

KegLock(DK)

Final Project Report
December 14, 2003

E155

Kim Shultz and Damian Small

Abstract

Kegs in North Dorm are a constant point of contention between the dorm and the
administration. The main problem is that kegs remain tapped and available to anyone who might
wander through the dorm, even when residents are not around to monitor usage. Our system
implements access control for kegs, with such useful features as: automatic shut off alarm, time-limited
access code, unlimited access code, master configuration code, settable/ resettable codes. An
emergency reset button is protected by physical security measures. The system uses a keypad and LCD
to provide an easy to understand, user-friendly interface, which enables residential keg access.

 2

Introduction
 This project is intended to help North Dorm to comply with the wishes of the administration on
student alcohol use. There have been problems in North with the regulation of kegs. The
administration has repeatedly asked North to un-tap kegs each day and to try to curb underage
drinking. The KegLock is a proposed solution to these problems. The digital lock has a combination
that allows a single beer to be poured, a combination that can be given only to people over 21. There is
another code that can turn the valve on for the entire night if the dorm is throwing a party. These codes
are settable and can also be erased to prevent access to the keg. Whichever code is used, the keg will
be closed at 6 AM, to prevent it from being tapped during the day.
 The KegLock has three combinations, all of which can be changed. The master code will allow
the user to set or reset the codes, as well as set the time. The continuous code will open the valve until
6 AM. The single-use code will open the valve for a variable length of time, currently set for 11
seconds. The single-use and continuous use codes can be erased, to prevent access to a keg.
 The physical components of the KegLock are shown in Figure 1. The PIC controls the finite-
state machine for the system. The valve is opened by current from the Darlington transistor, which is
used as a switch controlled by the PIC. The LCD is also controlled by the PIC, which sends control
and data signals. The keypad is used for user-input, which is stored in the PIC. The clock chip is used
to keep time. The PIC can write the time to the clock chip or read the time. An alarm on the clock chip
is used to activate the system reset at 6 AM. The system can be externally reset at anytime by pressing
the reset button, at which point all of the codes will be erased and the user prompted for entry of a new
master code.
 The entire system is powered by a 12 V DC adapter. The adaptor connects to the DC power
jack on the MicroP’s board. The power regulator on the board provides 5 V to most of the components,
but it is bypassed for the valve and the backlight to the LCD.

 PIC
18F452

Keypad

 1 2 3
 4 5 6
 7 8 9
 * 0 #

1K12T1

LCD Display
CFAH2004A-AGB-JP

Reset
button

Valve
7877K55

Clock chip
BQ4845

Key:
 Input

Output
Darlington
Configuration
Power
Transistor
TIP120

Figure 1: Physical Components of the KegLock

 3

New Hardware
Valve

The main function of our project is to control a valve, so one of the most important pieces of
hardware that we used was an electrically controllable valve. We chose a normally-closed solenoid
valve, which is opened by applying a 12V, .54A signal. In order to supply such a large amount of
power, we used a TIP120, Darlington configuration power transistor. The collector of the transistor
was hooked up to the valve, and the emitter to ground. Then, with a 1K resistor in series to limit base
current, the PIC can effectively control the valve with a 5V signal, and less than 25mA to the base of
the transistor.

Clock Chip

Our system also needs to keep track of the time, both to display to the user on the main entry
screen, and to generate the 6am alarm. To perform these functions, we chose a Real Time Clock chip,
the bq5854 Parallel RTC. This chip can keep track of the date, time, an alarm, and generate interrupts
based on a variety of conditions. The RTC also has inputs for a battery backup, allowing it to keep
track of time even when the system is shut off. In order to operate, the RTC requires a 32.768KHz
crystal that provides the timing reference for the counter inside the chip.

The RTC is organized much like any external memory, with read and write functions, an 8bit
data bus, and a chip enable system allowing multiplexing of the main data bus. It contains 16 8-bit
registers that allow read/write access to the time, alarm, and configuration information, which makes it
easy to control.

Every time the system is reset, the PIC re-writes the configuration information to the RTC to
make sure that it is correct, and checks to see if an interrupt has been generated while the system was
shut down. The RTC notifies the PIC of alarms by driving the ~INT line low. This line is connected to
the RB0 pin on the PIC, which is configured to generate an internal interrupt on the negative edge, and
uses a large pull-up resistor to keep the line high when it is not being driven by an external component.
When an interrupt is detected, the PIC clears the valve state, closing it, and also erases the single use
code.

In normal operation the PIC polls the RTC around every 50ms and reads the time. The PIC then
formats the time data and displays it on the LCD, allowing the user to see what time it is.

 4

Schematics
The schematic of our system is below (Figure 2).

~MCLR
1

RA0
2

3
RA1

4
RA2

RB7

RB6

RB5

RB4

40

39

38

37

RC2
17

RC3
18

19
RD0

20
RD1

RC5

RC4

RD3

RD2

24

23

22

21

RE1
9

RE2
10

11
Vdd

12
Vss

Vdd

Vss

RD7

RD6

32

31

30

29

PIC
18F 452

RA3
5

RA4
6

7
RA5

8
RE0

RB3

RB2

RB1

RB0

36

35

34

33

OSC1
13

OSC2
14

15
RC0

16
RC1

RD5

RD4

RC7

RC6

28

27

26

25

V O U T

1

X1
2

3
X2

4
~WDO

Vcc

~ WE

~CEin

~CEout

28

27

26

25

DQ0
11

DQ1
12

13
DQ2

14
Vss

DQ6

DQ5

DQ4

DQ3

18

17

16

15

~RST
6

A3
7

8
A2

9
A1

WDI

~OE

~CS

Vss

23

22

21

20

BQ4845
RTC

A0
10

DQ7
19

~INT
5

BC
24

Vss

Vdd

VO

RS

1

2

3

4

R/W

E

DB0

DB1

5

6

7

8

DB2

DB3

DB4

DB5

9

10

11

12

DB6

DB7

LED+ A

LED- K

13

14

15

16C
FA

H
20

00
4A

-A
G

B-
JP

Character
LCD
20x4

Data Bus

32.768 KHz

10K

A

B

1

2

1

2

3

4

3

-

D

C

5

6

7

8

Keypad
1K12T1 (Tel)

1 2 3

4 5 6

7 8 9

* 0 #

A

B

C

D

1 2 3

3V

Vdd : +5V
Vss : ground

1K

12V

Valve
(NC)

10K
330

12V

10

5V

330330 330330

Reset

5V

5V

TIP120

TIP120

Figure 2: System Schematic

 5

On the top left, our valve is controlled by a Darlington transistor configuration. A 1k resistor

limits base current from the PIC. Top right is our RTC (the clock chip). It uses a 32.768kHz crystal to
keep accurate time, and a 3V backup battery to enable operation through power-failures. The PIC in
the center acts as the brains of the operation, controlling each of the peripheral components and
keeping track of the state. A reset button triggers the reset interrupt. In the lower left is the LCD, which
provides feedback to the user. The data bus is shared between the LCD and the RTC. The LCD has
two adjustments, for contrast and back light intensity. The contrast adjustment is controlled by a 10k
POT, while the back light is controlled by an adjustable current supply, which uses a Darlington
transistor configuration with emitter degradation and a 10k POT. The keypad is on the right, and uses a
standard matrix polling scheme with 330 ohm pull-up resistors on the rows.

 6

Microcontroller Design

The PIC acts as a finite-state machine to control the system. A partial state machine of the
system can be seen in Appendix B. The PIC controls the valve, LCD, and polls the keypad. It gives
data and control signals to the LCD and the clock chip (when setting the time). It also outputs a control
signal to the Darlington power transistor used to turn on the valve. The PIC gets input from the keypad
by polling the columns. When the PIC is in a state where it needs input from the keypad, it pulls each
of the columns low in turn and waits for a low input from one of the rows, which are weakly held high
through resistors. The clock chip sends time information to the PIC. If the reset button is pressed, the
PIC will go to a reset state.

Interface with the LCD
 The LCD display is one of the most complicated components of our project. Because the LCD
has its own controller onboard, it can be written to using commands, as documented in it’s data sheet.
The controller does have specifications with regard to signal timing, but for the most part the PIC is
slow enough so that these timings do not matter. Also, the PIC has a read command which returns a
busy flag when an operation is being performed. The one area where timing is important is in the
initialization stage. The LCD has a set initialization procedure that requires minimum delays between
steps, and the busy flag is not operational for this initialization. In order to account for these delays, we
have used simple delay loops, which use the cycle time of the PIC processor to delay for a set amount
of time.

Once the LCD has been initialized, we have written a function that copies a block of data from
the PIC to the data memory on the LCD. This subroutine takes as arguments the data block and
register, and copies the next 80 bytes, starting from that location. Copying the data from the PIC to the
LCD is simple: first we copy the next byte, then we check if we’re done, and if not we check the LCD
busy flag until it is finished processing the byte and loop. The one complicated part is that the display
data is stored in an interlaced fashion: first line 1, then line 3, then line 2, and finally line 4. This means
that we have to pre-interlace the data before it is copied to the LCD. We do this by using a temporary
block of data, stored at the start of data block 1. By manually copying over line 1, then advancing the
pointer to where line 3 would start, and copying line 2, etc. we pre-interlace the data, allowing the
display screens to be stored in an easily human-readable format.
 Our display can re-write the data block in around 7ms, but the actual LCD screen takes about
150ms to respond, giving us an effective refresh rate of around 7Hz

Initialize memory

Because our LCD display routines allow us access display pages stored in data memory, we
need to initialize the data memory on any reset. Our data is stored in code, as DB data bytes. The DB
command allows us to store the data in either hex form, or, conveniently enough, in ASCII strings. It
so happens that the ROM character code page stored in the LCD controller is very close to the standard
ASCII specification. This means that for all of the common characters (0-9, a-z, A-Z, and most
symbols) the byte codes match exactly, and we can input the display screens into code directly. In the
code, we have one set of constants to hold the start of the data. The end of the data is detected
automatically when a 0x00 code is hit (0x20 is the code for a space, so there is no need for a 0x00 in a
display screen). The routine for copying memory from flash is simple: just a loop with a check for a
0x00 byte, using the post-increment features of the table read pointer, and the FSR0 pointer.

 7

The combinations for the lock must also be initialized on reset. When codes are written or
erased, they are stored in the EEPROM on the PIC. When the system is reset (other than the 6 AM
reset), the codes are read from the EEPROM and stored in the appropriate file registers.

Interface with the keypad
 When the system is prepared for input from the keypad, it polls the keypad. The rows of the
keypad are tied to power through 47kΩ resistors. Each column is pulled low in turn. A 5ms delay loop
is used to ensure that the signal is not bouncing. If a low value is detected on any of the rows, the
system recognizes that a key has been pressed. Based on the row and column that are low, the system
decodes the input and saves it in a file register called “inputDigit.” * and # are stored as E and F,
respectively. The key is saved in the lower 4 bits of the register. The upper 4 bits are 0. The system
will continue to poll if no low row is found.

Code operation

Code input
 To input a code, FSR0 starts pointing at the first input file register. The key pressed is read as
described in “Keypad input.” If the key is a number, that number is stored in the file register and the
pointer moves to the next register. If the user attempts to enter more digits than belong in the code, the
system displays an error message and clears the input file registers. If the user presses the “*” key, the
input file registers clear. Once the user presses “#,” used as an enter key, the length of the code is
checked. If it is not 4 or 6 digits, an error message is displayed and the input registers cleared. If it is a
valid length, the code is accepted.

Code recognition
 Compare 6 input digits to each code. The codes are stored in a series of file select registers. To
compare codes, we use file select registers. Starting with the first digit of the input code and the code
to be compared, we compare those digits, and if a match is found, we compare the next digits. If no
match is found, we compare the next code until each code is compared. The single-use code acts like a
6-digit code with the two most significant bits equal to A. If a match is found, the starting address of
that code is stored in a file register called “match.” If no match is found, match contains 0.

Code set and reset
 When the user decides to set a code, the starting address of the code to be set is stored in a
register called “codeSet.” The system then prompts the user for input. The user presses keys on the
keypad and the system recognizes them as described under “Interface with the keypad.” The code is
stored in the input file registers as described in “Code input.” Once the code has been entered, its
length is checked. If it is not the proper length, the user is prompted to reenter the code. If it is the
proper length, the code is stored in the appropriate file registers using FSR’s to copy one digit at a
time. The user is then prompted to reenter the code. The new input is compared to the stored input. If
they do not match, the input is cleared and the user prompted to try again. If they do match, the new
code is saved. If the user chooses to reset the code, “A” will be stored as every digit of the code, to
indicate that there is no valid code (because there is no “A” input from the keypad). When a new code
is saved, it is copied to EEPROM memory, for use if the system power is turned off.

Master code operation
 When the master code has been entered and verified, the code branches to the master menu.
This menu presents the option to change all of the codes and the time. Input from the user is parsed,

 8

and the appropriate sub-menu is displayed. Codes are changed using the change code functionality
described above. The time change has not been implemented yet.

Continuous-use code operation
 When the continuous code has been entered, the current state of the valve is checked. The valve
state is stored in a register, and has states for closed, open-single, and open-continuous. Any other
value of the 8-bit register is an error, and usually detecting an open-single state is as well (except
inside the ‘single use code entered’ function). If the valve state is as expected, the valve is toggled
from closed to open-continuous or from open-continuous to closed as appropriate. Also a display
screen is displayed for a second, alerting the user of the state of the valve.

Single-use code operation
 When the single-use code is entered, the state of the valve is checked for errors. If no errors are
found, and the valve is not in the open-continuous state, the valve is open and a display screen is
shown to the user with a progress bar which denotes the amount of time left until the valve will be
closed. The progress bar fills one square a second, and when the bar is full the valve is shut off, and the
program jumps back to the main prompt.

6 AM reset
 At 6 AM, the alarm on the clock chip will send an interrupt signal to the PIC. The systems will
leave whatever state it is in and enter the 6 AM reset state. The single-use code is reset and the valve, if
on, is turned off. The LCD displays a message informing the user what is happening. If the system is
powered off at 6 AM, the reset will occur when the system regains power.

 9

Results
We met all of the specifications in the proposal. The one change is that instead of the single-use

code opening the valve for 20 seconds, it opens it for an adjustable length of time, currently set to 11
seconds. Moisture considerations will be addressed by sealing the circuitry in a box with a desiccant.
Installation into a refrigerator has not yet taken place, but will occur early next semester. The hardest
part of the project was physical construction.

References
MGR1513-ND Datasheet ftp://Key:mat@ftp.ambrit.co.uk/technicalspecs/1000_low.pdf
CFAH2004A-AGB-JP Datasheet
http://www.crystalfontz.com/products/2004a-color/CFAH2004AAGBJP.pdf
BQ4845P-A4 Datasheet http://www-s.ti.com/sc/ds/bq4845.pdf
TIP120 Datasheet http://www.fairchildsemi.com/ds/TI/TIP120.pdf

Parts List
Part Source Vendor Part # Price
Keypad DigiKey MGR1513-ND 65.00
LCD Crystalfontz CFAH2004A-AGB-JP 25.21
RTC DigiKey BQ4845P-A4 5.02
32.768KHz
Crystal

DigiKey SE3201-ND 0.27

3V Battery DigiKey P192-ND 1.68
Heatsink DigiKey 294-1067-ND 1.63
Solenoid Valve McMaster-Carr 7877K55 18.12
TIP120 Prof. Harris’ Lab TIP120 -
3W Resistor Prof. Harris’ Lab - -

 10

Appendix A: Instruction Manual for KegLock(DK)

Codes and their functions:
 Master Code: Allows all codes to be set, and allows the single-use and continuous use codes to
be reset (so no code is stored for them). Also allows the time to be set. The master code is 6 digits
long.
 Continuous Code: Opens the valve. The valve will stay open until the continuous code is
reentered or until 6 AM. The continuous code is 6 digits long.
 Single-Use Code: Opens the valve for 11 seconds. Will not work if the valve is already open
from the continuous code. The single-use code is 4 digits long.

Initialization:
 Press the red reset button contained within the circuit box. The LCD will prompt for mater code
entry. Enter the desired 6-digit master code, followed by #. Re-enter the code as prompted. If the codes
do not match, or the wrong length of code is entered, the LCD will display an error message and code
entry with start over. Once the same 6-digit code has been entered twice, that code will be stored as the
master code. This process can be used if the master code is forgotten.

Code entry:
 To enter a code, press the 4 or 6 digits of the code, followed by the # key. If the code entered
does not match a code stored in memory, an error message will display. Also, if a code that is not 4 or
6 digits long is entered, an error message will display.

Changing or resetting codes:
 To change or reset a code, enter the master code. The master menu will display, with the
options of changing the master code (1), continuous code (2), single-use code (3), or time (4). Press the
appropriate key for the code to be changed. If the continuous or single-use code is selected, the LCD
will display an option of either setting or resetting the code selected. Press * to reset the code or # to
set the code. There is no option of resetting the master code, so if the master code is selected, the
system will automatically enter code entry mode. If reset is selected, the code will be erased. If set is
selected, the LCD will prompt for code entry. Enter the code twice to set the new code. If the codes
match and are the appropriate length, the code entered will be saved.

Setting the time:
 To change the time, enter the master code. Select option 4, time. Enter the time in 24 hour
format, followed by #. If every digit of the time is not set, the digits not set will be zero.

 11

Appendix B: FSM for selected functions

Key:

Connection
between

two
functions

End -
return to

beginning

Interfaces
with Valve

Interfaces
with

Keypad

Interfaces
with LCD

Figure 3 Recognize Codes

Compare 6
input digits

to
Master

Compare 6
input digits

to
Continuous

Compare 6
input digits
to Creator

Compare 4
input digits
to Single-

Use

Master
Match

Continuous
Match

Creator
Match

Single-Use
Match

Match Match Match

Match Match Match Match

Recognize
codes

 12

Figure 4 Operation when Continuous Use Code Entered

Continuous
Match

Check if
continuous

is on

Set on,
Turn valve

off

Set on,
Turn valve

on

on

on

exit

Figure 5 Operation when Master Code Entered

Query what
to change

Single-use
code

change

continuous
code

change

master
code

change

clock
change

Read input

input = 1

Master
Match

input = 2
input = 3 input = 4

Figure 6 Operation when Single Use Code Entered

Single-use
match

check if
continuous

is on

turn valve
on

run timer

turn valve
off

exit

on

on

 13

Figure 7 Code input from keypad

Error: too
many

numbers
entered

Read Key
Pressed

Check if
number, #,

or *

Store
number in

current
data spot

Check if in
final data

spot

Move to
next data

spot

clear all
numbers,
move to
first data

spot

Check for

proper
length of

code

Error:
wrong
length

Code input
from

keypad

yes

no

number

Recognize
Codes

*

yes

no

Change
Codes

Inputting
code or

changing?

changing inputtting

 14

Appendix C: PIC Code

; codefile.asm
; written 11/19/2003 by Damian_small@hmc.edu
; various psuedo codes for the MicroP's project

; Use the 18F452 PIC Microprocessor
 LIST p=18F452
 include "p18f452.inc"

; Constants file for the electronic lock project
 include "elconstants.inc"

 org 0x00
 bra Initialize

 org 0x08
; high priority interrupt 36 commands till 0x50 maybe
 ; we should clear the stack. CLEAR THE STACK
 btfsc INTCON,1 ; check 6am
 bra SixAmInterrupt
 btfsc INTCON3,0 ; check reset
 bra ResetInterrupt
 ; otherwise, uh.... we're screwed
 bra FatalError

ResetInterrupt:
 bcf INTCON3,0 ; clear interrupt flag
 movlw MCSMCDB
 movwf WRLCDBREG
 movlw MCSMCDR
 movwf WRLCDDREG ; setup display
 movlw TIMEOFFV
 movwf WRTDISPREG ; disable time display
; reset single
 movlw singleCode1 ; set the single code
 movwf codeSet
 call clearCode
; reset continuous
 movlw continCode1 ; set the continuous code
 movwf codeSet
 call clearCode
; reset master (don't really need to do this, set already does)
 movlw masterCode1 ; set the master code
 movwf codeSet
 call changeCodes
 bsf INTCON, 7 ; enable high priority interrupts
 bra Initialize ; go to the main loop
SixAmInterrupt
 call ClearAlarm ; clear interrupt in clock chip
 bcf INTCON,1 ; clear interrupt flag
 movlw SIXAMB
 movwf WRLCDBREG
 movlw SIXAMR
 movwf WRLCDDREG ; setup display
; do important stuff
; close valve
 bcf LATE,2 ; reset valve
 clrf VALVEIND ; reset indicator
; reset single
 movlw singleCode1 ; set the single code
 movwf codeSet
 call clearCode

 call WriteDisplay
 call DelaySecond
 call DelaySecond
 call DelaySecond
 call DelaySecond
 bsf INTCON, 7 ; enable high priority interrupts

 15

 bra Initialize ; go to the main loop

 org 0x80
; INITIALIZE
Initialize:
 ; setup io pins
 clrf LATA
 clrf TRISA ; setup port A : output
 setf TRISB ; setup port B : input
 movlw 0x0F ; set the 4 MSB's of B to output, 4 LSB's to input
 movwf TRISC ; setup port B : input/output
 clrf LATD
 clrf TRISD ; setup port D : output
 bcf LATE, 0
 bsf LATE, 1 ; set port E, bit 1: ~CE for the clock
 bcf LATE, 2
 clrf TRISE ; setup port E : output

 ;setup interrupts
 bcf INTCON2,7 ; enable portB pull ups
 bsf INTCON,4 ; enable INT0
 bcf INTCON2,6 ; INT0 is on falling edge
; bsf blah blah ; INT0 is always high priority
 bcf INTCON,1 ; clear INT0 flag (maybe comment out)
 bsf INTCON3,3 ; enable INT1
 bcf INTCON2,5 ; INT1 is on falling edge
 bsf INTCON3,6 ; INT1 high priority
 bcf INTCON3,0 ; clear INT1 flag
 bsf RCON, 7 ; enable interrupt priority
; BSF INTCON, 6 ; enable low priority interrupts
 bsf INTCON, 7 ; enable high priority interrupts

 call DelaySecond ; need to delay 1 second for clock chip

 clrf VALVEIND ; setup valve
 call InitDisplay ; initializeDisplay
 ; initialize keys
 call InitClock ; initialize clock chip
 call CopyCode ; initialize the codes from memory

 ; other setup
 movlw maxlit
 movwf maxreg ; move the literal max into the file resiter for it
;start

Main:
idleState:
 movlw MAININPUTB
 movwf WRLCDBREG
 movlw MAININPUTR
 movwf WRLCDDREG ; setup display
 movlw TIMEONV
 movwf WRTDISPREG ; enable time display
 movlw 0x06 ; put 6 in the wreg
 movwf lengthCode ; put it in lengthCode
 call codeInput
 call compareCodes
 movlw 0x00
 cpfsgt match ; compare match to zero
 bra errorNoMatch ; if it is zero, error
 movlw singleCode1
 cpfseq match ; check if the single-use code matches
 bra checkCon ; if not, compare to continuous code
 bra SingleCodeEntered ; if matches, go to single-use action
checkCon:
 movlw continCode1
 cpfseq match ; check if the continuous use code matches
 bra MasterCodeEntered ; if not,must be master or creator
 bra ContinuousCodeEntered ; if matches, go to continuous action
errorNoMatch:
 ; display message saying that the entered code is no good

 16

 movlw ERRINPUTB
 movwf WRLCDBREG
 movlw ERRINPUTR
 movwf WRLCDDREG ; setup display
 call WriteDisplay
 call DelaySecond
 call DelaySecond ; write the display, then delay 2 seconds
 bra idleState

; test
;Main
; bra SingleCodeEntered
; bra test4
; bra Main

; test #4
test4:
 ; display enter code screen
 movlw 0x10
 movwf WRLCDBREG
 movlw 0x00
 movwf WRLCDDREG ; setup initial display copy from flash
 ; update time

 movlw 0x2E
 movwf WRTDISPREG
 call WriteDisplay ; set display
test4loop:
 call DisplayTime ; get time
 call RefreshDisplay ; update display
 bra test4loop

; test #3
test3:
; REDACTED
 bra test3

; test #2
 movlw 0x04 ; bank 4
 movwf WRLCDBREG
 movlw 0x00 ; start of bank 4
 movwf WRLCDDREG

 lfsr 2,0x400
testloop2a
 movlw 0x20
 movwf POSTINC2
 movlw 0x4F ; end of line '4'
 cpfsgt FSR2L
 bra testloop2a

 lfsr 2,0x400
testloop2b
 movlw 0x2A ; * character
 movwf INDF2
 call WriteDisplay
 call WriteDisplay
 call WriteDisplay
 call WriteDisplay
 call WriteDisplay
 call WriteDisplay
 call WriteDisplay
 call WriteDisplay
 movlw 0x20
 movwf POSTINC2
 movlw 0x50
 cpfslt FSR2L
 clrf FSR2L
 bra testloop2b

 17

; creatorMenu (MAIN CODE PATH)
CreatorCodeEntered:
 bra MasterCodeEntered ; go to the master menu

; masterMenu (MAIN CODE PATH)
MasterCodeEntered:
;write display
 movlw MCMAINDB
 movwf WRLCDBREG
 movlw MCMAINDR
 movwf WRLCDDREG
 movlw TIMEOFFV
 movwf WRTDISPREG ; disable time display
 call WriteDisplay ; set display
;get key
 call keyInput
MCcheckSMC:
; if (set mastercode) goto setMasterCodes
 movlw MCSMCK
 cpfseq inputDigit
 bra MCcheckSCC
 bra MCsetMasterCode
MCcheckSCC:
; if (set continuoutsCode) goto setcontinuousCode
 movlw MCSCCK
 cpfseq inputDigit
 bra MCcheckSSC
 bra MCsetContinuousCode
MCcheckSSC:
; if (set singleCode) goto setSingleCode
 movlw MCSSCK
 cpfseq inputDigit
 bra MCcheckSTK
 bra MCsetSingleCode
MCcheckSTK:
; if (set time) goto setTime
 movlw MCSTK
 cpfseq inputDigit
 bra MCcheckExit
 bra MCsetTime
MCcheckExit:
; if (exit) goto main prompt
 movlw MCEXIT
 cpfseq inputDigit
 bra MCunknownKey
 bra Main
MCunknownKey:
; else goto masterMenu
 bra MasterCodeEntered
MCsetMasterCode:
 movlw MCSMCDB
 movwf WRLCDBREG
 movlw MCSMCDR
 movwf WRLCDDREG
 call WriteDisplay ; set display
 movlw masterCode1 ; set the master code
 movwf codeSet
 call changeCodes
 bra MasterCodeEntered ; return to master menu
MCsetContinuousCode:
 movlw continCode1 ; set the continuous code
 movwf codeSet
 ; ask to set or reset
 movlw MCSRCCDB
 movwf WRLCDBREG
 movlw MCSRCCDR
 movwf WRLCDDREG
 call WriteDisplay ; set display
MCSetResetCon:
 ;get key

 18

 call keyInput
 movlw star
 cpfseq inputDigit
 bra MCCheckPoundC
 bra MCResetCon ; reset code
MCCheckPoundC:
 movlw pound
 cpfseq inputDigit
 bra MCSetResetCon ; get another key
 bra MCSetCon
MCResetCon:
 call clearCode
 bra MasterCodeEntered ; return to master menu
MCSetCon:
 movlw MCSCCDB
 movwf WRLCDBREG
 movlw MCSCCDR
 movwf WRLCDDREG
 call WriteDisplay ; set display
 call changeCodes
 bra MasterCodeEntered ; return to master menu
MCsetSingleCode:
 movlw singleCode1 ; set the single code
 movwf codeSet
 ; ask to set or reset
 movlw MCSRSCDB
 movwf WRLCDBREG
 movlw MCSRSCDR
 movwf WRLCDDREG
 call WriteDisplay ; set display
MCSetResetSin:
 ;get key
 call keyInput
 movlw star
 cpfseq inputDigit
 bra MCCheckPoundS
 bra MCResetCon ; reset code
MCCheckPoundS:
 movlw pound
 cpfseq inputDigit
 bra MCSetResetSin ; get another key
 bra MCSetSin
MCResetSin:
 call clearCode
 bra MasterCodeEntered ; return to master menu
MCSetSin:
 movlw MCSSCDB
 movwf WRLCDBREG
 movlw MCSSCDR
 movwf WRLCDDREG
 call WriteDisplay ; set display
 call changeCodes
 bra MasterCodeEntered ; return to master menu
MCsetTime:
 movlw MCSTDB
 movwf WRLCDBREG
 movlw MCSTDR
 movwf WRLCDDREG
 call WriteDisplay ; set display
 movlw 0x00
 lfsr FSR1, SETTINREG ; set FSR1 to the start of the time
 movwf POSTINC1
 movwf POSTINC1
 movwf POSTINC1
 movwf POSTINC1
 movwf POSTINC1
 movwf POSTINC1 ; clear the time input
 lfsr FSR1, SETTINREG ; set FSR1 to the start of the time
 movlw SETTIMEC ; load the prompt character
 lfsr FSR2, SETTDISPREG ; set FSR2 to the start of the time display
 movwf INDF2 ; write the prompt to the screen

 19

 call RefreshDisplay
HoursTen:
 call keyInput
 movlw star
 cpfseq inputDigit
 bra HTCheckStar
 bra MCsetTime ; clear input
HTCheckStar:
 movlw pound
 cpfseq inputDigit
 bra HTCheckDigit
 bra TimeEntered ; set the time
HTCheckDigit:
 movlw 0x03
 cpfslt inputDigit
 bra HoursTen ; inputDigit >= 3
 movf inputDigit,0
 movwf INDF1 ; save input
 addlw 0x30 ; convert to ascii
 movwf POSTINC2 ; write the input to the screen
 movlw SETTIMEC
 movwf INDF2 ; write the prompt to the next space
 call RefreshDisplay
HoursOne:
 call keyInput
 movlw star
 cpfseq inputDigit
 bra HOCheckStar
 bra MCsetTime ; clear input
HOCheckStar:
 movlw pound
 cpfseq inputDigit
 bra HOCheckDigit
 bra TimeEntered ; set the time
HOCheckDigit:
 movlw 0x01
 cpfsgt INDF1 ; check if the HourTen is < 2
 bra HoursGood ; hourTen < 2
 movlw 0x04
 cpfslt inputDigit
 bra HoursOne ; hoursOne >= 4
HoursGood:
 movf POSTINC1, 0 ; increment IND1
 movf inputDigit,0
 movwf POSTINC1 ; save input
 addlw 0x30 ; convert to ascii
 movwf POSTINC2 ; write the input to the screen
 movf POSTINC2,0 ; increment screen (skip ':')
 movlw SETTIMEC
 movwf INDF2 ; write the prompt to the next space
 call RefreshDisplay
MinutesTen:
 call keyInput
 movlw star
 cpfseq inputDigit
 bra MTCheckStar
 bra MCsetTime ; clear input
MTCheckStar:
 movlw pound
 cpfseq inputDigit
 bra MTCheckDigit
 bra TimeEntered ; set the time
MTCheckDigit:
 movlw 0x06
 cpfslt inputDigit
 bra MinutesTen ; MinutesTen >= 6
 movf inputDigit,0
 movwf POSTINC1 ; save input
 addlw 0x30 ; convert to ascii
 movwf POSTINC2 ; write the input to the screen
 movlw SETTIMEC

 20

 movwf INDF2 ; write the prompt to the next space
 call RefreshDisplay
MinutesOne:
 call keyInput
 movlw star
 cpfseq inputDigit
 bra MOCheckStar
 bra MCsetTime ; clear input
MOCheckStar:
 movlw pound
 cpfseq inputDigit
 bra MOCheckDigit
 bra TimeEntered ; set the time
MOCheckDigit:
 movlw 0x0A
 cpfslt inputDigit
 bra MinutesOne ; MinutesOne >= 10
 movf inputDigit,0
 movwf POSTINC1 ; save input
 addlw 0x30 ; convert to ascii
 movwf POSTINC2 ; write the input to the screen
 movf POSTINC2,0 ; increment screen (skip '.')
 movlw SETTIMEC
 movwf INDF2 ; write the prompt to the next space
 call RefreshDisplay
SecondsTen:
 call keyInput
 movlw star
 cpfseq inputDigit
 bra STCheckStar
 bra MCsetTime ; clear input
STCheckStar:
 movlw pound
 cpfseq inputDigit
 bra STCheckDigit
 bra TimeEntered ; set the time
STCheckDigit:
 movlw 0x06
 cpfslt inputDigit
 bra SecondsTen ; SecondsTen >= 6
 movf inputDigit,0
 movwf POSTINC1 ; save input
 addlw 0x30 ; convert to ascii
 movwf POSTINC2 ; write the input to the screen
 movlw SETTIMEC
 movwf INDF2 ; write the prompt to the next space
 call RefreshDisplay
SecondsOne:
 call keyInput
 movlw star
 cpfseq inputDigit
 bra SOCheckStar
 bra MCsetTime ; clear input
SOCheckStar:
 movlw pound
 cpfseq inputDigit
 bra SOCheckDigit
 bra TimeEntered ; set the time
SOCheckDigit:
 movlw 0x0A
 cpfslt inputDigit
 bra SecondsOne ; SecondsOne >= 10
 movf inputDigit,0
 movwf INDF1 ; save input
 addlw 0x30 ; convert to ascii
 movwf INDF2 ; write the input to the screen
 movlw SETTIMEC
 call RefreshDisplay
 bra SecondsOne ; loop forever

TimeEntered:

 21

 call SetTime
 bra MasterCodeEntered ; return to master menu

; setTime
;display prompt
;loop:
;get keys
; if (number && valid) // check if the number matches the
;current range (date, time, etc.)
; enter number
; advance to next digit
; if (back && not at first digit)
; go back
; if (enter)
; set time
; goto masterMenu
;loop

; singleCode (MAIN CODE PATH)
; first do some error checking
SingleCodeEntered:
 movlw VALVEOFF
 cpfseq VALVEIND ; check if valve off
 bra SCcheck2
 bra SCstartSingle
SCcheck2:
 movlw VALVECONT
 cpfseq VALVEIND ; check if continuous already on
 bra SCcheck3
 bra SCcontinuousOn
SCcheck3:
 movlw VALVESINGLE
 cpfseq VALVEIND ; check if single already on (error)
 bra SCerrorUnknown ; error: unknown state
 bra SCerrorSingle ; error: single
SCerrorUnknown:
SCerrorSingle:
 bcf LATE,2 ; reset valve
 clrf VALVEIND ; reset indicator
SCcontinuousOn:
 ; display something?
 bra Main
; now turn on the valve
SCstartSingle:
 movlw SCDISPB
 movwf WRLCDBREG
 movlw SCDISPR
 movwf WRLCDDREG ; setup initial display copy from flash
 movlw SCDISPPBB
 movwf FSR2H ; setup progress bar FSR2H
 movlw SCDISPPBS
 movwf FSR2L ; setup progress bar FSR2L
 call WriteDisplay ; set display

 movlw VALVESINGLE
 movwf VALVEIND ; set the valve indicator
 bsf LATE,2 ; turn valve on
;begin timing, time is length of progress bar +1
; so if a bar starts at 0x10 and ends at 0x10, then time is 2 seconds
; because the length is 1, +1 second
; This is NOT highly accurate: delay second will delay a second, plus
; you have the time to update the display
 call DelaySecond
SCtimeloop:
 movlw SCDISPPBC ; load the progress bar character
 movwf POSTINC2 ; write the bar character
 call RefreshDisplay ; update the display
 call DelaySecond
 movlw SCDISPPBE
 cpfsgt FSR2L ; check if at end of progress bar

 22

 bra SCtimeloop
; clean up and return to main loop
 bcf LATE,2 ; turn valve off
 clrf VALVEIND ; set the valve indicator to off
 bra Main ;goto main prompt

; continuousCode (MAIN CODE PATH)
; first do some error checking
ContinuousCodeEntered:
 movlw VALVEOFF
 cpfseq VALVEIND ; check if valve off
 bra CCcheck2
 bra CCstartContinuous
CCcheck2:
 movlw VALVECONT
 cpfseq VALVEIND ; check if continuous already on
 bra CCcheck3
 bra CCcontinuousOn
CCcheck3:
 movlw VALVESINGLE
 cpfseq VALVEIND ; check if single already on (error)
 bra CCerrorUnknown ; error: unknown state
 bra CCerrorSingle ; error: single
CCerrorUnknown:
CCerrorSingle:
 bcf LATE,2 ; reset valve
 clrf VALVEIND ; reset indicator
 bra Main
CCcontinuousOn: ; turn off the valve
 bcf LATE,2 ; reset valve
 clrf VALVEIND ; reset indicator
 movlw CCOFFDISPB
 movwf WRLCDBREG
 movlw CCOFFDISPR
 movwf WRLCDDREG
 call WriteDisplay ; set display
 call DelaySecond
 call DelaySecond
 call DelaySecond
 call DelaySecond
 bra Main
CCstartContinuous: ; turn on the valve
 movlw VALVECONT
 movwf VALVEIND ; set the indicator
 bsf LATE,2 ; turn on the valve
 movlw CCONDISPB
 movwf WRLCDBREG
 movlw CCONDISPR
 movwf WRLCDDREG
 call WriteDisplay ; set display
 call DelaySecond
 call DelaySecond
 call DelaySecond
 call DelaySecond
 bra Main

FatalError
 movlw FATALB
 movwf WRLCDBREG
 movlw FATALR
 movwf WRLCDDREG ; setup display
 call WriteDisplay
fataloop:
 nop
 nop
 nop
 bra fataloop

; include subroutines

 23

 ; Kim's subroutines
 include "codeControl.inc"
 include "keypadControl.inc"

 ; Damian's subroutines
 include "displayControl.inc"
 include "timerControl.inc"

 include "displays.inc"

 end

 24

; codeControl.inc
; written 12/4/03 by Damian_small@hmc.edu
; contains subroutines for controlling codes, originally
; written by Kim_Shultz@hmc.edu
; codeInput, compareCodes, changeCodes, clearCodes, startup

; startup
; written 12/5 by kim_shultz@hmc.edu
; copy the codes from the eeprom

; SUBROUTINE
CopyCode:
 clrf FSR0H
 movlw masterCode1
 movwf FSR0L ; write the master code
 movwf EEADR ; read the master code
 movlw 0x06
 movwf count ; put 6 in the count register
 call readLoop
 movlw continCode1
 movwf FSR0L ; write the contin code
 movwf EEADR ; read the contin code
 movlw 0x06
 movwf count ; put 6 in the count register
 call readLoop
 movlw singleCode1
 movwf FSR0L ; write the single code
 movwf EEADR ; read the single code
 movlw 0x06
 movwf count ; put 6 in the count register
 call readLoop
 bra readCreator

readLoop
 bcf EECON1, EEPGD ; point to DATA memory
 bcf EECON1, CFGS ; access program FLASH of data EEPROM memory
 bsf EECON1, RD ; EEPROM read
 movff EEDATA, POSTINC0 ; put the data from memory into the file register
 incf EEADR ; read from the next mem location
 decfsz count ; decrement count
 bra readLoop ; if count above 0, repeat
 return

readCreator
 movlw creatorCode1
 movwf FSR0L ; write the creator code
 movlw 0xXX
 movwf POSTINC0
 movlw 0xXX
 movwf POSTINC0
 movlw 0xXX
 movwf POSTINC0
 movlw 0xXX
 movwf POSTINC0
 movlw 0xXX
 movwf POSTINC0
 movlw 0xXX
 movwf POSTINC0
 return

; codeInput.inc
; written 11/22/03 by kim_shultz@hmc.edu
; get input from user and store in input registers
; NOTE: writeDisplay and DsiplayTime use FSR0, so this subroutine uses
; FSR1 and FSR2
codeInput
 ; for codeInput
 clrf FSR1H ; ensure the high bits of FSR1 are 0

 25

clearInput ; clear the input registers
 movff WRLCDBREG, TEMPREGB
 movff WRLCDDREG, TEMPREGR ; save the display
 call WriteDisplay
 call DisplayTime
 call RefreshDisplay ; display the cleared input with the time
 movlw inputCode1
 movwf FSR1L ; put the pointer at the beginning
 lfsr FSR2, CODESTART ; put the code field into FSR2L (to display *'s)
 movlw 0x06 ; put the number of registers in the wreg
 movwf count ; move it to the count register
 movlw 0x0A ; put A in the wreg

clearLoop
 movwf POSTINC1 ; put A in the input data spot
 decfsz count ; decrement count, skip if zero
 bra clearLoop ; repeat and clear the next spot

 movlw inputCode1
 movwf FSR1L ; put the pointer at the beginning

getKey
 call keyInput ; get a key input from the user

 movlw 0x0A ; put A in the wreg
 cpfsgt inputDigit
 bra numInput ; if input<A, then it is a number
 movlw pound
 cpfseq inputDigit
 bra clearInput ; if input is neither a number or #,
 ; only other valid input is *
 bra poundInput ; if input is #, branch

numInput
 movf lengthCode,0 ; put the length of the code in the wreg
 cpfslt count ; compare the length to be inputted
 ; to the length that has been inputted
 bra errorTooMany ; if count is not less than the input length,
 ; too many have been inputted
 movff inputDigit, POSTINC1 ; put the input in the inputCode file register
 ; point to the next file register
 incf count ; increment the count register
 movlw CODECHAR
 movwf POSTINC2 ; display the code character on the LCD
 bra getKey ; get the next input key

poundInput
 movf lengthCode,0 ; put the length of code looking for in the wreg
 cpfslt count ; compare the length to be inputted
 ; to the length that has been inputted
 bra codeEntered ; if count is not less than the input length
 movlw 0x04 ; put 4 in the wreg
 cpfseq count ; compare the number of inputted digits to 4
 bra errorWrongNum ; if not equal to 4 (or 6, from above), then error
 clrf lengthCode ; clear lengthCode to tell that 4 digits entered

codeEntered
 return ; return when code has been entered

errorTooMany
errorWrongNum
 ; display in bank 13 0xC0
 ; need a message here
 ; should say "You entered the wrong number of digits. Please try again"
 movlw ERRLENB
 movwf WRLCDBREG
 movlw ERRLENR
 movwf WRLCDDREG ; setup display
 call WriteDisplay
 call DelaySecond
 call DelaySecond ; write the display, then delay 2 seconds

 26

 movff TEMPREGB, WRLCDBREG
 movff TEMPREGR, WRLCDDREG ; restore the display
 bra clearInput ; clear the input spots

; compareCodes.asm
; written 11/18/03 by kim_shultz@hmc.edu
; recognize inputted codes
compareCodes
; initialize variables

 clrf FSR0H ; ensure the high bits of FRS0 are 0's
 clrf FSR1H ; ensure the high bits of FRS1 are 0's
 clrf match ; clear match

compareMaster
 movlw inputCode1 ; store the address of the input code in FSR0
 movwf FSR0L
 movlw masterCode1 ; store the address of the master code in FSR1
 movwf FSR1L
 clrf count ; put 0 in the count register
loopMaster
 incf count ; increment count
 movf POSTINC0,0 ; put the input digit in the wreg,
 ; point to the next input digit
 cpfseq POSTINC1 ; compare to the master digit, point to the next digit
 bra compareContin ; if the digits do not match,
 ; compare to the continuous code
 movlw 0x06 ; put six in the wreg
 cpfseq count ; compare the count to six (in the wreg)
 bra loopMaster ; if the loop has not been iterated six times, repeat
 ; if the loop has found six matches, the codes match
 movlw masterCode1 ; put the master match flag in the wreg
 movwf match ; put the master match flag into match
 bra matchDone

compareContin
 movlw inputCode1 ; store the address of the input code in FSR0
 movwf FSR0L
 movlw continCode1 ; store the address of the continuous code in FSR1
 movwf FSR1L
 clrf count ; put 0 in the count register
loopContin
 incf count ; increment count
 movf POSTINC0,0 ; put input digit in wreg, point to next input digit
 cpfseq POSTINC1 ; compare to the continuous digit, point to next digit
 bra compareCreator ; if the digits do not match, compare to creator code
 movlw 0x06 ; put six in the wreg
 cpfseq count ; compare the count to six (in the wreg)
 bra loopContin ; if the loop has not been iterated six times, repeat
 ; if the loop has found six matches, the codes match
 movlw continCode1 ; put the continuous match flag in the wreg
 movwf match ; put the continuous match flag into match
 bra matchDone

compareCreator
 movlw inputCode1 ; store the address of the input code in FSR0
 movwf FSR0L
 movlw creatorCode1 ; store the address of the creator code in FSR1
 movwf FSR1L
 clrf count ; put 0 in the count register
loopCreator
 incf count ; increment count
 movf POSTINC0,0 ; put the input digit in the wreg, point to the next input digit
 cpfseq POSTINC1 ; compare to the creator digit, point to the next digit
 bra compareSingle ; if the digits do not match, compare to the single-use code
 movlw 0x06 ; put six in the wreg
 cpfseq count ; compare the count to six (in the wreg)
 bra loopCreator ; if the loop has not been iterated six times, repeat
 ; if the loop has found six matches, the codes match
 movlw creatorCode1 ; put the creator match flag in the wreg

 27

 movwf match ; put the creator match flag into match
 bra matchDone

compareSingle
 movlw inputCode1 ; store the address of the input code in FSR0
 movwf FSR0L
 movlw singleCode1 ; store the address of the single-use code in FSR1
 movwf FSR1L
 clrf count ; put 0 in the count register
loopSingle
 incf count ; increment count
 movf POSTINC0,0 ; put the input digit in the wreg, point to the next input digit
 cpfseq POSTINC1 ; compare to the single-use digit, point to the next digit
 bra matchDone ; if the digits do not match, no codes match
 movlw 0x06 ; put six in the wreg
 cpfseq count ; compare the count to six (in the wreg)
 ; the last two comparisons are to ensure that only 4
digits have been entered
 bra loopSingle ; if the loop has not been iterated six times, repeat
 ; if the loop has found six matches, the codes match
 movlw singleCode1 ; put the continuous match flag in the wreg
 movwf match ; put the continuous match flag into match

matchDone
 return

; changeCodes.inc
; written 11/18/03 by kim_shultz@hmc.edu
; change the codes
changeCodes
 movff WRLCDBREG, TEMPREGB
 movff WRLCDDREG, TEMPREGR ; save the display
 movlw 0x04 ; put the length of the single-use code in the wreg
 movwf lengthCode ; put it in lengthCode
 movlw singleCode1 ; put the address of the single-use code in the wreg
 cpfseq codeSet ; check if the single-use code is being input
 bra longCode ; if it is not, the lengthCode needs to be 6
lengthDone
 call codeInput ; get code input
 movlw 0x00 ; put 0 in the wreg
 cpfsgt lengthCode ; check if lengthCode is 0
 bra errorWrongNumS ; if == zero, then 4 digits were entered for a 6 code
 call compareCodes ; check if the inputted code matches an already inputted code

 movlw 0x00 ; put 0x00 in the wreg
 cpfsgt match ; if no match has been found, set the code
 bra setTheCode
 movf match,0 ; put the code matched in the wreg
 cpfseq codeSet
 bra errorMatch ; if the code matches a different code, this code cannot be set
; bra doneSetting ; if the code matched is the code being set, the code does not
need to be set
 bra setTheCode ; if the code matched is the code being set, we still need to set the
code again

longCode
 movlw 0x06 ; put the length of the long codes in the wreg
 movwf lengthCode ; put it in lengthCode
 bra lengthDone

setTheCode
 movlw singleCode1 ; put the single-use code address in the wreg
 cpfseq codeSet ; if the single use code is being set, continue
 bra setInit ; otherwise, copy the code to the appropriate location
 movlw 0x0A ; put 0x0A into the wreg
 movwf inputCode5
 movwf inputCode6 ; set the last two bits of the inputted code to A

setInit
 clrf FSR0H ; ensure the high bits of FRS0 are 0's

 28

 clrf FSR1H ; ensure the high bits of FRS1 are 0's
 movlw inputCode1 ; put the address of the inputted code in the wreg
 movwf FSR0L ; put the address of the inputted code in FRS0
 movf codeSet,0 ; put the address of the code to set in the wreg
 movwf FSR1L ; put the address of the code to set in FSR1
 movlw 0x06 ; put 6 in the wreg
 clrf count ; clear the count register

setLoop
 movff POSTINC0,POSTINC1 ; move the inputted digit to the proper location
 incf count ; increment the count
 cpfseq count ; if the loop has run 6 times, finish
 bra setLoop ; if the loop has not yet run 6 times, exit
 bra doneSetting

errorMatch
 ; need display to say that that code is already taken
 ; display in bank 13 0x70
 movlw ERRMATCHB
 movwf WRLCDBREG
 movlw ERRMATCHR
 movwf WRLCDDREG ; setup display
 call WriteDisplay
 call DelaySecond
 call DelaySecond ; write the display, then delay 2 seconds
 movff TEMPREGB, WRLCDBREG
 movff TEMPREGR, WRLCDDREG ; restore the display
 bra changeCodes

doneSetting
 clrf match ; remove the match flag, if anything matched
repeatInput
 ; get the user to re-input the code
 ; need display to tell the user that
 ; display in bank 13 0x20
 movlw ENTERAGAINB
 movwf WRLCDBREG
 movlw ENTERAGAINR
 movwf WRLCDDREG ; setup display
 call WriteDisplay
 call DelaySecond
 call DelaySecond ; write the display, then delay 2 seconds
 movff TEMPREGB, WRLCDBREG
 movff TEMPREGR, WRLCDDREG ; restore the display

 movlw 0x06 ; put 6 in the wreg
 movwf lengthCode ; put it in lengthCode
 call codeInput ; get input again
 call compareCodes ; compare the new input to the codes
 movf codeSet,0 ; put the code to be set in the wreg
 cpfseq match ; see if the new code matches the code being changed
 bra misMatch ; if they don't match, error

 ; copy to permanent memory
copyToMem:
 clrf FSR0H
 movf codeSet,0
 movwf EEADR ; put the address of the code being set in the data address spot
 addlw 0x06 ; find the location after the code spot
 movwf count ; store it in the count register
 movff codeSet, FSR0L; put the address of the code in FSR0
 bcf EECON1, CFGS ; access program flash or data EEPROM memory
 bcf EECON1, EEPGD ; point to DATA memory
 bcf INTCON, GIE ; disable interrupts
 bsf EECON1, WREN ; enable writes
memLoop:
 movf POSTINC0,0
 movwf EEDATA ; put the data in EEDATA
 movlw 0x55 ; the following is from the data sheet
 movwf EECON2 ; write 0x55
 movlw 0xAA

 29

 movwf EECON2 ; write 0xAA
 bsf EECON1, WR ; set the write bit to begin write
memWait:
 btfsc EECON1, WR ; wait for write to complete
 bra memWait

 incf EEADR ; point to the next address in memory
 movf count,0 ; put the count contents in the wreg
 cpfseq FSR0L ; compare to the current mem address
 bra memLoop ; if not the same, repeat

doneWriting:
 bcf EECON1, WREN ; disable writes
 clrf codeSet ; to code has been set, so remove the flag saying to change that code
 bsf INTCON,GIE ; reenable interrupts
 return

misMatch
 ; need to display an error message
 ; repeat the code changing process
 movlw MISMATCHB
 movwf WRLCDBREG
 movlw MISMATCHR
 movwf WRLCDDREG ; setup display
 call WriteDisplay
 call DelaySecond
 call DelaySecond ; write the display, then delay 2 seconds
 movff TEMPREGB, WRLCDBREG
 movff TEMPREGR, WRLCDDREG ; restore the display
 bra changeCodes

errorWrongNumS
 ; display in bank 13 0xC0
 ; should say "You entered the wrong number of digits. Please try again"
 movlw ERRLENB
 movwf WRLCDBREG
 movlw ERRLENR
 movwf WRLCDDREG ; setup display
 call WriteDisplay
 call DelaySecond
 call DelaySecond ; write the display, then delay 2 seconds
 movff TEMPREGB, WRLCDBREG
 movff TEMPREGR, WRLCDDREG ; restore the display
 bra changeCodes ; start changing codes again

; clearCodes
; written 12/5 by kim_shultz@hmc.edu
; clear a code

; code to be cleared should have its address stored in codeSet

clearCode
 clrf FSR0H
 movf codeSet,0 ; put the address of the code to be reset in the wreg
 movwf FSR0L ; point FSR0 at the code
 movlw 0x06 ; put 6 in the wreg
 movwf count ; put 6 in the count register
 movlw 0x0A ; put 0x0A in the wreg
clearCodeLoop
 movwf POSTINC0 ; put 0x0A in the current address, point to next address
 decfsz count ; decrement the count register
 bra clearCodeLoop ; if not 0, repeat

 call copyToMem
 return

 30

; displayControl.inc
; written 12/02/2003 by Damian_small@hmc.edu
; display control routines for the MicroP's project

; SUBROUTINE CheckBF
; checks the display flag, and waits
; until the display is ready for the next instruction
CheckBF:
 setf TRISD
 movlw LCDCHECKBFA
 movwf LATA
; bsf LATE,1 ; disable chip
 bsf LATE,0 ; enable LCD
cbfloop:
 btfsc PORTD, 7
 bra cbfloop
 bcf LATE,0
 clrf LATA
 clrf TRISD
 return

; SUBROUTINE WriteDisplay
; NOTE: the difference between WriteDisplay and RefreshDisplay
; is that RefreshDisplay does not recopy the data from flash
; memory, allowing the display to be changed in data memory.
; WriteDisplay automatically calls RefreshDisplay.
; uses FSR0
WriteDisplay:
 ; copy data to copy location
 lfsr 0,WRLCDTEMP ; start of storage location in FSR0
 movf WRLCDBREG,0 ; set temporary storage destination
; movwf FSR1H
 clrf TBLPTRU
 movwf TBLPTRH
 movf WRLCDDREG,0
 movwf TBLPTRL ; setup table read pointer
; movwf FSR1L ; load FSR1 with the location of the data
 ; copy over data: line 1
 movlw 0x13 ; end of line1
wrlcdcopy1:
; movff POSTINC1, POSTINC0 ; copy data to temp store
 tblrd*+ ; read table pointer, postinc
 movff TABLAT, POSTINC0 ; copy the table data to data memory, postinc
 cpfsgt FSR0L
 bra wrlcdcopy1
 movlw 0x28
 movwf FSR0L ; go to the '3rd' line
 movlw 0x3B ; end of line '3'
wrlcdcopy2:
; movff POSTINC1, POSTINC0 ; copy data to temp store
 tblrd*+ ; read table pointer, postinc
 movff TABLAT, POSTINC0 ; copy the table data to data memory, postinc
 cpfsgt FSR0L
 bra wrlcdcopy2
 movlw 0x14
 movwf FSR0L ; go to the '2nd' line
 movlw 0x27 ; end of line '2'
wrlcdcopy3:
; movff POSTINC1, POSTINC0 ; copy data to temp store
 tblrd*+ ; read table pointer, postinc
 movff TABLAT, POSTINC0 ; copy the table data to data memory, postinc
 cpfsgt FSR0L
 bra wrlcdcopy3
 movlw 0x3C
 movwf FSR0L ; go to the '4th' line
 movlw 0x4F ; end of line '4'
wrlcdcopy4:
; movff POSTINC1, POSTINC0 ; copy data to temp store
 tblrd*+ ; read table pointer, postinc
 movff TABLAT, POSTINC0 ; copy the table data to data memory, postinc
 cpfsgt FSR0L

 31

 bra wrlcdcopy4

; SUBROUTINE RefreshDisplay
; refreshes the LCD from the temporary data memory location
; uses FSR0
RefreshDisplay:
 ; begin init display
 call CheckBF
 movlw LCDRETURN ; return the cursor to the home position
 movwf LATD
 bsf LATE,0
 bcf LATE,0
 lfsr 0,WRLCDTEMP ; start of storage location in FSR0
wrloop: ; write data to LCD
 call CheckBF
 movlw LCDDATAWRA
 movwf LATA
 movff POSTINC0, LATD
 bsf LATE,0 ; enable LCD
 bcf LATE,0
 movlw 0x4F ; end of line 4
 cpfsgt FSR0L
 bra wrloop
 return

; SUBROUTINE InitDisplay
; initializes the display
InitDisplay:
 setf WREG
 ; wait 15 ms
delay1:
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop

 32

 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 decfsz WREG
 bra delay1
 ; first init
 movlw LCDINIT1
 movwf LATD
 bsf LATE,0
 bcf LATE,0
 ; wait 4.1ms
 setf WREG
delay2:
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 decfsz WREG
 bra delay2
 ; second init
 movlw LCDINIT1
 movwf LATD
 bsf LATE,0
 bcf LATE,0
 ; wait 100us
 setf WREG
delay3:
 decfsz WREG
 bra delay3
 ; third init
 movlw LCDINIT1
 movwf LATD
 bsf LATE,0 ; enable LCD
 bcf LATE,0
; use check BF from now on
 call CheckBF
 ; fourth init
 movlw LCDINIT2
 movwf LATD
 bsf LATE,0 ; enable LCD
 bcf LATE,0
 call CheckBF
 ; fifth init
 movlw LCDINIT3
 movwf LATD
 bsf LATE,0 ; enable LCD
 bcf LATE,0
 call CheckBF
 ; sixth init
 movlw LCDINIT4
 movwf LATD
 bsf LATE,0 ; enable LCD
 bcf LATE,0
 call CheckBF
 return

 33

; keypadControl originally keyInput.inc
; written 11/23/03 by kim_shultz@hmc.edu
; poll the keypad to get input

; returns the key pressed in file register 0x0C
; stores digits 0-9 in hex

; bits 0-3 of PORTC are row inputs A through D
; bits 4-6 of PORTC are column outputs 1-3

keyInput
 ; poll the first column
 call DisplayTime
 call RefreshDisplay ; this delays ~40ms, so no delay needed
 movlw MSB1low
 movwf PORTC ; pull column 1 low
;; call pollDelay ; delay to avoid bounce
 btfss PORTC,0 ; check if row A is high
 bra rowAcol1 ; if not, row A col 1 is the key pressed
 btfss PORTC,1 ; check if row B is high
 bra rowBcol1 ; if not, row B col 1 is the key pressed
 btfss PORTC,2 ; check if row C is high
 bra rowCcol1 ; if not, row C col 1 is the key pressed
 btfss PORTC,3 ; check if row D is high
 bra rowDcol1 ; if not, row D col 1 is the key pressed
 ; poll the second column
 movlw MSB2low
 movwf PORTC ; pull column 2 low
;; call pollDelay ; delay to avoid bounce
 btfss PORTC,0 ; check if row A is high
 bra rowAcol2 ; if not, row A col 2 is the key pressed
 btfss PORTC,1 ; check if row B is high
 bra rowBcol2 ; if not, row B col 2 is the key pressed
 btfss PORTC,2 ; check if row C is high
 bra rowCcol2 ; if not, row C col 2 is the key pressed
 btfss PORTC,3 ; check if row D is high
 bra rowDcol2 ; if not, row D col 2 is the key pressed
 ; poll the third column
 movlw MSB3low
 movwf PORTC ; pull column 3 low
;; call pollDelay ; delay to avoid bounce
 btfss PORTC,0 ; check if row A is high
 bra rowAcol3 ; if not, row A col 3 is the key pressed
 btfss PORTC,1 ; check if row B is high
 bra rowBcol3 ; if not, row B col 3 is the key pressed
 btfss PORTC,2 ; check if row C is high
 bra rowCcol3 ; if not, row C col 3 is the key pressed
 btfss PORTC,3 ; check if row D is high
 bra rowDcol3 ; if not, row D col 3 is the key pressed

 bra keyInput ; if all rows are high, repeat polling

rowAcol1
 movlw 0x01 ; row A column 1 is 1
 movwf inputDigit
 bra releaseRowA
rowBcol1
 movlw 0x04 ; row B column 1 is 4
 movwf inputDigit
 bra releaseRowB
rowCcol1
 movlw 0x07 ; row C column 1 is 7
 movwf inputDigit
 bra releaseRowC
rowDcol1
 movlw star ; row D column 1 is *
 movwf inputDigit
 bra releaseRowD
rowAcol2
 movlw 0x02 ; row A column 2 is 2
 movwf inputDigit

 34

 bra releaseRowA
rowBcol2
 movlw 0x05 ; row B column 2 is 5
 movwf inputDigit
 bra releaseRowB
 return
rowCcol2
 movlw 0x08 ; row C column 2 is 8
 movwf inputDigit
 bra releaseRowC
rowDcol2
 movlw 0x00 ; row D column 2 is 0
 movwf inputDigit
 bra releaseRowD
rowAcol3
 movlw 0x03 ; row A column 3 is 3
 movwf inputDigit
 bra releaseRowA
rowBcol3
 movlw 0x06 ; row B column 3 is 6
 movwf inputDigit
 bra releaseRowB
rowCcol3
 movlw 0x09 ; row C column 3 is 9
 movwf inputDigit
 bra releaseRowC
rowDcol3
 movlw pound ; row D column 3 is #
 movwf inputDigit
 bra releaseRowD

releaseRowA
 btfss PORTC, 0 ; check if the key has been released
 bra releaseRowA ; if not, repeat
 return ; if it has, finish
releaseRowB
 btfss PORTC, 1 ; check if the key has been released
 bra releaseRowB ; if not, repeat
 return ; if it has, finish
releaseRowC
 btfss PORTC, 2 ; check if the key has been released
 bra releaseRowC ; if not, repeat
 return ; if it has, finish
releaseRowD
 btfss PORTC, 3 ; check if the key has been released
 bra releaseRowD ; if not, repeat
 return ; if it has, finish

; uses displayTime to delay ~40ms (with display write)
; so no delay loop needed
;pollDelay
 ; delay ~5 ms to avoid bounce
; movlw 0 ; set the wreg to 0
;loopPoll ; loop for delay
; addlw 1 ; increment the wreg
; cpfseq maxreg ; if the loop has been iterated max times, exit loop
; bra loopPoll ; if not, repeat the loop
; return

 35

; timerControl.inc
; written 12/02/2003 by Damian_small@hmc.edu
; timer control routines for the MicroP's project

; SUBROUTINE InitClock
; initializes the clock
InitClock:
 ; set the three configuration bytes
; setf TRISD
; movlw CCFLAGSA
; bcf LATE,1
; bsf LATE,1 ; read to clock chip

 ; write rate bits
 clrf TRISD ; set port D to output
 movlw CCRATESA
 movwf LATA ; set write rates reg
 movlw CCRATES
 movwf PORTD
 bcf LATE,1
 bsf LATE,1 ; write to clock chip
 ; write interrupt enable flags
 movlw CCIEFLAGSA
 movwf LATA ; set write rates reg
 movlw CCIEFLAGS
 movwf PORTD
 bcf LATE,1
 bsf LATE,1 ; write to clock chip
 ; write control flags
 movlw CCCONTROLA
 movwf LATA ; set write rates reg
 movlw CCCONTROL
 movwf PORTD
 bcf LATE,1
 bsf LATE,1 ; write to clock chip
 ; write the alarm time
 movlw CCALARM1A
 movwf LATA
 movlw CCALARM1
 movwf PORTD
 bcf LATE,1
 bsf LATE,1 ; write to clock chip
 movlw CCALARM2A
 movwf LATA
 movlw CCALARM2
 movwf PORTD
 bcf LATE,1
 bsf LATE,1 ; write to clock chip
 movlw CCALARM3A
 movwf LATA
 movlw CCALARM3
 movwf PORTD
 bcf LATE,1
 bsf LATE,1 ; write to clock chip
 movlw CCALARM4A
 movwf LATA
 movlw CCALARM4
 movwf PORTD
 bcf LATE,1
 bsf LATE,1 ; write to clock chip

 call ClearAlarm ; make sure the alarm is cleared
 return

; SUBROUTINE DisplayTime
; this subroutine queries the clock chip for
; the time and parses the result, then writes
; the parsed result to the display
DisplayTime:
 ; setup indirection
 movlw 0x01

 36

 movwf FSR0H
 movf WRTDISPREG,0
 movwf FSR0L

 setf TRISD ; set port D to input
 movlw GETIMEA3
 movwf LATA ; set timer chip to hours
 bcf LATE,1 ; ~~enable clock chip (~CE = 0)

;query clock for time
;parse time
;write time to display
 ; HOURS
 movf PORTD,0 ; get hours data
 swapf WREG ; swap nibbles
 andlw TENMASK ; isolate tens digit
 addlw ZEROASCII ; convert to ASCII character
 movwf POSTINC0 ; write ten hours
 movf PORTD,0 ; get hours data again
 andlw ONEMASK ; isolate ones digit
 addlw ZEROASCII ; convert to ASCII character
 movwf POSTINC0 ; write one hours
 movlw HOURCHAR
 movwf POSTINC0 ; write hour/minute char

 ; MINUTES
 movlw GETIMEA2
 movwf LATA ; set timer chip to minutes
 movf PORTD,0 ; get minutes data
 swapf WREG ; swap nibbles
 andlw TENMASK ; isolate tens digit
 addlw ZEROASCII ; convert to ASCII character
 movwf POSTINC0 ; write ten minutes
 movf PORTD,0 ; get minutes data again
 andlw ONEMASK ; isolate ones digit
 addlw ZEROASCII ; convert to ASCII character
 movwf POSTINC0 ; write one minutes
 movlw MINCHAR
 movwf POSTINC0 ; write minute/seconds char

 ; SECONDS
 movlw GETIMEA1
 movwf LATA ; set timer chip to seconds
 movf PORTD,0 ; get seconds data
 swapf WREG ; swap nibbles
 andlw TENMASK ; isolate tens digit
 addlw ZEROASCII ; convert to ASCII character
 movwf POSTINC0 ; write ten seconds
 movf PORTD,0 ; get seconds data again
 andlw ONEMASK ; isolate ones digit
 addlw ZEROASCII ; convert to ASCII character
 movwf POSTINC0 ; write one seconds

 bsf LATE,1 ; ~enable clock chip (~CE = 1)
 clrf TRISD ; set port D to output

 return

; SUBROUTINE SetTime
SetTime:
; ok, or together hours, minutes, seconds
 ; bleh
 lfsr FSR0, SETTINREG ; set FSR0 to the start of the time data
 clrf TRISD ; set port D to output
 movlw CCCONTROLA
 movwf LATA ; set write uti register
 movlw CCCONTROLS
 movwf PORTD
 bcf LATE,1
 bsf LATE,1 ; write to clock chip uti=1

 37

 movlw SETIMEA3
 movwf LATA ; set write hours
 movf POSTINC0,0
 swapf WREG ; swap nibbles
 iorwf POSTINC0,0 ; or with hours
 movwf PORTD
 bcf LATE,1
 bsf LATE,1 ; write to clock chip hours

 movlw SETIMEA2
 movwf LATA ; set write minutes
 movf POSTINC0,0
 swapf WREG ; swap nibbles
 iorwf POSTINC0,0 ; or with minutes
 movwf PORTD
 bcf LATE,1
 bsf LATE,1 ; write to clock chip minutes

 movlw SETIMEA1
 movwf LATA ; set write seconds
 movf POSTINC0,0
 swapf WREG ; swap nibbles
 iorwf POSTINC0,0 ; or with seconds
 movwf PORTD
 bcf LATE,1
 bsf LATE,1 ; write to clock chip seconds

 movlw CCCONTROLA
 movwf LATA ; set write uti register
 movlw CCCONTROL
 movwf PORTD
 bcf LATE,1
 bsf LATE,1 ; write to clock chip uti=0
 return

; SUBROUTINE ClearAlarm
; clears the alarm bit on the clock chip
ClearAlarm:
 setf TRISD ; set port D to input
 movlw GETALARMA
 movwf LATA ; set timer chip to hours
 bcf LATE,1 ; ~~enable clock chip (~CE = 0)
 bsf LATE,1 ; ~enable clock chip (~CE = 1)
 clrf TRISD ; set port D to output
 return

; allocate variables
outermax300 EQU 0x4B ; 300ms delay
innermaxlit EQU 0xF8 ; number of times to iterate inner loop is 248
outermaxlit EQU 0xFA ; number of times to iterate outer loop is 250
innermaxreg EQU 0x11 ; reserve file register for innermax
outermaxreg EQU 0x12 ; reserve file register for outermax
counter EQU 0x10 ; reserve address 0x10 for the counter
zero EQU 0x00 ; define a zero constant
timetodelay EQU 0x13 ; store the number of seconds to delay here

Delay300ms:
 movlw innermaxlit
 movwf innermaxreg ; move the literal innermax into the file
 movlw outermax300
 movwf outermaxreg ; repeat for the next entry in the table
 bra timer

; SUBROUTINE DelaySecond
DelaySecond:
; initialization
 movlw innermaxlit
 movwf innermaxreg ; move the literal innermax into the file
 movlw outermaxlit

 38

 movwf outermaxreg ; repeat for the next entry in the table

; delay 1 second
timer
 movlw 0 ; set the wreg to 0
 movwf counter ; put 0 into count
loopouter ; outer loop
 movlw 0 ; put 0 in the wreg
loopinner ; inner loop
 addlw 1 ; increment the wreg
 nop
 nop
 nop
 nop
 cpfseq innermaxreg ; if the loop has been iterated innermax times, exit
 bra loopinner ; if not, repeat the inner loop
 movf counter, 0 ; move the count value into the wreg for easy use
 addlw 1 ; increment the wreg
 movwf counter ; put the incremented value back into the count
 cpfseq outermaxreg ; if the outer loop has been iterated outermax
 ; times, exit loop
 bra loopouter ; if not, repeat the outer loop
 return ; return after 1 second delay
; implement code here
; delay one second
 return

 39

; elconstants.inc
; written 11/24/2003 by Damian_Small@hmc.edu
; constants for the electronic code MicroP's project

; INTERRUPTS
SIXAMB EQU 0x12
SIXAMR EQU 0x80 ; six am display

; "STUFF"
FATALB EQU 0x12
FATALR EQU 0x30 ; fatal error display

; VALVE
; allocate variables, constants
; valve is e:2, 0 = off, 1 = on
VALVEIND EQU 0x7F ; register that holds valve state:
VALVEOFF EQU 0x00 ; value for valve off (clrf used in code)
VALVESINGLE EQU 0xF0 ; value for valve on (single)
VALVECONT EQU 0xFF ; value for valve on (continuous)

; single use constants
SCDISPB EQU 0x14 ; bank of single display
SCDISPR EQU 0xB0 ; register of single display - default B0
SCDISPPBB EQU 0x01 ; bank of progress bar data
 ; (same as bank of dispdatad)
SCDISPPBS EQU 0x41 ; single progress bar start register
SCDISPPBE EQU 0x4A ; single progress bar end register
 ; NOTE: total length +1 is also seconds
 ; REMEMBER: lines are interlaced!!!
SCDISPPBC EQU 0xFF ; single progress bar character

; continuous code constants
CCONDISPB EQU 0x14 ; bank of continuous on display
CCONDISPR EQU 0x10 ; register of continous on display
CCOFFDISPB EQU 0x14 ; bank of continuous off display
CCOFFDISPR EQU 0x60 ; register of continous off display

; master menu constants
MCMAINDB EQU 0x10 ; bank of master main menu display
MCMAINDR EQU 0x50 ; register of master main menu display
MCSMCDB EQU 0x10 ; bank of master set master code display
MCSMCDR EQU 0xA0 ; register of master set master code display
MCSRCCDB EQU 0x15 ; bank of master set/reset continuous code display
MCSRCCDR EQU 0x00 ; register of master set/reset continuous code display
MCSCCDB EQU 0x10 ; bank of master set continuous code display
MCSCCDR EQU 0xF0 ; register of master set continuous code display
MCSRSCDB EQU 0x15 ; bank of master set/reset single code display
MCSRSCDR EQU 0x50 ; register of master set/reset single code display
MCSSCDB EQU 0x11 ; bank of master set single code display
MCSSCDR EQU 0x40 ; register of master set single code display
MCSTDB EQU 0x11 ; bank of master set time display
MCSTDR EQU 0x90 ; register of master set time display

MCSMCK EQU 0x01 ; key for set master code
MCSCCK EQU 0x02 ; key for set continuous code
MCSSCK EQU 0x03 ; key for set single code
MCSTK EQU 0x04 ; key for set time
MCEXIT EQU 0x00 ; key for exit master menu

; LCD
; allocate variables, constants
DISPDATAU EQU 0x00 ; start of display screen data: upper byte
DISPDATAH EQU 0x10 ; start of display screen data: high byte
DISPDATAL EQU 0x00 ; start of display screen data: low byte
DISPDATAD EQU 0x100 ; destination in data memory (12 bytes)
; note: the end of data is denoted by a 0x00 byte, use 0x20 for space

LCDINIT1 EQU 0x38 ; First LCD initialization data 'N,F'
LCDINIT2 EQU 0x0C ; LCD initialization data 'Display on'
LCDINIT3 EQU 0x01 ; LCD initialization data 'Clear Display'
LCDINIT4 EQU 0x06 ; LCD initialization data 'I/D, S'

 40

LCDRETURN EQU 0x02 ; command to return cursor to home position
LCDCHECKBFA EQU 0x10 ; check BF port A data
LCDDATAWRA EQU 0x20 ; write data port A data

WRLCDTEMP EQU 0x100 ; location of temp data to write
WRLCDBREG EQU 0x40 ; where the bank address is stored for the
 ; write display subroutine
WRLCDDREG EQU 0x41 ; the start of the diplay data in the specified
 ; bank

; Clock Chip
ZEROASCII EQU 0x30 ; ASCII for 0 (offset for characters)
TENMASK EQU 0x07 ; mask for 10's digit numerals
ONEMASK EQU 0x0F ; mask for 1's digit numerals
HOURCHAR EQU 0x3A ; character between hours and minutes
MINCHAR EQU 0x2E ; character between minutes and seconds

CCFLAGSA EQU 0x1D ; reads AF, PF, PWRF, BVF flags
CCRATESA EQU 0x2B
CCRATES EQU 0x0E ; sets the WD[0:2] and RS[0:3] bits on the clock chip
CCIEFLAGSA EQU 0x2C
CCIEFLAGS EQU 0x08 ; sets the interrupt enable flags
CCCONTROLA EQU 0x2E
CCCONTROL EQU 0x06 ; sets UTI, ~STOP, 24/12, DSE control flags

CCALARM1A EQU 0x21
CCALARM1 EQU 0x00
CCALARM2A EQU 0x23
CCALARM2 EQU 0x00 ; minutes
CCALARM3A EQU 0x25
CCALARM3 EQU 0x06 ; hours
CCALARM4A EQU 0x27
CCALARM4 EQU 0xC0 ; alarm configuration

GETALARMA EQU 0x1D ; get alarm byte (just read it)

TIMEONV EQU 0x2E ; turn the timer display on (write to display memory)
TIMEOFFV EQU 0x50 ; turn the timer display off (write to non visible)
WRTDISPREG EQU 0x42 ; the register with the start location for the
 ; time string to be written. Assumed 01 bank
GETIMEA1 EQU 0x10 ; Port A output to get seconds
GETIMEA2 EQU 0x12 ; Port A output to get minutes
GETIMEA3 EQU 0x14 ; Port A output to get hours

; set time constants
SETTIMEC EQU 0x5F ; character for set time '_'
SETTDISPREG EQU 0x11A ; start of time display on screen
SETTINREG EQU 0x070 ; start of time store in memory

CCCONTROLS EQU 0x0E ; sets UTI

SETIMEA1 EQU 0x20 ; Port A output to get seconds
SETIMEA2 EQU 0x22 ; Port A output to get minutes
SETIMEA3 EQU 0x24 ; Port A output to get hours

; code input/ change constants
MAININPUTB EQU 0x10
MAININPUTR EQU 0x00 ; main input display

ERRINPUTB EQU 0x12
ERRINPUTR EQU 0xD0 ; error: wrong code
ERRLENB EQU 0x13
ERRLENR EQU 0xC0 ; error: wrong length (change code)
ERRMATCHB EQU 0x13
ERRMATCHR EQU 0x70 ; error: matches other code (change code)
MISMATCHB EQU 0x11
MISMATCHR EQU 0xE0 ; error: when setting code do not match

ENTERAGAINB EQU 0x13
ENTERAGAINR EQU 0x20 ; enter code again (change code)

 41

;CODECHAR EQU 0x78 ; Ascii char for code character 'x'
CODECHAR EQU 0x2A ; Ascii char for code character '*'
CODESTART EQU 0x11F ; start of code enter field, must be 1 bank

TEMPREGB EQU 0x45
TEMPREGR EQU 0x46 ; temporary storage for setting the code display

; KimsConstants.inc
; written 12/02/03 by kim_shultz@hmc.edu
; include constants for KegLock project

; allocate variables
count equ 0x00
match equ 0x0A ; use as flags to set which codes have been matched
codeSet equ 0x0D ; use as flag to determine which code to set
lengthCode equ 0x0B
inputDigit equ 0x0C
maxlit EQU 0xFF ; number of times to iterate inner loop is 256
maxreg EQU 0x2C ; reserve file register for innermax
MSB1low equ 0xEF
MSB2low equ 0xDF
MSB3low equ 0xBF

; for inputDigit:
; stores digits 0-9 in hex
pound equ 0x0F ; stores # as 0x0F
star equ 0x0E ; stores * as 0x0E

; reserve space for codes
inputCode1 equ 0x10
inputCode2 equ 0x11
inputCode3 equ 0x12
inputCode4 equ 0x13
inputCode5 equ 0x14
inputCode6 equ 0x15

masterCode1 equ 0x16
masterCode2 equ 0x17
masterCode3 equ 0x18
masterCode4 equ 0x19
masterCode5 equ 0x1A
masterCode6 equ 0x1B

continCode1 equ 0x20
continCode2 equ 0x21
continCode3 equ 0x22
continCode4 equ 0x23
continCode5 equ 0x24
continCode6 equ 0x25

singleCode1 equ 0x26
singleCode2 equ 0x27
singleCode3 equ 0x28
singleCode4 equ 0x29
singleCode5 equ 0x2A ; these should always be set to A
singleCode6 equ 0x2B ; these should always be set to A

creatorCode1 equ 0x30
creatorCode2 equ 0x31
creatorCode3 equ 0x32
creatorCode4 equ 0x33
creatorCode5 equ 0x34
creatorCode6 equ 0x35

 42

; displays.inc
; written 11/24/2003 by Damian_Small@hmc.edu
; display screens for the electronic code MicroP's project
 org 0x1000
; 1 5 10 15 20
; DB "12345678901234567890"
; in temp storage: memory locations
; 0x00 DB "0123456789ABCDEF0123"
; 0x28 DB "89ABCDEF0123456789AB"
; 0x14 DB "456789ABCDEF01234567"
; 0x3C DB "CDEF0123456789ABCDEF"
; bank 10, 0x00
 DB " Welcome to KegLock "
 DB "---===00:00.00===---"
 DB "Enter Code: "
 DB " *~CLEAR #~ENTER "
; bank 10, 0x50
 DB " Master Menu: "
 DB "1~Master 3~Single"
 DB "2~Continuous 4~Time"
 DB " 0~Exit "
; bank 10, 0xA0
 DB "Setting Master Code:"
 DB " 6-digit code "
 DB "Enter Code: "
 DB " *~CLEAR #~ENTER "
; bank 10 0xF0
 DB "Setting Continuous: "
 DB " 6-digit code "
 DB "Enter Code: "
 DB " *~CLEAR #~ENTER "
; bank 11 0x40
 DB "Setting Single Code:"
 DB " 4-digit code "
 DB "Enter Code: "
 DB " *~CLEAR #~ENTER "
; bank 11 0x90
 DB " Setting Time: "
 DB " (24-hour format) "
 DB " 00:00.00 "
 DB " *~CLEAR #~ENTER "
; bank 11 0xE0
 DB " "
 DB " Sorry, Codes "
 DB " do not match "
 DB " "
; bank 12 0x30
 DB " ERROR ERROR ERROR "
 DB "Unknown fatal error:"
 DB " Reset System "
 DB " ERROR ERROR ERROR "
; bank 12 0x80
 DB " The Time is 6:00 AM"
 DB " resetting valve... "
 DB " resetting code... "
 DB " Good Morning! "
; bank 12 0xD0
 DB " "
 DB " Invalid Code "
 DB " Please Re-enter "
 DB " "
; bank 13 0x20
 DB " "
 DB "Please re-enter code"
 DB " "
 DB " "
; bank 13 0x70
 DB "Error: The code you "
 DB " entered matches "
 DB " another code. "
 DB " Please try again "

 43

; bank 13 0xC0
 DB " Wrong number of "
 DB " digits entered. "
 DB " "
 DB " Please try again "
; bank 14 0x10
 DB "Continuous Code has "
 DB " been entered: "
 DB " Valve will be open "
 DB "until 6am or reentry"
; bank 14 0x60
 DB "Continuous Code has "
 DB " been re-entered: "
 DB " Valve turned off "
 DB " "
; bank 14 0xB0
 DB "Single Code entered:"
 DB " Begin dispensing "
 DB " liquid refreshment!"
 DB " [] "
; bank 15 0x00
 DB " "
 DB " Continuous Code: "
 DB " "
 DB " *~RESET #~SET "
; bank 15 0x50
 DB " "
 DB " Single Use Code: "
 DB " "
 DB " *~RESET #~SET "
 DB 0x00, 0x00 ; end of data

