 receive a one-cold
signal that ensures that only one PNP transistor is open, allowing only a single array from
each side to be active at any moment in time. The base of each transistor is connected to
the FPGA through a 4.7K ohm resistor to limit the amount of current flowing into the base
when we drive it low.

Figure 2 details the layout of the PCB we constructed that contains the circuit of Figure
1. We used single-sided copper clad board and the Press-n-Peel resist transfer system in
order to construct the board. Since we used single-sided board, the red traces had to be
made manually with jumper wires.

Figure 3 shows the schematic of the circuit we breadboarded for the final demonstration.
It shows the connection of 8 stereo line-level audio inputs to 2 8-channel analog multiplexers.
The select controls of the multiplexers are set by 3 incoming data lines from PortB of the
PIC. The outputs of each multiplexer run through a half-wave rectifier circuit in order to
convert the AC audio signal into a DC signal representing the amplitude of the signal,
therefore giving some indication of the volume level of the audio input. The output of each
of the half-wave rectifiers are routed directly into A/D inputs 1 and 2 of the PIC, where
they are sampled according to a reference voltage input obtained through a 1k potentiometer
connected to A/D input 3. The signal is also routed through a lowpass filter with a cutoff
frequency at around 34 kHz. This eliminates any clock or multiplexer noise from the signal.
The rest of the figure details the FPGA’s pin output connections to the 40-pin ribbon cable
that connects the breadboard to the LED Array PCB (Fig. 2)

3

Figure 1: Multiplexing Circuit

4

Figure 2: PCB Circuit

5

Figure 3: Breadboard Circuit

6

Microcontroller Design

The PIC is responsible for sampling the input signal and controlling the input multiplexing.
Each frequency band is sampled 30 times a second. For 16 bands that requires the PIC to
sample from the A/D input port 480 times a second. Running off a 1 MHz clock means the
time to sample each band can at most take about 520 instruction cycles.

On startup InitializeSampleTimer is called to set up the timer and CCP. The CCP is
configured to interrupt whenever Timer 1 reaches a value of 520. Then the A/D module is
initialized. Then InitializeInputControl is called to set up the input multiplexers to start on
the first band of each channel. Once all this has been initialized the interrupts are enabled,
the timer is started, then the A/D conversion is started.

The CCP interrupt writes the sampled data to the serial port and changes what pin the
A/D samples from. Although our code checks to insure the A/D has completed successfully,
the conversion should always be completed by the time the CCP interrupt fires. This way
we don’t need to use the A/D interrupt also. Every time the PIC is set to sample from the
left channel’s input the program calls NextBand to increment the output that controls the
analog multiplexers. Then the timer is reset and the A/D conversion is started again.

7

FPGA Design

The FPGA has two primary responsibilities in this design. It monitors an incoming serial
data line and a serial data clock input, grabbing 8 bit words and storing the top 4 bits into
one of 16 allocated registers. Its other function is to write the incoming data values to a
multiplexed display consisting of 16 LED arrays.

The driver module consists of several sub-modules which perform its functionality. The
main module takes in a serial clock and serial data, and has 28 output pins. 10 pins control
the the 10 LEDs in a single LED array via display output left/right, while an additional 8
pins assigned to display select control transistors that activate a single pair of LED arrays.

In order to slow down the 1MHz clock to a reasonable refresh rate for the display, the
clkDivideBy8 module takes the clk input and outputs a reduced clock signal that is used to
drive the multiplexed arrays. It also creates a 3 on 1 off duty cycled display enable signal,
which is used to reduce bleed through that is associated with multiplexed displays. The
DisplaySelectGen module takes the divided clock and generates a one-cold 8 bit signal that
indicates which of the 8 arrays is currently active.

Our GetSerialData module shifts in bits that come in over the serial data line as the
serial clk wiggles asynchronously. The top 4 bits of the incoming word are assigned to
serial data word, and every time 8 bits has been received, the serial data rx flag is raised to
indicate that serial data word contains a valid value.

The synchro module takes the output of GetSerialData and synchronizes its signals before
passing them on to the BandRegisters module. BandRegisters contains 2 arrays of 8 4-bit
registers, called L and R, which are used to store the 16 most recent data values received
over the serial line. As each word comes into the module (after being synchronized) and
the serial data rxS flag is raised, BandRegisters updates the appropriate register and waits
for the next word. Additionally, BandRegisters uses the one-cold display select signal to
determine which pair of LED arrays are currently active, and assigns current band out R
and current band out L the appropriate values extracted from the register array.

The two current band out L/R signals generated by BandRegisters are converted by two
incarnations of the BandLEDOutput module. The BandLEDOutput module takes the 4 bit
input and generates a 10-bit bargraph value, but with the applied 3 on 1 off duty cycle of
display enable. That means that when display enable is low, BandLEDOutput will output
all 1’s, which turns off all 10 LED’s in an array. When display enable is high, it will output
the converted value as determined by FourBitToBar, a simple module that performs the
actual 4 to 10 bit conversion. The outputs of the two BandLedOutput modules directly
drive the 20 output pins of the FPGA.

8

display_select/8

GetSerialData
serial_data

serial_clk

BandLEDOutput

clkDivideBy8

FourBitToBar

BandLEDOutput

R1-R8L1-L8

DisplaySelectGen

display_output_left/10 display_output_right/10

Synchro
serial_data_rx

serial_data_word/4

ChannelRegisters

serial_data_wordS
serial_data_rxS

divided_clk

current_band_L/10 current_band_R/10
display_enable

FourBitToBar

Figure 4: FPGA Block Diagram

9

Results

Our project resulted in the creation several components, which when put together form a
functional 16 channel audio analyzer and display.

Originally, we had planned on the input section composing of bandpass filters that would
divide 1 stereo source into 14 signals, send each of the 14 signals through a logarithmic
converter to generate a voltage representing sound pressure, and finally multiplex the 14
signals into 2 inputs on the PIC’s A/D. The first change we decided on was to increase the
width of our analyzer to 8 channels per side instead of 7, since our analog multiplexer had 8
inputs. Additionally, because we were unable to prototype a working bandpass filter circuit,
we decided to input 8 distinct stereo signals into the system instead of generating the 16
signals from a single pair. The final change from our original plan was in the use of a half-
wave rectifier to convert the AC audio signal into a DC representation of volume. We found
that multiplexing the logarithmic converters caused samples to bleed through to each other,
because the setup time for the circuit was longer than our sample rate. By switching to a
half wave rectifier, our value would vary linearly with the amplitude of the signal, instead of
the logarithmic representation of sound pressure.

Our design for the PIC Microcontroller and FPGA remained in line with our original
plans, except for the expansion from 7 to 8 channels, since once the input is generated, how
it is sampled, communicated, and displayed remains the same regardless of the nature of
the data. The PIC controls the analog multiplexers, sampling each of the 8 stereo inputs
through 2 of its A/D inputs, and sends the top 8 bits of the sample across the serial data
line. The FPGA receives the 8 bit words coming across the serial line, and stores the top 4
bits in a register array. The FPGA also generates outputs to drive our custom made PCB,
consisting of 16 multiplexed LED arrays and support resistors/transistors.

The most difficult challenges for this project were introduced by the analog circuits we
wanted to use for signal preparation. We invested a significant portion of our effort (and
budget) into the bandpass filters, but eventually had to abandon their use as our deadline
approached. Although we had identified the analog section as a risk, we took too long to
decide that an alternative approach to the problem was necessary. In the future, we should
ensure that all serious risks are navigated and handled as soon as possible, and be willing to
seek alternatives sooner.

Using the LMF100 active filter IC would have been a better choice than the MSU2F.
The LMF100 is a well established chip, and many examples exist how to use the IC. The
datasheet is also significantly better with long discussions on exactly how the IC should be
configured and connected for best performance. However, a distributor, manufacturer or
datasheet for this IC was not located until after the MSU2F’s had already been purchased
and shipped.

10

References

1. Horowitz and Hill. the Art of Electronics Cambridge, United Kingdom: Cambridge
University Press, 1989

2. Mixed Signal Interaction MSU2F Active Filter IC, http://www.mix-sig.com/MSUF.
pdf

3. National Semiconductor LMF100, http://www.swarthmore.edu/NatSci/echeeve1/
Ref/DataSheet/LMF100.pdf

4. Motorola MC14051B, http://www.fe.up.pt/~victorm/DataSheet/CMOS/mc14051brev3.
pdf

Parts List

2x [Analog Multiplexer] Motorola MC14051B. from MarVac, http://www.marvac.com.
$3.20

8x [Analog Bandpass Filters] MSU2F. From Mixed Signal Interactions, (408)-434-6305
$34.34

11

Appendices

PIC Microcontroller program: multi sampler.asm

; Author: Corey O’Connor (coconnor@hmc.edu) & Josh Smallman (jsmallman@hmc.edu)

; File: multi_sampler.asm

; 11/18/2003

; This program alternates between sampling from two A/D ports.

; The top 8-bits of the samples are then communicated over the serial line.

; Uses bits 0-2 of PortB to control two 8-input analog multiplexers, where the

; output of each is connected to A/D inputs 1 and 2. Vref is provided by I/O 3 of the A/D.

; Essentially, this program takes 8-bit samples from 16 different analog inputs and outputs

; them in order and repeatedly over the serial line.

LIST p=18F452

include "p18f452.inc"

SAMPLE_RATE EQU D’520’

LEFT_CHANNEL EQU 0

RIGHT_CHANNEL EQU 1

nextValueToSend RES 1

currentChannel RES 1

currentBand RES 1

org 0

bra start

; High priority interrupt vector

org 8

btfsc PIR1, CCP1IF

bra CCPInterrupt

retfie

CCPInterrupt

; Clear interrupt flag

bcf PIR1, CCP1IF

; Skip this if the A/D is incomplete

btfsc ADCON0, GO

12

bra CCPTimerReset

; Send the current value over the serial port

movff ADRESH, SSPBUF

; noop until the word is sent.

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

; Set the A/D to sample from the other channel

comf currentChannel

btfsc currentChannel, 0

bra SampleFromRight

; Sample from left channel

bcf ADCON0, CHS0

call NextBand

bra StartSampling

SampleFromRight

; Sample from right channel

bsf ADCON0, CHS0

StartSampling

; Start the sampling

bsf ADCON0, GO

CCPTimerReset

; Restart the timer

movlw high SAMPLE_RATE

movwf TMR1H

13

movlw low SAMPLE_RATE

movwf TMR1L

retfie

; start of the main program

start

; Initialize serial line

; Set port C for output

clrf TRISC

; Configure the serial port register

; Set bit 5: Enable

; Clear bit 4: clock idle state is low

; Clear bits 0-3: osc/4 clock

; Clear bits 6,7: Clear overflow and collision flags.

movlw B’00100000’

movwf SSPCON1

; Configure the serial port status

; Set bit 7: Master mode

; Set bit 6: Data transmitted on rising edge of SCK

movlw B’11000000’

movwf SSPSTAT

; Set current channel and band

movlw LEFT_CHANNEL

movwf currentChannel

movlw 0

movwf currentBand

; Initialize multiplexed input control

call InitializeInputControl, 1

; Initialize CCP and a timer to interrupt at the correct sampling rate

call InitializeSamplingTimer, 1

; Initialize A/D port

; Set pins 0 and 1 on porta for input

bsf TRISA, 0

bsf TRISA, 1

14

; Configure ADCON0

; clear bits 7-6: Set Tad to Fosc/4

; clear bits 5-3: Sampling AN0 (left channel)

; set bit 0: Turn on A/D module.

movlw B’00000001’

movwf ADCON0

; Configure ADCON1

; clear bit 7: Left justify result

; set bit 6: tad = Fosc/4

; clear bits 3-1: AN0 & AN1 as analog inputs, bit 0 high makes AN3 into VREF+

movlw B’01000001’

movwf ADCON1

; Start sampling

bsf ADCON0, GO

; Start the timer

bsf T1CON, 0

; Enable interrupts

bsf INTCON, GIE

bsf INTCON, PEIE

; Loop

end_loop

bra end_loop

InitializeInputControl

; Set current band of left and right channels to 0

; Reset the filters if nescessary

; Set port B for output

bcf TRISB, 0

bcf TRISB, 1

bcf TRISB, 2

movlw 0

movwf PORTB

return 1

15

InitializeSamplingTimer

; Initialize Timer 1

; Set bit 7

; Clear bits 4,5: 1:1 prescale

; Clear bit 1: Internal clock

; Don’t start the timer yet

movlw B’10000000’

movwf T1CON

; Initialize CCP

; Set bits 3-0 to 1010: Compare mode. Interrupt on match

movlw B’00001010’

movwf CCP1CON

; Set timer 1 as clock source for CCP1

bcf T3CON, 6

bcf T3CON, 3

; Set the compare value so the interrupt fires every 1200 instructions.

movlw high SAMPLE_RATE

movwf CCPR1H

movlw low SAMPLE_RATE

movwf CCPR1L

; Initialize interrupts

; Clear interrupt flag

bcf PIR1, CCP1IF

; Enable CCP compare interrupts

bsf PIE1, CCP1IE

return 1

NextBand

; Add one to currentChannel

incf currentBand

movff currentBand, PORTB

return 1

end

16

Main Verilog module: driver.v

// driver.v, a Display Driver for a custom Multiplexed LED Array PCB.

// Written by Corey O’Connor (coconnor@hmc.edu) & Josh Smallman (jsmallman@hmc.edu)

// 11/18/2003

// This module is used to receive a repeating series of 16 8-bit words via a serial interface.

// It displays the top 4 bits of each word in bargraph mode on one of 16 LED Arrays.

module driver(clk, reset,

serial_data, serial_clk,

display_select,

display_output_left, display_output_right);

input clk;

input reset;

input serial_clk;

input serial_data;

output [7:0] display_select; // one-cold controls which of the 8 pairs of LED Arrays are active via PNP Transistor

output [9:0] display_output_left; // 10-bit value that is written bitwise to the 10 LEDs in the currently active array.

output [9:0] display_output_right; // Since one array from each side is displayed at once, each side has its own 10 outputs.

wire divided_clk; // slow down the clock for a reasonable refresh rate

wire display_enable; // duty cycle (3 on 1 off) the display to reduce blur between multiplexed outputs.

wire [3:0] current_band_L, current_band_R;

wire [3:0] serial_data_word; // the word that just came in over the serial line

wire serial_data_rx; // indicates a complete word has been received

wire [3:0] serial_data_wordS; // holds synchronized complete word

wire serial_data_rxS; // holds synchronized serial_data_rx flag

/* filterDriver filterDriver(clk, reset, filter_clock);*/

// create the divided clock and display enable signals

clkDivideBy8 clkDivideBy8(clk, reset, divided_clk, display_enable);

// create the display_select signal

DisplaySelectGen DisplaySelectGen(clk, reset, divided_clk, display_select);

// shift in serial data from the serial line and put words into serial_data_word

// Also raises serial_data_rx flag

GetSerialData GetSerialData(serial_clk, reset, serial_data,

serial_data_word, serial_data_rx, clk);

17

// synchronize the serial data, since the serial_clk input is asynchronous

Synchro Synchro(clk, reset, serial_clk, serial_data_word, serial_data_rx,

serial_data_wordS, serial_data_rxS);

// stores incoming words in an array of registers, and outputs what 4 bit values should be

// displayed on the 2 currently active LED arrays.

BandRegisters ChannelRegisters(clk, reset,

divided_clk, display_select,

serial_data_rxS, serial_data_wordS,

current_band_L, current_band_R);

// convert the 4-bit output of BandRegisters to the 10-bit value we need for display on an LED array

BandLEDOutput leftChannelOutput(current_band_L,

display_enable,

display_output_left);

BandLEDOutput rightChannelOutput(current_band_R,

display_enable,

display_output_right);

endmodule

18

clkDivideBy8.v

// clkDivideBy8.v

// Written by Corey O’Connor (coconnor@hmc.edu) & Josh Smallman (jsmallman@hmc.edu)

// 11/18/2003

// Standard Clock divider, also creates an enable output with a duty cycle

// of 3 on 1 off.

module clkDivideBy8(clk,reset,out, enable);

input clk;

input reset;

output out;

output enable;

reg [1:0] state;

always @(posedge clk or posedge reset)

if (reset) state <= 2’b000;

//else if (state == 3’b111) state <= 3’b000;

else state <= state + 1;

assign out = ~state[1];

assign enable = state[0] | state[1];

endmodule

19

DisplaySelectGen.v

// DisplaySelectGen.v

// Written by Corey O’Connor (coconnor@hmc.edu) & Josh Smallman (jsmallman@hmc.edu)

// 11/18/2003

// Creates a one-cold 8 bit output that left shifts on positive edges of the shift input.

module DisplaySelectGen(clk,reset, shift, display_select);

input clk;

input reset;

input shift;

output [7:0] display_select;

reg [7:0] display_select;

always @(posedge reset or posedge shift)

begin

if(reset)

display_select <= 8’b11111110;

else if(shift)

display_select <= {display_select[6:0], display_select[7]};

end

endmodule

20

GetSerialData.v

// GetSerialData.v

// Written by Corey O’Connor (coconnor@hmc.edu) & Josh Smallman (jsmallman@hmc.edu)

// 11/18/2003

// This module shifts in serial data and stores each 8-bits as a word.

// Outputs top 4 bits of each incoming word.

// Also raises a flag when an entire 8-bit word has been captured.

module GetSerialData(serial_clk,reset,serial_data,serial_data_word,serial_data_rx, clk);

input clk;

input serial_clk;

input reset;

input serial_data;

output [3:0] serial_data_word;

output serial_data_rx;

reg [2:0] word_size; // counter for how big the word should be

reg [7:0] shiftreg; // stores each bit as it comes in

reg started; // ignore the high serial_clk input it goes down first

// and back up with a rising edge

always@(posedge reset or posedge serial_clk)

begin

if (reset)

begin

word_size <= 0;

shiftreg <= 0;

started <= 0;

end

else

begin

shiftreg <= {shiftreg[6:0],serial_data};

word_size <= word_size + 1;

started <=1;

end

end

// output the top 4 bits of the incoming word, and create the rx flag.

assign serial_data_word = shiftreg[7:4],

serial_data_rx = (word_size == 3’b000) & (started == 1);

endmodule

21

Synchro.v

// Synchro.v

// Written by Corey O’Connor (coconnor@hmc.edu) & Josh Smallman (jsmallman@hmc.edu)

// 11/18/2003

// Synchronizes the asynchronous serial_data_word and serial_data_rx inputs

// Outputs the synchronized signals.

module Synchro(clk,reset,serial_clk,serial_data_word,serial_data_rx,serial_data_wordS,

serial_data_rxS);

input clk;

input reset;

input serial_clk;

input [3:0] serial_data_word;

input serial_data_rx;

output [3:0] serial_data_wordS;

output serial_data_rxS;

reg [3:0] serial_data_wordS;

reg serial_data_rxS;

always@(posedge reset or posedge clk)

begin

if (reset)

begin

serial_data_wordS <= 4’b0;

serial_data_rxS <= 1’b0;

end

else

begin

if(serial_clk)

begin

serial_data_rxS <= serial_data_rxS ? 0 : serial_data_rx;

serial_data_wordS <= serial_data_word;

end

end

end

endmodule

22

BandRegisters.v

// BandRegisters.v

// Written by Corey O’Connor (coconnor@hmc.edu) & Josh Smallman (jsmallman@hmc.edu)

// 11/18/2003

// This module receives repeating loops of 16 4-bit words and stores them in one of

// sixteen 4-bit registers. It also outputs the two 4-bit words according to the

// one-cold encoding of the display_select input.

module BandRegisters(clk,reset,divided_clk,display_select,serial_data_rxS,

serial_data_wordS,current_band_out_L,current_band_out_R);

input clk;

input reset;

input divided_clk;

input [7:0] display_select; // one-cold encoding of which pair of LED arrays are active

input serial_data_rxS; // synchronized flag indicating complete word received

input [3:0] serial_data_wordS; // synchronized word received.

output [3:0] current_band_out_L; // the value to be displayed on the currently active left array

output [3:0] current_band_out_R; // the value to be displayed on the currently active right array

reg [3:0] R[0:7]; // array of 8 registers, each holding 4 bit value to be displayed on an LED array

reg [3:0] L[0:7]; // array for left side

reg [1:0] state; // state variable used to ensure proper serial word receipt and processing.

// this points to which register is next to be

// updated from the incoming word on the serial line

reg [3:0] current_serial_to_register;

always @(posedge reset or posedge clk)

begin

if(reset)

begin

// Set starting values, display ramp on board

state <= 2’b00;

current_serial_to_register <= 4’b0;

L[0] <= 4’b0001;

L[1] <= 4’b0010;

L[2] <= 4’b0011;

L[3] <= 4’b0100;

L[4] <= 4’b0101;

L[5] <= 4’b0110;

L[6] <= 4’b0111;

L[7] <= 4’b1000;

23

R[0] <= 4’b1001;

R[1] <= 4’b1010;

R[2] <= 4’b1011;

R[3] <= 4’b1100;

R[4] <= 4’b1101;

R[5] <= 4’b1110;

R[6] <= 4’b1111;

R[7] <= 4’b0000;

end

else

// this code ensures that each word that comes in over the serial line

// is only received once.

case(state)

2’b00: // starting state

begin

if(serial_data_rxS) // if we’ve received a word

begin

if(current_serial_to_register[0] == 0) // put the word into the right register

L[current_serial_to_register[3:1]] <= serial_data_wordS;

else

R[current_serial_to_register[3:1]] <= serial_data_wordS;

state <= 2’b01; // increment state

end

end

2’b01: // second state, just put word into register.

begin

// increment the pointer to the next register to be updated

current_serial_to_register <= current_serial_to_register + 1;

state <= 2’b10; // increment state

end

2’b10: // third state, stay in third state until serial_data_rxS flag goes back down.

if(serial_data_rxS)

state <= 2’b10;

else

state <= 2’b00;

endcase

end

// assign the value pointed to by display_select to the current_band_out outputs.

assign current_band_out_R = (display_select[0] == 0) ? R[0] : {4{1’bz}},

current_band_out_R = (display_select[1] == 0) ? R[1] : {4{1’bz}},

current_band_out_R = (display_select[2] == 0) ? R[2] : {4{1’bz}},

current_band_out_R = (display_select[3] == 0) ? R[3] : {4{1’bz}},

24

current_band_out_R = (display_select[4] == 0) ? R[4] : {4{1’bz}},

current_band_out_R = (display_select[5] == 0) ? R[5] : {4{1’bz}},

current_band_out_R = (display_select[6] == 0) ? R[6] : {4{1’bz}},

current_band_out_R = (display_select[7] == 0) ? R[7] : {4{1’bz}};

assign current_band_out_L = (display_select[0] == 0) ? L[0] : {4{1’bz}},

current_band_out_L = (display_select[1] == 0) ? L[1] : {4{1’bz}},

current_band_out_L = (display_select[2] == 0) ? L[2] : {4{1’bz}},

current_band_out_L = (display_select[3] == 0) ? L[3] : {4{1’bz}},

current_band_out_L = (display_select[4] == 0) ? L[4] : {4{1’bz}},

current_band_out_L = (display_select[5] == 0) ? L[5] : {4{1’bz}},

current_band_out_L = (display_select[6] == 0) ? L[6] : {4{1’bz}},

current_band_out_L = (display_select[7] == 0) ? L[7] : {4{1’bz}};

endmodule

25

BandLEDOutput.v

// BandLEDOutput.v,

// Written by Corey O’Connor (coconnor@hmc.edu) & Josh Smallman (jsmallman@hmc.edu)

// 11/18/2003

// This module takes a 2 4bit inputs and converts them to a 10 bit bargraph value

// All the work is done by the FourBitToBar module

module BandLEDOutput(current_band,display_enable,display_out);

input [3:0] current_band;

input display_enable;

output [9:0] display_out;

wire [9:0] converted_value;

FourBitToBar FourBitToBar(current_band, converted_value);

assign display_out = display_enable ? converted_value : {10{1’b1}};

endmodule

26

FourBitToBar.v

// FourBitToBar.v, a Display Driver for a custom Multiplexed LED Array PCB.

// Written by Corey O’Connor (coconnor@hmc.edu) & Josh Smallman (jsmallman@hmc.edu)

// 11/18/2003

// Takes a 4 bit input and outputs a bargraph encoded 10-bit value.

module FourBitToBar(data, bar_out);

input [3:0] data;

output [9:0] bar_out;

reg [9:0] bar_out;

parameter ZERO = {10{1’b1}};

parameter ONE = 10’b1111111110;

parameter TWO = 10’b1111111100;

parameter THREE = 10’b1111111000;

parameter FOUR = 10’b1111110000;

parameter FIVE = 10’b1111100000;

parameter SIX = 10’b1111000000;

parameter SEVEN = 10’b1110000000;

parameter EIGHT = 10’b1100000000;

parameter NINE = 10’b1000000000;

parameter TEN = 10’b0000000000;

always @(data)

case(data)

4’b0000: bar_out <= ZERO;

4’b0001: bar_out <= ONE;

4’b0010: bar_out <= ONE;

4’b0011: bar_out <= TWO;

4’b0100: bar_out <= THREE;

4’b0101: bar_out <= THREE;

4’b0110: bar_out <= FOUR;

4’b0111: bar_out <= FIVE;

4’b1000: bar_out <= FIVE;

4’b1001: bar_out <= SIX;

4’b1010: bar_out <= SEVEN;

4’b1011: bar_out <= SEVEN;

4’b1100: bar_out <= EIGHT;

4’b1101: bar_out <= NINE;

4’b1110: bar_out <= NINE;

4’b1111: bar_out <= TEN;

27

default: bar_out <= TEN;

endcase

endmodule

28

