
ABSTRACT

This project implements a rudimentary robotic vision algorithm using two infrared distance sensors and Motorola’s PIC 18F452

processor. Using the Lego Mindstorms robot as a portable platform to house all electronic components, the team mounted

the sensors to the front and back of the robot and controlled the entire contraption with the PIC. This setup gives the robot

a 360-degree fi eld-of-view, along a two-dimensional plane about six inches above the fl oor. To demonstrate this, the robot

has instructions to constantly maintain a half-meter circle of space around itself, running away from anything that comes too

close. Though there are blind spots, due to the robot being slightly wider than the sensor’s fi eld of view, overall, the vision and

escape algorithm turned out successful.

LOW-LEVEL AI VISION ROBOT: FINAL REPORT

DANIEL CHAN • TOMMY LEUNG
DECEMBER 15, 2003

Low Level AI Vision: Final Report

2

INTRODUCTION

Artifi cial intelligence vision, ranging from the ability to distinguish whether an object is present or not to mapping out entire

rooms in three dimensions, remains one of the largest areas of robotics research. The ability to create self-oriented robots

capable of navigating unknown areas has always proved a challenge, because of problems related to knowing and controlling

exactly “how much” or “how far” a robot moves or turns.

In order to create the groundwork for what will hopefully become a more elaborate research project in the area of AI vision,

this team implemented a low-level vision system on a Lego Mindstorms robot. To demonstrate the vision algorithm, the team

created an object-avoiding robot controlled by Motorola’s PIC 18F452 microprocessor. Interfaced with two Sharp GP2D12

infrared distance sensors, a Xilinx XCS10 FPGA, and mechanical parts from Lego, the robot keeps a 0.5 ± 0.1m radius of

space around itself at all times. If it cannot fi nd an escape route within a preset time, it will fl ash a set of onboard LEDs.

SUBSYSTEMS

LEGOS

The robot’s mechanical parts are completely based off of Legos. Using two 9V Lego motors, the team experimented with

several designs to come up with the best balance between weight, stability, and speed. The fi nal design resembles that of a

tank. Power from the motor is directly transferred to the treads via a chain, so that no power is lost to gears. Although the

treads are slightly tight and tend to pull the axles inward too strongly, overall, the fi nal mechanical design works.

The team encountered several weight and speed issues. Several times, the robot couldn’t move under its own weight when

solely powered by batteries. Several other times, the robot could move backward and forward, but not turn. Once the robot

started moving as expected, vibrations would knock the batteries or the protoboard off. To resolve these problems, the team

adopted a minimalist design with a wide platform and a low profi le, and later physically tied down all electronic components to

the robot.

IR BROADCAST AND DETECTION SYSTEM

The IR sensors continuously report the distance of the object closest to it. Although the sensor runs off 5V, its output only

Low Level AI Vision: Final Report

3

swings from 0.2 to 2.4V, and the output voltage exponentially drops as distance increases. These factors led the team to try to

increase the resolution of the distance measurement by changing the A/D unit’s reference voltages with a voltage divider.

However, it turns out that whenever an input channel to the A/D unit saturates, the entire unit begins to misbehave. The

team fi rst encountered this problem while using a potentiometer to simulate sensor readings. At the lowest and highest

potentiometer settings, the A/D unit began to unreliably report voltage levels from all A/D channels. To remedy this, ground

and Vdd were set as the reference voltages, and in a series of informal tests throughout the rest of the project, it turned out

that initial concerns about a lack of resolution were unfounded.

EDGE DETECTION

A previous object-avoiding robot met its inevitable doom when it fl ew off a set of stairs as it tried to escape from people

chasing it on both sides. To prevent this from happen to this robot, the team gave it ground sensors to help it detect steep

declines. The sensors are tied to a high-priority interrupt on the PIC, which immediately suspends all motor activity as soon as

the interrupt is tripped.

Comprised of two conducting Lego pieces (made conductive by creative wire stripping and attachment), these sensors cause the

FPGA to output a rising edge whenever the robot reaches a ledge. To accomplish this, one Lego piece stays connected to a pull-

down resistor, while another Lego piece is tied to Vdd. When the robot is about to fall over a one-inch tall (or higher) decline,

the Lego rod falls, completing the circuit. The robot has two of these sensors, one in front and one in back. When either sensor

trips, the FPGA sends a high priority interrupt to the PIC., which then jumps to a stop routine. To prevent the rod from catching

on a Lego piece when it should be falling, the team attached an additional Lego piece to guide the rod’s falling motion.

Edge detection presented one of the greatest challenges for this project. The team tried several different sensor designs before

fi nding one with a reasonable weight, minimal impact on movement, and decent reaction time. Failed designs that were

also tried include a spring-based sensor that “sprung up” when an edge was detected (too heavy, greatly impacted turning),

mechanical push buttons (range of motion was not great enough), and paper-clipped Legos (not enough fl exibility in the

paper-clips to securely wrap around Lego pieces).

ROBOT MOVEMENT CONTROL

Low Level AI Vision: Final Report

4

The robot movement control subsystem is responsible for driving the motors and interpreting commands from the robot escape

algorithm. It utilizes the L293 Motor Driver, which has two on-board, bi-directional H-bridges. This IC supplies higher voltages

and greater current to the motors than the PIC can. Powered with two 9V alkaline batteries, each H-bridge needs three inputs

from the PIC in order to spin the motor in both directions: an enable pin indicating whether to run the motor or not, and two

pins whose voltage difference decides what direction the motor spins. Because the robot is designed with treads, it can turn in

place and move backward or forward using only two motors. All robot movement code is written modularly, so that the robot

can be controlled simply with a “human” command, such as “turn_right”.

Designing the robot movement control to use a motor driver IC and treads allows the team to eventually migrate to a new

robot, perhaps one with larger motors and higher power requirements that will let it transport heavier loads at greater speeds.

POWER SYSTEM

Three 9V batteries power the robot. Two of these batteries connect to the L293 IC, providing each motor with its own power

source. The third is connected to a +5V voltage regulator and a 10µf bypass capacitor, supplying a clean source of power to

the PIC, FPGA, and IR sensors. A 9V battery replaced four double AA’s as the PIC’s power source because of the 9V’s lighter

weight.

The team ran into several battery power issues. The original design relied on two power sources, one to power the motors

and one to power the processing system. This design did not suffi ciently power the motors; within a minute, the robot slowed

to a crawl. To provide additional power, the team also tried using rechargeable batteries. Alkaline batteries have relatively

large internal impedances compared to other battery sources, such as NiMH and NiCD rechargeables. This decreases the

amount of current that they can output, slowing down the robot. With rechargeables, the opposite situation became the

problem—although NiMH and NiCD batteries have lower internal impedances, they are also rated at lower voltages for the

same size batteries. This resulted in each motor not having enough power to turn, or to carry the weight of the robot and its

accompanying electronics while moving forward.

The motor power system also contains several unnecessary bypass capacitors. The team initially installed them in order to

protect current from being slammed back into L293—something that could occur, for example, after a direction change. Four

Low Level AI Vision: Final Report

5

470 µf capacitors, two for each motor, were placed in series to take care of this problem. However, this “safety feature” only

served to discharge the the robot’s batteries faster, because the L293 has internal diodes to prevent damage from current

spikes.

ROBOT ESCAPE ALGORITHM

The escape algorithm takes distance information from the IR sensor to determine if an object violates the robot’s half a meter

space bubble. If so, the algorithm also determines if an escape route exists directly in front of or behind the robot, and issues

a command to escape in the unobstructed direction. If there are objects on both sides of the robot, it rotates until it fi nds an

open path. A time-based, open loop control dictates how long the robot rotates before it determines that no escape path exists.

At this point, LEDs fl ash, and the robot continues rotating and scanning for new paths.

The largest problem with the robot escape algorithm was convincing the robot that it had, in fact, turned long enough to

establish that no feasible escape path exists. Initial attempts to use TMR1 and compare it without the help of interrupts

resulted in a simulation that worked fi ne, but the code failed when stepped through at full speed. Though no reason was ever

found for this, the team simply rewrote the code to take advantage of CCP1’s interrupt abilities.

RESULTS

The robot works as expected, with battery power being the largest obstacle. The robot scans a 360 degree fi eld-of-view as

expected, fl ashes LEDs when no escape path is present, and runs away in the prescribed manner when an escape path is

available. As the batteries run down, the robot signifi cantly slows down, and turning presents a far greater challenge for the

robot, even if it is able to crawl forward or backward. In addition, the robot’s vision is extremely two-dimensional on a plane

parallel to the ground, and both its IR sensors and ground sensors have minor blind spots at the robot’s corners.

In testing, the robot responded immediately to stimuli obstructing its sensors. It rarely ran into problems with its blind spots, as

it generally was capable of detecting gradually approaching objects (as opposed to foots placed directly in front of the robot)

and competently escaped them. On a fresh set of alkalines, the robot lasted for about fi ve to seven minutes. On the power

supply, the robot always moved faster than on batteries, drawing about 400mA on average.

Low Level AI Vision: Final Report

6

P20

+5V

5V Voltage Regulator

Vin

Gnd

Vout

10 µF

Gnd

RB0/INT0
PIC

FPGA

RD0

Vcc11,2 EN

L2
93

 IC

1A

2A

4A
1Y 4Y

2Y

Gnd Gnd

Heatsink Heatsink

Motor 1

Motor 2

Vcc2 3,4 EN
3A
3Y

RD1

RD2

RD3

RD4

RD5

RD7

P19

P18

9V

330 Ω

330 Ω

Vdd

470 µF

470 µF

This same circuit is repeated
on the other side of the L293
for power and ground; see final
report for discussion of these
capacitors

Ground[1:0] Breaker

APPENDIX A: BREADBOARD SCHEMATIC

Low Level AI Vision: Final Report

7

APPENDIX B: ASSEMBLY CODE
; AI.ASM
;
; WRITTEN BY: TOMMY LEUNG (TLEUNG@HMC.EDU) AND DAN CHAN (DCHAN@HMC.EDU)
; LAST MODIFIED: DECEMBER 9, 2003

; THIS PROGRAM TAKES TWO ANALOG DISTANCE INPUTS FROM RA0 AND RA1,
; DETERMINES THE CLOSEST OBJECT, AND ISSUES COMMANDS FOR THE ROBOT
; TO MOVE AWAY.

; USE THE 18F452 PIC MICROPROCESSOR
 LIST P=18F452
 INCLUDE “P18F452.INC”

; ALLOCATE VARIABLES
LEFT_MOTOR EQU 0X00
RIGHT_MOTOR EQU 0X01
ROTATE_LIMIT EQU 0X02
ROTATE_COUNT EQU 0X03
TEMP EQU 0X04
FRONT_SENSOR EQU 0X05
BACK_SENSOR EQU 0X06
DISTANCE EQU 0X07
TIME EQU 0X08

 ORG 0
 BRA START

 ; ALL INTERRUPTS HAVE THE SAME PRIORITY
 ORG 0X0008
 BRA INTERRUPT

 ORG 0X0018
 BRA INTERRUPT

START

 ; DISTANCE TO MAINTAIN FROM ANY OBJECT
 MOVLW 0X20
 MOVWF DISTANCE

 ; OPEN-LOOP CONTROL FOR THE NUMBER OF ROTATIONS
 ; TO PERFORM BEFORE DECIDING THAT NO ESCAPE PATH
 ; IS POSSIBLE
 MOVLW 0XFF
 MOVWF CCPR1H

 MOVLW 0X02
 MOVWF ROTATE_LIMIT

 CLRF ROTATE_COUNT

Low Level AI Vision: Final Report

8

; ---INTERRUPT SETUP

 ; CLEAR THE A/D AND CCP1 INTERRUPTS
 CLRF PIR1

 ; DISABLE PRIORITIZED INTERRUPTS
 ; RCON = 00011111
 MOVLW 0X1F
 MOVWF RCON

 ; SET INTCON TO ENABLE ALL INTERRUPTS,
 ; ALLOW EXTERNAL INTERRUPTS TO STOP THE PROGRAM,
 ; AND CLEAR THE EXTERNAL INTERRUPT FLAG BIT
 ; INTCON = 11010000
 MOVLW 0XD0
 MOVWF INTCON

 MOVLW 0X04
 MOVWF PIE1

 ; SET UP TMR1 (10110000)
 MOVLW 0XB0
 MOVWF T1CON
 CLRF TMR1H
 CLRF TMR1L

 ; ---INITIALIZE CCP1
 MOVLW 0X08
 MOVWF CCP1CON
 ; ---END OF CCP1 INITIALIZATION

 ; DISABLE EXTERNAL INTERRUPTS 1 & 2
 CLRF INTCON3

 ; ---INITIALIZE THE A/D CONVERTER
 MOVLW 0X01
 MOVWF ADCON0

 MOVLW 0X0D
 MOVWF ADCON1
 ; ---END A/D CONVERTER INITIALIZATION

; ---END INTERRUPT SETUP

; ---BEGIN I/O PORT SETUP
 SETF TRISA
 SETF TRISB
 CLRF TRISD
 CLRF PORTD
; ---END I/O PORT SETUP

Low Level AI Vision: Final Report

9

; CONTINUOUSLY REPORT DISTANCE INFORMATION
AD_LOOP

 ; SELECT SENSOR 0 (ATTACHED TO AD CHANNEL 0) TO SAMPLE
 MOVLW 0X01
 MOVWF ADCON0

 ; INITIATE AN A/D CONVERSION
 BSF ADCON0, 2

 CALL WAIT
 MOVFF ADRESH, FRONT_SENSOR

 ; SELECT SENSOR 1 (ATTACHED TO AD CHANNEL 1) TO SAMPLE
 MOVLW 0X09
 MOVWF ADCON0

 ; INITIATE AN A/D CONVERSION
 BSF ADCON0, 2

 CALL WAIT
 MOVFF ADRESH, BACK_SENSOR

 BRA ESCAPE

; POLL THE A/D UNIT TO MAKE SURE THAT THE CONVERSION IS DONE
WAIT
 BTFSC ADCON0, 2
 BRA WAIT
 RETURN

ESCAPE
 ; MOVE THE ALLOWABLE SPACE INTO WREG
 MOVF DISTANCE, WREG

 ; CHECK FRONT_SENSOR < DISTANCE
 CPFSLT FRONT_SENSOR

 ; IF FRONT_SENSOR > DISTANCE, CHECK FOR AN ESCAPE ROUTE
 BRA CHECK_ESCAPE_BACK

 ; OTHERWISE, IF FRONT_SENSOR < DISTANCE, CHECK THE BACK SENSOR
 BRA CHECK_BACK

CHECK_BACK
 ; CHECK BACK_SENSOR < DISTANCE
 CPFSLT BACK_SENSOR

 ; IF BACK_SENSOR > DISTANCE, CHECK FOR AN ESCAPE ROUTE
 BRA CHECK_ESCAPE_FRONT

 ; OTHERWISE, IF BACK_SENSOR < DISTANCE, CONTINUE SCANNING

Low Level AI Vision: Final Report

10

 BRA ROTATE

; CONTINUE SCANNING
ROTATE

 ; CHECK IF TIMER1 IS ON
 BTFSS T1CON, 0

 ; IF NOT, TURN IT ON
 BSF T1CON, 0

 CALL TURN_RIGHT
 CALL TIMER
 BRA AD_LOOP

CHECK_ESCAPE_FRONT
 CPFSLT FRONT_SENSOR

 ; IF FRONT_SENSOR > DISTANCE, IT IS NOT SAFE TO RETREAT FORWARD
 BRA ROTATE

 ; OTHERWISE, RETREAT FORWARD
 CALL GO_FORWARD
 CALL TIMER
 BRA AD_LOOP

CHECK_ESCAPE_BACK

 CPFSLT BACK_SENSOR
 ; IF BACK_SENSOR > DISTANCE, IT IS NOT SAFE TO RETREAT BACKWARD
 BRA ROTATE

 ; OTHERWISE, RETREAT BACKWARD
 CALL GO_BACKWARD
 CALL TIMER
 BRA AD_LOOP

; ---MOTOR CODE
STOP_MOTOR
 CLRF PORTD
 RETURN

GO_FORWARD

 MOVLW B’00101011’
 MOVWF PORTD

 ; TURN OFF THE “NO ESCAPE ROUTE” STATUS
 BCF T1CON, 0
 CLRF TMR1H
 CLRF TMR1L

Low Level AI Vision: Final Report

11

 CLRF ROTATE_COUNT
 RETURN

GO_BACKWARD

 MOVLW B’00011101’
 MOVWF PORTD

 ; TURN OFF THE “NO ESCAPE ROUTE” STATUS
 BCF T1CON, 0
 CLRF TMR1H
 CLRF TMR1L
 CLRF ROTATE_COUNT
 RETURN

TURN_RIGHT
 BSF PORTD, 0
 BCF PORTD, 1
 BSF PORTD, 2
 BSF PORTD, 3
 BCF PORTD, 4
 BSF PORTD, 5

 RETURN
; ---END OF MOTOR CODE

; ---TIMER
TIMER
 ; TURN ON THE TIMER AND CLEAR ALL COUNTERS
 MOVLW 0X96
 MOVWF T0CON
 CLRF TMR0H
 CLRF TMR0L
 CLRF TIME

KEEP_COUNTING
 CLRF TMR0H
 CLRF TMR0L
 MOVLW 0X10

ONE_SECOND
 ; TMR0H DOES NOT UPDATE UNLESS TMR0L IS READ
 MOVFF TMR0L, TEMP
 MOVFF TMR0L, TEMP

 MOVFF TMR0H, TEMP
 MOVFF TMR0H, TEMP

 ; SEE IF THE DESIRED AMOUNT OF TIME HAS ELAPSED
 CPFSGT TMR0L
 BRA ONE_SECOND

Low Level AI Vision: Final Report

12

 ; IF DESIRED TIME HAS ELAPSED, TURN TIMER OFF AND RETURN
 CLRF T0CON
 RETURN
; ---END TIMER

; ---INTERRUPTS
INTERRUPT

; IF THIS IS NOT A GROUND SENSOR INTERRUPT, CHECK CCP1
 BTFSS INTCON, 1
 BRA ROTATE_INTERRUPT

 BRA STOP

STOP
 CLRF PORTD
 BRA STOP

ROTATE_INTERRUPT
 BTFSS PIR1, 2

 ; IF THIS ISN’T A ROTATE INTERRUPT, RETURN
 BRA CLEAR_INTERRUPT

 INCF ROTATE_COUNT

 MOVF ROTATE_COUNT, WREG

 ; CHECK ROTATE_LIMIT < ROTATE_COUNT
 CPFSLT ROTATE_LIMIT

 ; IF ROTATE_LIMIT > ROTATE_COUNT, DO NOT TURN ON THE NO-ESCAPE LED
 BRA CLEAR_INTERRUPT

 ; CHECK IF DISTANCE < FRONT_SENSOR
 MOVF FRONT_SENSOR, WREG
 CPFSLT DISTANCE

 ; IF DISTANCE > FRONT_SENSOR
 BRA CLEAR_INTERRUPT

 MOVF BACK_SENSOR, WREG
 CPFSLT DISTANCE

 ; IF DISTANCE > BACK_SENSOR
 BRA CLEAR_INTERRUPT

 ; IF THERE IS NO ESCAPE PATH, FLASH AN LED
 MOVF FRONT_SENSOR, WREG

Low Level AI Vision: Final Report

13

 BSF PORTD, 7

; RETURN FROM THE INTERRUPT
CLEAR_INTERRUPT
 BCF INTCON, 1
 CLRF PIR1
 RETFIE

; ---END INTERRUPTS

 END

Low Level AI Vision: Final Report

14

APPENDIX C: VERILOG
// SIGNAL_CONDUIT.V
//
// WRITTEN BY: TOMMY LEUNG & DANIEL CHAN
// LAST MODIFIED: NOVEMBER 20, 2003
//
// THIS MODULE ACTS AS A CIRCUIT BREAKER FOR THE ROBOT. IF ANY OF THE GROUND
// SENSORS ARE TRIPPED, THE FPGA SENDS AN INTERRUPT SIGNAL TO THE PIC.

MODULE SIGNAL_CONDUIT(GROUND1, GROUND2, BREAKER);

 INPUT GROUND1;
 INPUT GROUND2;
 OUTPUT BREAKER;

 ASSIGN BREAKER = GROUND1 & GROUND2;

ENDMODULE

