MAGNETIC CARD IDENTIFICATION SECURITY SYSTEM

Final Project Report
December 15, 2003
E155

Kyle Kelley & Karen Lee

Abstract:

The goal of this project was to use a magnetic card reader in designing a security system for a
vehicle. Thedriver would swipe a card and if the swiped card data matches one of the four sets
of data previoudly stored, he/she is allowed to start the car. The FPGA handles user control
settings inputted via three sets of four pin dip switches that determine the mode and user of the
system. It decodes the mode and user and outputs accordingly to the PIC. The card reader is
connected directly to the PIC so that when a card is swiped, the data off the card is transmitted
serialy to the PIC. Depending on whether the system isin Program or Compare mode, the PIC
either stores the swiped card datain EEPROM or compares it to previously stored data. For the
purposes of this project we did not implement the system in an actual vehicle but used LEDs
instead to demonstrate functionality. The PIC outputs to the correct LEDs indicating either a
match or mismatch in data.

INTRODUCTION

Magnetic cards have become a part of all of our lives. The average person’swallet likely has
several including adriver’slicense, ATM cards, and credit cards. Magnetic cards are used to
identify usin banks, grocery stores, and here at Platt. Each card isunique in the datathat is
stored on the magnetic strip. Our project takes advantage of this fact in designing an automobile
anti-theft security system. This project utilizes a magnetic card reader in designing a security
system that can be implemented to prevent the unauthorized use of avehicle. The mainideais
that the driver must swipe a specific card before being allowed to start the car. One way to get to
the data on the card is to swipe the card through a magnetic card reader. The one we used can be
seen in Figure 2 in the next section.

The system has two states. Program and Compare. In Program mode, the user can store up to
four different cardsin memory. Thisallows up to four different users of the system whichis
especially useful in families where more than one person may drive the car. The user setting is
inputted by way of afour pin dip switch. In Compare mode, the PIC will compare the data off of
aswiped card to the data previously stored in memory. The PIC will in fact compare the data
with al four possible sets of datain memory so that the user need not worry about the user
setting when in Compare mode. The normal operating state of the system is the Compare mode
and the system can only be put into Program mode when a specific eight bit code is entered by
way of apair of four pin dip switches.

If the system were to be fully implemented, we would output a signal which would drive arelay
and untie the automobile s ignition wire from ground upon a matching card swipe. For the
purposes of this project we will not actually implement the system into an automobile but rather
utilize LEDs that signify whether or not the ignition is allowed to start. Further, while our
proposed idea has the application of preventing unauthorized use of an automobile, this
particular system could have awide range of uses and be implemented to interact with various
systems.

The three main components of our system are the FPGA, the PIC, and the card reader. Figure 1
on the next page depicts the block diagram of the system and how the components interact with
each other.

Card Present
M agTek Data
Card Reader

Strobe (Serial Clock)

vV VvV VY (\
) Mode Code
< < Pair of 4 Pin
User User —
< < 4 PinDip
4 4 Switch
~—_

Program Mode
Waiting for Swipe
Ignition Disabled
Ignition Ready
Cards Don't Match
Cards Match
Invalid Swipe
Invalid User

d
<
d
<
d
<
d
N |
d
N |
d
N |
d
N |
d
<

Figure 1: System Block Diagram

The card reader is connected directly to the pins of the PIC. The PIC is configured for lave
serial transmission. The MagTek reader sends a signal whenever a card is being swiped (Card
Present) and this signal is used to begin and stop storing data. The Strobe signal outputted from
the card reader is used as a clocking signal by the PIC during transmission and indicates when
the Datasignal isvalid and should be sasmpled. The Data signal carries the actual data encoded
on the magnetic strip and is connected to the seria transmission input pin of the PIC.

The FPGA handles user control settings such as which mode the system isin aswell as which
user the system is currently set on. The inputsto the FPGA come from the pins connected to the
three different four pin dip switches. It decodes which mode and user the system should be set to
and then outputs accordingly to pinson the PIC. If an invalid user isinputted, the FPGA sends
outal O's.

The PIC either stores card datain EEPROM when in Program mode or compares swiped card
data stored in data RAM to stored datain EEPROM when in Compare mode. If avalid card is
swiped while in Compare mode, the PIC outputs to two green LEDs. One blinks and indicates a
match has occurred while the other stays lit for fifteen seconds signifying the ignition is ready to

be started during the fifteen second window. If aninvalid card is swiped in Compare mode, the
PIC outputs to two red LEDs. One blinks and indicates a mismatch has occurred while the other
stayslit and indicates the ignition istied to ground and unable to be started. In addition, the PIC
also outputs to two yellow LEDSs, one indicating when the system is ready and waiting for a card
to be swiped, the other indicating when the system isin Program mode. We also designed the
system to distinguish from an invalid card from a badly swiped card. If the card is pulled out of
the reader prematurely or swiped excessively slowly, the data can be read incorrectly eveniif itis
avalid card. ThePIC turnsonared “Invalid Swipe” LED indicating when an error in reading
the data has occurred so that the user knows to swipe the same card again. Lastly, the PIC also
outputsto ared “Invalid User” LED when an invalid user has been entered while the systemisin
Program mode.

NEW HARDWARE

MAGNETIC CARD READER

Our project made use of a 101mm card swipe reader from MagTek (Figure 2). It can read most
cards with magnetic strips including bank cards, driver’ s licenses, and cards issued by super

markets. The only cards we found that wouldn’t work in the course of our testing were copy
center cards and some calling cards.

Table 1: 8 Pin I/O Connector

Pin Number Color Signal
1 Yellow DATA [Tk 2)

Elue STROBE (Tk 1 or Tk 3)
Brown DATA (Tk1or Tk 3)

2 White CARD PRESENT
3 Green STROBE (Tk 2}
4 = KEY

5 Red Ve

5] Black GND

T

4]

Figure 2: 101-millimeter Compatible Swipe Reader

The reader has adual track 1/0 connector. The connector has eight pins as shownin Table 1
above. We utilized the data off of track two since that’s where the numeric information is mostly
stored. We therefore made use of pins1, 2, 3,5, and 6. Pins5 and 6 correspond to power and
ground. Pins1, 2, and 3 (i.e. Data, Strobe, and Card Present signals) are high when no card is
being swiped. Card Present goeslow when acard is being moved through the unit. Thissigna
is used by the PIC to determine when the reader is sending data and when it isdone. The Data
signal carries the information stored on the card. When the Data signal is high, the bit isa zero
and when the signal islow, the bitisaone. It isvalid whilethe strobeislow and is connected to
the input pin of the PIC for serial transmission. The Strobe signal indicates when Datais valid
and is used by the PIC as the clock for serial transmission. The timing and interaction of these
signals can be seen in Figure 3 below.

CARD PRESENT

DATA

STROBE

STROBE WIDTH APPROXIMATELY
25-50% OF BIT TIME

Figure 3: Signal Timing

SCHEMATIC

18]
|7
] "‘v’l';v"'v
] '
1
1
K
1
7 A
L] o
] AT
Pin 1 - [
PinZ- I
Ca'l.'d Pini- —|
Reader .. +5V
Pinf - __I_
{r;l}
] n
k] o
1
i
{ral}
+3W
Rz
"y
a2
4 Pin ' n““:"ﬂ‘“
Dip Switch A
Rz
"
Rz
"My
Rz
4 Pin W
Dip Switch | l,.‘.u!f.\i%
K2
"
{ral}

Figure 4: Breadboard Schematic - R1 = 330 W, R2 = 1 kW

- P47 - Code [7]

« BB 0 - Program Modc
» BB | - Cards Match

« RE 2 - Cards Don't Maich
« RB 3 - lgnitson Bcady
« BB 4 - lgmition Disabled
« RB 5 - Waiting for Sw

« RC 1 - Card Present

« RT3 - Strobe (5CK)
« RC 4 - Data (SDI)

« R34 - Invalid Swipe
« RD & - lnvalid User

* SWI /P23 - User 0]
* SW2 /P24 - User [1]
* SW3 /P25 - User 2]

© SWd /P26 - User [3]

- P44 - Code [0]
* P45 - Code [1]
* P46 - Code [2]

- P47 - Code [3]

* P50 - Code [4]
+ P51 - Code [5]

* P56 - Code 6] EW1

PIC

pe

FPGA

=W WS B

4 Pin

Dip Swatch

[EEPROM

MICROCONTROLLER DESIGN

BO
s : Strobe Cc3 T» Program Mode
; FromCard (Serid ,CIOCk) C4 ———» Waiting for Swipe
. Reader | Data(Seria Data) D6
% C1 —— Invalid User
. Card Present D4
SR : PIC —— Invaid Swipe
—>83 Ignition Read
nition

54 g y
—— > Ignition Disabled
— co B1
¢ From : Program/Compare Cards Match
| FPGA | D0-D3 B2
: User [3:0] > Cards Don’t Match

A 4

A 4

A 4

|

|

Figure 5: Inputs and Outputs of the Microcontroller

The inputs and outputs of the microcontroller can be seen in Figure 5 above, labeled with both
the pin number and the signal name. The PIC receives the data from the card reader and storesiit
into data RAM in blocks of 8 bits. It then goes through and parses the data into 5 bit blocks so
that it can then do a parity check on the datato seeif any errorsin transmitting occurred. (See
Reference [3] for details on parity encoding) After the datais checked, the PIC either storesthe
datainto EEPROM if it isin Program mode or compares it to data previously stored in EEPROM
if itisin Compare mode. The PIC then outputs to the correct pins corresponding to either a
match or mismatch in data. Below is a description of each of the main sections of the program.

waiting

After initialization, the microcontroller enters a“waiting” state, in which it asserts a high output
on B5, indicating that it is ready and waiting for a card to be swiped. It also continually checks
“Program / Compare” on CO to determine the mode of the system. If it isin Program Mode, it
will poll the inputs DO-D3 looking for avalid user. If none of DO-D3 are high, a high output is
asserted on D6 indicating an invalid user and the program will not exit the waiting state until a
valid user isfound.

The Waiting Loop also pollsthe “Card Present” input on C1. Onceit isdetermined acard is
being swiped (indicated by “Card Present” falling from high to low), the microcontroller exits
the waiting state and proceeds to initializeSend.

intializeSend

Here the output on B5 is driven low to indicate the system is no longer waiting for acard to be
swiped. The PIC continually pollsthe SSPSTAT[Q] bit (Buffer Full Status bit) as the card reader
sendsits data serially, and stores the data as an array into the data RAM as 8 bit bytes. Once
“Card Present” returns to high, the sending of datais complete and the PIC exits thisloop and
proceeds to sendDone.

sendDone

Once the PIC has finished receiving seria data, it temporarily disables and then re-enables serid
mode. The purpose of thisisto eliminate any trailing bits in the serial receive buffer which
would otherwise appear at the beginning of subsequent card swipes. The PIC then enters
beginCheckParity.

beginCheckParity

Thisisthe beginning of alarge block of code with a very specific and simple function. First, the
PIC parses the stored input beginning with the first bit looking for the ISO 7813 standard start
sentinel 11010 (or in our case 00101, since our card reader inverts the data). Once the start
sentinel isfound, it isstored as a5 bit block in a new data memory location (3 leading zeros
make up the full byte), and the PIC advances to foundStart0. If no start sentinel isfound and the
end of the datais reached, the PIC branchesto invalidRead.

foundStartO

The PIC continues parsing the continuous data into 5 bit blocks and stores them into data
memory (placing 3 leading Os on each block). Beforeit stores each 5 bit block it performs a
parity check onit. The parity bit is the least significant bit of each string of 5 bits and makes the
total number of 1s odd (again, since our card reader inverts the data, the total 1sin each byte
should be even). If the parity of any single bit isfound to be invalid, the PIC branchesto
invalidRead. Once the end sentinel 11111 (00000 for us) is found, the PIC branches to
endOfData.

endOfData

Once the end sentinel isfound, thereis one more valid 5 bit block of data, the LRC parity bit.

Although we did not implement the multiple-error parity checking that uses this bit, this bit is
stored in data RAM anyway. Once this parity bit is stored, the PIC branches to allDataStored.
invalidRead

Output D4 (Invalid Swipe) is asserted for 2 seconds and the PIC branches back to waiting.

allDataStored

Here the PIC checksinput CO (“Program / Compare™). If it islow, it branchesto compareOuiter.
Otherwise, it branches to program.

compareQuter
The function of this section isto compare the parsed, parity checked card data recently stored in

data RAM to that programmed into EEPROM. Since our system allows multiple users to
program their cards into EEPROM, the program must check the recently stored data against each

stored user. If abyte failsto match the corresponding byte of a stored user, the program
immediately moves on to check the next user. If abyte failsto match and it ison the last user, it
branches to noUserMatch. If the program reaches the end of a user’ s stored data (and therefore
has not found any non-matching bytes), it branches to endCompare.

noUser Match

When a card not matching one programmed into the system is swiped, this routine blinks the
“Cards Don’'t Match” red led fivestimes. Each time, the led stays on for approximately .125
seconds. Thisisaccomplished by toggling the value outputted to (B2) ten times and calling on a
.125 seconds delay subroutine each time. The program then returns to waiting for the next card
swipe.

endCompare

Thisroutine is accessed when data from the swiped card matches data from one of the stored
cards. Similar to the routine called when the card doesn’t match, this routine blinks a green
“Cards Match” led five times. Thisisaccomplished in the same manner as above; the pin
controlling the green led (B1) istoggled ten times and a delay |asting about .125 secondsis
called after each time. In addition to the blinking led, this routine also turns off the red “Ignition
Disabled” led (B4) and turns on the green “Ignition Ready” led (B3) for a duration of fifteen
seconds, signifying that the driver has a fifteen second window in which he/she can start the car.
The fifteen seconds duration is accomplished by calling another delay routine written to last
approximately one second. Calling this routine repeatedly in aloop a specific number of times
produces the longer delay we desire. At the end of the fifteen seconds, the green “Ignition
Ready” led (B3) isturned off, the red “Ignition Disabled” led (B4) is turned back on, and the
program branches back to waiting.

program

The purpose of this section isto store the parsed, parity checked data in data RAM into the
appropriate section of the EEPROM. The start address within the EEPROM was previously
determined in the waiting loop when it polled inputs DO-D3. Once all of the data has been stored
into EEPROM, the program stores the end address for the appropriate user into another specified
EEPROM location (this address is used when performing later compares, as the program must be
ableto “know” when to stop comparing).

SUBROUTINES

delay

This routine produces a delay lasting about one eighth of a second, or .125 seconds. It isused to
blink the “Cards Match” (B1) and “Cards Don’'t Match” (B2) LEDs after a card has been swiped

in Compare mode. It is accomplished by implementing loops that execute a sequence of
instructions that don’t affect any other factors of the program.

oneSecDelay

This produces adelays lasting for approximately one second. It is used for asserting D4 (Invalid
Swipe) and B3 (Ignition Ready) for a duration determined by how many times we call the
routine.

FPGA DESIGN

The FPGA is used to manage some of the control signals of the system as shown in Figure 1.
Two sets of 4 pin dip switches are used for inputting a code to put the system in program mode
and another set of 4 pin dip switchesis used for inputting auser. The FPGA takes inputs from
the pins connected to these dip switches and outputs the proper values allowing the system to
have the correct settings. Three Verilog modules were created to accomplish thisand are
described below.

FPGA CONTROL SIGNALS MODULE

This high level module puts al the functions of the FPGA together by calling the other two
Verilog modules created. Together, these modules handle outputting the proper valuesto
indicate which mode and user the system is currently set to.

USER MODULE

The system can currently accommodate four different users. That is, four different cards can be
programmed into the system and any one of them will produce a match when swiped in compare
mode. A four pin dip switch is used to indicate which user the system is currently set on.
Currently the users are encoded using the one hot method where 0001 indicates user 1 and 1000
indicates user 4. This module takes the input from the four pin dip switch and then sends the
value to the pins that control PORTD [0:3] so that it can then be used by the PIC. On the
occasion that the FPGA receives an invalid user input (i.e. one that doesn’t follow the one hot
encoding), the FPGA will output 0000.

PROGRAM MODE MODULE

In order for the system to be in program mode, an eight bit code must be entered viatwo 4 pin
dip switches. The codeis currently set to 10101010. This Verilog module takes the inputs from
the pins connected to these dip switches and then outputs alogical high when the input matches
the code and alogical low when it doesn’'t. This output is sent to a pin (CO) the PIC can use to
determine when the system should be in program mode and when it should be in compare mode.

10

RESULTS

In theinitial proposal we said that the programmed card data was going to be stored inthe PIC’s
instruction memory but in the final design, it is stored in the PIC’'s EEPROM. We looked into
the EEPROM at the suggestion of Professor Harris and decided the EEPROM was easier to work
with, gave us what we wanted (i.e. the stored data would not be lost upon powering down), and
we wouldn’t have to worry about the data interfering with the program.

In theinitial proposal we had aso planned on using the FPGA to interface between the card
reader and the PIC. That is, the FPGA would first store the data coming off of the reader and
then send it to the PIC serially. The data was going to be stored in 7 bit blocks. We eliminated
thisintermediary step in the final design so that the card reader sends the data directly to the PIC
whereitisinitially stored in 8 bit blocks but then parsed to 5 bit blocks to facilitate error
checking. The 5 bit block size was needed because the data and the parity bits are encoded as a
function of 5 bits on the magnetic strip.

Deciding whether or not we needed the FPGA to act as a middleman in the data transmission
was one of the most difficult aspects of this project. The FPGA was ultimately eliminated as an
intermediate step in data transmission because it proved to be an unnecessary step that would
lead to substantially more Verilog code that needed to be written and debugged. We originally
planned on using the FPGA to resolve timing issues with data transmission. We thought it might
be necessary to slow down the transmission of the datain order for it to be received and stored
correctly by the PIC. However, testing the card reader with the PIC directly proved otherwise,
once the settings for slave mode were correct. Since theinitial Verilog code written to support
the use of the FPGA in this manner was riddled with bugs that had already consumed many
hours in simulation and debugging, we decided to simply take it out. Therefore, since the card
reader could be interfaced with the PIC directly and reliably, the FPGA was eliminated to avoid
lots of unnecessary code as well as the opportunity for more errors to arise.

Another difficult aspect of our design process was getting the PIC properly set up for slave serial
transmission. Because we had only previously used the PIC in master mode when doing seria
transmission, we had to learn on our own how to use the PIC in slave serial mode. Part of the
reason we had trouble getting it to work was because the PIC we were using was slightly faulty.
We discovered this by using two PICs, one configured in master mode sending data to the other
configured in slave mode. We watched the different signals on the digital oscilloscope and
noticed that the serial clock signal would get irregular when using one of the PICsin slave mode
but would look uniform and as we would expect when using the other PIC. Replacing the faulty
PIC alowed usto configure the PIC properly so that we could send and receive test data
correctly and verify that the slave serial mode on the PIC works as expected.

Another problem we encountered was a bug in the debugging program of MPLAB. The window
used to watch the EEPROM registers while running and debugging the program does not update
and show the current contents of the EEPROM. It simply shows FF as the contents of every
EEPROM register. Thisat first led usto believe that we weren’t writing to the EEPROM
correctly but upon trying to read from the EEPROM we would get the correct value we stored,
indicating our writing algorithm was indeed correct. Therefore, in one phase of our design and

11

testing, we had to resort to writing aloop that would rewrite the contents of the EEPROM
registers to data RAM so that we could see its contents.

The system is ready to stand alone independent of the computer. The Verilog code was burned
onto the external EEPROM and the PIC assembly code was downloaded onto the PIC so that as
soon as the board is hooked up to a power supply, it isready to go. Since the programmed data
isstored in the PIC's EEPROM, it is still there even after powering down and back up so that the
system doesn’t need to be reprogrammed if the user doesn’t wish to do so.

In the end, we are very pleased with the final outcome of our project. It in fact works better than
we had anticipated. In addition to the initial system we had proposed, we incorporated afew
extrafeatures. We implemented multiple users so that the system can currently support up to
four different cards. We also did some parity checking in the data which allowed us to cut down
on the amount of data stored since we could eliminate the leading and trailing bits before and
after the begin and end sequences in the data; this greatly facilitated comparing. In doing the
parsing and parity checking we were constraining ourselves to cards that conform to the
ANSI/ISO Track 2 BCD standard !, but since aimost all cards we checked conformed to this,
with the exception of a copy card and a calling card, this was not a problem. The parity checking
allowed usto be able to distinguish between an invalid card and a badly swiped card. When a
card is simply swiped poorly so that there is an error in the data transmitted, ared led is it
indicating that it was a bad swipe so that the user knows to simply swipe again. This means that
when avalid card is swiped, only the “Cards Match” or “Invalid Swipe” LEDs will ever be lit
and a“Cards Don’t Match” shouldn’'t ever be produced.

12

REFERENCES

[1] MagTek Magnetic Card Reader Products,
http://www.magtek.com/prod quide/cards/Swipel nsert/Swipel nsert.html

[2] MagTek Card Reader Technical Manual,

http://www.magtek.com/documentati on/public/99821101-6.pdf

[3] Magnetic Card Information: ANSI/ISO BCD Data Encoding,
http://www.hhhh.org/~joeboy/EE/hardware/magcards/trackdata ANSI-1ISO_BCD.html

PARTSLIST
Part Sour ce Vendor Part # Price
101-MILLIMETER
COMPATIBLE MagTek 21050004 < $10 Used *

SWIPE READER

* We obtained ours from afellow student but similar ones can be purchased used for less than
$10 from wwwe.allel ectronics.com

13

http://www.magtek.com/prod_guide/cards/SwipeInsert/SwipeInsert.html
http://www.magtek.com/documentation/public/99821101-6.pdf
http://www.hhhh.org/~joeboy/EE/hardware/magcards/trackdata_ANSI-ISO_BCD.html
http://www.allelectronics.com

Appendix A: FPGA Control SignalsModule

nodul e fpga_control (code_sw tch, user_swi tch, node, user);

input [7:0] code_switch;
i nput [3:0] user_switch;

out put node;
out put [3:0] user;

code code(code_swi tch, node);
user user(user_swi tch, user);

endnodul e

14

Appendix B: User Module

nodul e user (s, user);

i nput
out put

[3:0] s;

[3:0] user;

reg [3:0] user;

al ways @ (s)
case (S)

4' b0001:

4' b0010:

4' b0100:

4' p1000:

defaul t:
endcase

endnodul e

user

user
user
user
user

<=
<=
<=
<=

<= s;
s

onm wm

15

Appendix C: Program Mode Module
modul e code(s, Q);
input [7:0] s;
out put q;
assign q = s[7] & ~s[6] & s[5] & ~s[4] & s[3] & ~s[2] & s[1l] & ~s[O];

endnodul e

16

Appendix D: PIC Assembly Code

; CardReader5. asm

; Updat ed Decenber 7, 2003 by kkelley@nt. edu and knl ee@nt. edu

; Most code is based on snaller test code

; Places serial input into data EEPROM when in program node.

; Places serial input into data RAM when in conpare node.

; Allows Multiple Users To Store Card Data i n EEPROM

; Conpares data RAM val ues with those stored in data EEPROM nenory.

; Uses Parity Bit Error Checking to Distinguish Between Bad Swi pe and Wong
; Card

; Use the 18F452 PI C mi croprocessor
LI ST p=18F452
i ncl ude "pl8f452.inc"

; define variabl es

DDATA EQU 0x00 ; start of data in data nmenory
DDATAEND EQU 0x01

DDATA TRUE EQU 0x0D

DDATAEND _TRUE EQU OxOE

EDATA EQU 0x02 ; start of data in program nenory
EDATAEND EQU 0x03

EDATAENDO EQU 0xCO0
EDATAEND1 EQU 0xC1
EDATAEND2 EQU 0xC2
EDATAEND3 EQU 0xC3

USER EQU 0x13
USERTEMP EQU 0x14

mat chCount er EQU 0xDO
counterl EQU OxD1
counter?2 EQU 0xD2
bl i nkCount EQU 0xD3

; define constants

EDATAO EQU 0x00
EDATAL EQU 0x30
EDATA2 EQU 0x60
EDATA3 EQU 0x90

bl i nkDur EQU 0x0A

; subroutine variabl es

| NDEX1 EQU 0x04
| NDEX2 EQU 0x05
| NDEX3 EQU 0x06
DUR EQU 0x07
DURI ND EQU 0x08
PARI TY EQU 0x09

Bl TPO NTER EQU Ox0A

17

mailto:kkelley@hmc.edu
mailto:kmlee@hmc.edu

CHARCOUNTER EQU 0x0B
CURRENTCHAR EQU 0x0C

; subroutine constants

| NSA EQU OxFA ; 250 deci mal
| NSB EQU 0xC7 ;199 deci mal
; begin main program
org O
mai n
clrf TRI SA ; set PORTA as out put
clrf PORTA
nmov| w 0x20
nmovwf DDATA ; set beginning address in data nmem
nmov| w 0x50
nmovwf DDATA TRUE ; set beginning address of actual encoded bytes
nmovl w 0x00
nmovwf EDATA ; set beginning address in EEPROM
clrf TRI SB ; set all A ports as Qutput
clrf PORTB ; initially turn OFF all LEDs
bsf PORTB, 4 ; indicate ignition is disabled
nmov| w 0x1B
nmovwf TRI SC ; enabl e SCK(4) and SDI (3) and CardPresent (1)
; and Prograni Conpar e(0)
bcf TRI SD, 4 ; enabl e bad swi pe output LED
clrf PORTD
bcf TRI SD, 6 ; enabl e bad swi pe output LED
clrf PORTD
nmov| w 0x35
nmovwf SSPCON1 ; enable serial ports, slave node, SS pin
; control disabled, clk idle high
nmov| w 0x00
nmovwf SSPSTAT ; clear SMP for slave node, transmit on rising
; edge to ensure data quality
wai ti ng:
btfsc PORTC, O ; check Program Conpar e node
bra user Check
bra cont
user Check:
cal | user ; determ ne which user

18

bt fsc PORTD, 6 ; check if error

bra user Check
cont: btfsc PORTC, O ; check Prograni Conpare node
; =>indicate with LEDs
bra pr ogr amivbdeOn
bcf PORTB, O ; turn off yellow LED if in conmpare node
bra stillWaiting

; determi ne which user and assign appropriate start |ocations in nenory

user:

bt f sc PORTD, O

br a user0

bt fsc PORTD, 1

br a userl

bt f sc PORTD, 2

bra user 2

bt fsc PORTD, 3

br a user 3

br a invalid
user0:

nmovl w 0x00

nmovwf USER

nmovl w EDATAO

bra st or eMentt ar t
user 1:

nmovl w 0x01

nmovwf USER

nmov| w EDATAL

bra st or eMentt ar t
user 2:

nmovl w 0x02

movwf USER

nmov| w EDATA2

br a st oreMentt ar t
user 3:

nmov| w 0x03

movwf USER

nmovl w EDATA3

storeMentst art:

movwf EDATA
bcf PORTD, 6 ; turn off error |ed
return

i nval i d:
bsf PORTD, 6 ; turn on error |ed
return

19

pr ogr anivbdeOn:
bsf
stillWiting:

bsf

bt fsc
swi ped

br a

bra

; STORE card swi pes in data RAM

initializeSend:

bcf
novf
nmovwf

st ore:

bt fsc
br a

bt fss
br a
novf
nmovwf
i ncf
bra

sendDone:

nmovl w
subwf
nmovwf

bcf
nmovl w
movwf
bsf

begi nCheckParity:

nmovf f
novf f

clrf
nmov| w
nmovwf
clrf
clrf

PORTB, O

PORTB, 5
PORTC, 1

wai ting

initializeSend

PORTB, 5
DDATA, O
FSROL

PORTC, 1
sendDone

SSPSTAT, O
store
SSPBUF, O
| NDFO
FSROL
store

0x01
FSROL, O
DDATAEND

SSPCON1, 5
0x15
SSPCON1
SSPCON1, 5

DDATA, FSROL

turn on yellow LED i f

i n program node

show that systemis waiting for input

pol | CardPresent,

wait unti

a card is being

systemis no |longer waiting for input

check CardPresent

pol|l BF bit of SSPSTAT

| oad the received data i nto WREG
store received data in data nenory
increnent the indirect pointer

store 1 in WREG
subtract 1 from stored data RAM address

store end of RAM data address

tenporarily disable Serial

re-enabl e Serial Mode

Mode

; start at beginning of Data

DDATA _TRUE, FSRI1L

PARI TY

0x07

Bl TPO NTER
CHARCOUNTER
CURRENTCHAR

; clear parity register

; initialize bit pointer

. clear

20

character

counter

register to 7
register

findStartO:
conti nueParityO:

; check for full byte character count (5)

nmovl w 0x05

cpf seq CHARCOUNTER

br a checkBi t 70

br a checkforStartO

checkfor StartO:

; check for start of data senti nel

nmovl w 0x05 ; place start sentinel into WREG
cpfseq CURRENTCHAR

bra not FoundYet O

bra foundStartO

not FoundYet O:
decf

CHARCOUNTER ; decrease CHARCOUNTER by 1 so it will
; be 5 next tine it is increased

; check for end of data

nmovf DDATAEND, O ; nove end of data address into WREG
cpfseq FSROL
br a checkBi t 70 ; still bits left to be checked
bra | ast Pl CByt e0
| ast Pl CByt eO:
nmov| w 0x04
cpfslt Bl TPO NTER
br a checkBi t 70
br a i nval i dRead ; no start sentinel found!!!
checkBi t 70:
nmovl w 0x07
cpfseq Bl TPO NTER
br a checkBi t 60
bra exani neBi t 70
checkBi t 60:
nmovl w 0x06
cpfseq Bl TPO NTER
bra checkBi t 50
bra exani neBi t 60
checkBi t 50:
nmovl w 0x05
cpfseq Bl TPO NTER
bra checkBi t 40
br a exam neBi t 50
checkBi t 40:

21

nmov!| w
cpfseq
bra
bra

checkBi t 30
nmov! w
cpfseq
bra
br a

checkBi t 20
nmov| w
cpfseq
br a
br a

checkBi t 10:
nmovl w
cpfseq
br a
br a

checkBi t 00
nmov!| w
cpfseq
br a
bra

checkBi t EndO:
i ncf
nmov!| w
movw
bra

exam neBi t 00:
bt fss
bra
bra

exam neBit 10:
bt fss
bra
bra

exam neBit 20:
bt fss
bra
bra

exam neBi t 30:
bt fss
bra
bra

exam neBi t 40:
bt fss

0x04

Bl TPO NTER
checkBi t 30
exani neBi t 40

0x03

Bl TPO NTER
checkBi t 20
exam neBi t 30

0x02

Bl TPO NTER
checkBit 10
exam neBi t 20

0x01

Bl TPO NTER
checkBi t 00
exam neBit 10

0x00

Bl TPO NTER
checkBi t End0
exani neBi t 00

FSROL

0x07

Bl TPO NTER
checkBi t 70

| NDFO, O
addZer o0
addOne0O

| NDFO, 1
addZer o0
addOneO

| NDFO, 2
addZer o0
addOne0O

| NDFO, 3
addZer o0
addOne0O

| NDFO, 4

initialize bit

22

poi nt er

register to 7

br a addZer o0

br a addOne0
exani neBi t 50:
bt fss | NDFO, 5
br a addZer o0
br a addOne0
exani neBi t 60:
bt fss | NDFO, 6
br a addZer o0
br a addOne0
exani neBi t 70:
bt fss | NDFO, 7
br a addZer o0
br a addOne0
addZer 00:
decf Bl TPO NTER
i ncf CHARCOUNTER
rl ncf CURRENTCHAR, 1
bcf CURRENTCHAR, 5
bra continueParity0
addOneO:
decf Bl TPO NTER
i ncf CHARCOUNTER
rl ncf CURRENTCHAR, 1
bsf CURRENTCHAR, O
bcf CURRENTCHAR, 5
bra continueParity0
foundStartO:
novf f CURRENTCHAR, | NDF1
i ncf FSRI1L
clrf CHARCOUNTER
clrf CURRENTCHAR

continueParity:

; check for full byte character count (5)

nmov| w 0x05

cpfseq CHARCOUNTER
bra checkBit 7
bra checkParity

checkParity:

; check for end of data

nmovl w 0x00 ; place end sentinel into WREG
cpfseq CURRENTCHAR

bra not At End

bra endCf Dat a

23

not At End:

cl rf CHARCOUNTER

bt fss
br a
br a

checkBit 7:
nmov| w
cpfseq
br a
br a

checkBi t 6:
nmovl w
cpfseq
br a
bra

checkBi t5:
movl w
cpfseq
bra
bra

checkBit 4:
nmovl w
cpfseq
bra
br a

checkBi t 3:
nmov| w
cpfseq
br a
br a

checkBit 2:
nmov| w
cpfseq
br a
br a

checkBit 1:
nmovl w
cpfseq
br a
bra

checkBi t 0:
nmovl w
cpfseq
bra
bra

checkBi t End:

PARI TY, O
evenParity
oddParity

0x07

Bl TPO NTER
checkBi t 6
exam neBit7

0x06

Bl TPO NTER
checkBi t5
exam neBi t 6

0x05

Bl TPO NTER
checkBit4
exam neBit5

0x04

Bl TPO NTER
checkBit 3
exam neBit 4

0x03

Bl TPO NTER
checkBit2
exam neBi t 3

0x02

Bl TPO NTER
checkBit1l
exam neBit 2

0x01

Bl TPO NTER
checkBit0
exam neBit1l

0x00

Bl TPO NTER
checkBi t End
exam neBi t0

24

i ncf FSROL

nmovl w 0x07
nmovwf Bl TPO NTER ; initialize bit pointer register to 7
bra checkBit7
exam neBit 0:
bt fss | NDFO, O
bra addZer o
bra addOne
exam neBit 1:
bt fss | NDFO, 1
bra addZer o
bra addOne
exam neBit 2:
bt fss | NDFO, 2
bra addZer o
bra addOne
exam neBit 3:
bt fss | NDFO, 3
bra addZer o
bra addOne
exam neBit 4:
bt fss | NDFO, 4
bra addZer o
bra addOne
exam neBi t 5:
bt fss | NDFO, 5
bra addZer o
bra addOne
exam neBit 6:
bt fss | NDFO, 6
bra addZer o
bra addOne
exam neBit 7:
bt fss | NDFO, 7
bra addZer o
bra addOne
addZer o:
decf Bl TPAO NTER
i ncf CHARCOUNTER
rl ncf CURRENTCHAR, 1
bra continueParity
addOne:
decf Bl TPO NTER
i ncf CHARCOUNTER
i ncf PARI TY
rl ncf CURRENTCHAR, 1
bsf CURRENTCHAR, O

25

br a

evenParity:

continueParity

VALI D BYTE!

; continue checking parity

clrf
nmovf f
i ncf
clrf

br a

oddParity:

PARI TY
CURRENTCHAR, | NDF1
FSR1L

CURRENTCHAR

continueParity

; BYTE NOT VALID

clrf
br a

i nval i dRead:
bsf
cal |
cal |
bcf

bra

endCf Dat a:

novf f
i ncf
clrf
clrf

conti nueParityl:

nmov! w
cpfseq
bra
bra

checkParityl:

novf f
novf f

indicate invalid read

CURRENTCHAR
i nval i dRead
PORTD, 4

oneSecDel ay
oneSecDel ay

PORTD, 4

wai ti ng

store END senti ne

CURRENTCHAR, | NDF1
FSR1L

CHARCOUNTER
CURRENTCHAR

store one nore 5 bit byte (LRC Character)

check for full byte character count (5)

0x05
CHARCOUNTER
checkBit 71
checkParityl

store final LRC Character

CURRENTCHAR, | NDF1
FSR1L, DDATAEND TRUE

26

br a

checkBit 71:
nmov| w
cpfseq
br a
br a

checkBi t 61:
nmovl w
cpfseq
br a
bra

checkBi t 51:
nmovl w
cpfseq
bra
bra

checkBit41:
movl w
cpfseq
bra
br a

checkBi t 31:
movl w
cpfseq
br a
br a

checkBi t 21:
nmov| w
cpfseq
br a
br a

checkBit 11:
nmovl w
cpfseq
br a
bra

checkBi t 01:
nmovl w
cpfseq
bra
bra

checkBi t End1:

i ncf FSROL

nmov| w
nmovwf
br a

al | Dat aSt or ed

0x07

Bl TPO NTER
checkBi t 61
exam neBit71

0x06

Bl TPO NTER
checkBi t51
exani neBi t 61

0x05

Bl TPO NTER
checkBit 41
exani neBi t 51

0x04

Bl TPO NTER
checkBit 31
exam neBi t 41

0x03

Bl TPO NTER
checkBit 21
exam neBi t 31

0x02

Bl TPO NTER
checkBit11
exam neBit 21

0x01

Bl TPO NTER
checkBi t 01
exani neBit11

0x00

Bl TPO NTER
checkBi t End1l
exani neBi t 01

0x07
Bl TPO NTER
checkBit 71

initialize bit pointer

27

register to 7

exam neBi t 01:
btfss
bra
bra

exam neBit 11:
bt fss
bra
bra

exam neBit 21:
bt fss
bra
bra

exam neBit 31:
bt fss
bra
bra

exam neBit41:
bt fss
bra
bra

exam neBi t 51:
bt fss
bra
bra

exam neBit 61:
bt fss
bra
bra

exam neBit 71:
bt fss
bra
bra

addZer ol
decf
i ncf
rl ncf
br a

addOnel:
decf
i ncf
i ncf
rl ncf
bsf
bra

| NDFO, O
addZer ol
addOnel

| NDFO, 1
addZer ol
addOnel

| NDFO, 2
addZer ol
addOnel

| NDFO, 3
addZer ol
addOnel

| NDFO, 4
addZer ol
addOnel

| NDFO, 5
addZer ol
addOnel

| NDFO, 6
addZer ol
addOnel

| NDFO, 7
addZer ol
addOnel

Bl TPO NTER
CHARCOUNTER
CURRENTCHAR, 1
continueParityl

Bl TPO NTER
CHARCOUNTER
PARI TY
CURRENTCHAR, 1
CURRENTCHAR, O
continueParityl

28

al | Dat aSt or ed:

bt fss
br a
br a

; COMPARE MOST RECENT SW PE W TH DATA

conpar eCQut er:
clrf

conpar e:
novf f

checkUser O:
movl w
cpfseq
br a

nmovl w
nmovwf
bcf
bcf
bsf

novf f

nmovl w
movw
bra

checkUser 1:
nmovl w
cpfseq
bra

nmovl w
nmovwf
bcf
bcf
bsf

novf f
nmov| w
movwf
br a

checkUser 2:
nmov| w
cpfseq
br a

nmovl w

PORTC, O
conpar eQut er
program

USERTEMP

DDATA_TRUE, FSROL

0x00
USERTEMP
checkUser 1

EDATAENDO
EEADR

EECONL, EEPGD
EECONL, CFGS
EECON1, RD

EEDATA, EDATAEND

EDATAO
EEADR
keepConpari ng

0x01
USERTEMP
checkUser 2

EDATAEND1
EEADR

EECON1, EEPGD
EECON1, CFGS
EECONL, RD

EEDATA, EDATAEND
EDATAL

EEADR

keepConpari ng

0x02
USERTEMP
checkUser 3

EDATAEND2

check Program/ Conpare nobde
Ent er Conpare node
Ent er Program node

STORED | N EEPROM

poi nt to DATA nenory
access program flash OR data EEPROM
EEPROM r ead

poi nt to DATA nenory
access program flash OR data EEPROM
EEPROM r ead

29

nmovwf
bcf
bcf
bsf

novf f
nmov! w
movwf
bra

checkUser 3:
nmov!| w

nmov| w
nmovwf
bcf
bcf
bsf

novf f
nmov! w
nmovwf
bra
keepConpari ng
bcf
bcf
bsf
novf
cpfseq
bra
i ncf
i ncf
nmovf

cpfsgt
bra

bra

different:

EEADR

EECONL, EEPGD
EECON1, CFGS
EECON1, RD

EEDATA, EDATAEND

EDATA2
EEADR
keepConpari ng

0x03

EDATAEND3
EEADR

EECONL, EEPGD
EECONL, CFGS
EECON1, RD

EEDATA, EDATAEND

EDATA3
EEADR

keepConpari ng

EECON1, EEPGD
EECON1, CFGS
EECONL, RD
EEDATA, O

| NDFO

di fferent
EEADR
FSROL
EDATAEND, O

EEADR
keepConpari ng

endConpar e

; CARDS DON' T MATCH

; check next user

; output proper signha
; quit conparing if al

, car

i ncf
nmov| w
cpfsgt

doesn't start

USERTEMP
0x03
USERTEMP

poi nt to DATA nenory
access program flash OR data EEPROM
EEPROM r ead

poi nt to DATA nenory
access program flash OR data EEPROM
EEPROM r ead

poi nt to DATA nenory

access program flash OR data EEPROM
EEPROM r ead

store EEPROM data into WREG

conpare EEPROM data with current data

checks if at end of data in EEPROV
menory

4 users have been checked

30

bra conpare

br a noUser Mat ch
noUser Mat ch:

clrf bl i nkCount
RedBl i nk:

nmovl w 0x01

addwf bl i nkCount

nmovl w bl i nkDur

cpf seq bl i nkCount

bra RedBl i nkCont

br a red
RedBl i nkCont :

btg PORTB, 2

call del ay

br a RedBl i nk
red:

bcf PORTB, 2

bra wai ting
endConpar e:

;. CARDS NMATCH!

; out put proper signal

; car does start

bcf PORTB, 4

clrf mat chCount er

bsf PORTB, 3

clrf bl i nkCount
G eenBl i nk:

nmovl w 0x01

addwf bl i nkCount

nmovl w bl i nkDur

cpfseq bl i nkCount

bra G eenBl i nkCont

bra green

GreenBl i nkCont :

btg
cal |
br a

green:
bcf
cal |
nmovl w
addwf
nmovl w

PORTB, 1
del ay
G eenBl i nk

PORTB, 1
oneSecDel ay
0x01

mat chCount er
0x05

31

cpfseq mat chCount er

bra green
bcf PORTB, 3
bsf PORTB, 4

bra waiting

; PROGRAM THE MASTER CARD | N EEPROM MEMORY

program
movf f EDATA, EEADR ; Initialize EEPROM starting address
movf f DDATA TRUE, FSROL ; Set indirect address pointer to
; begi nni ng of Dat aRAM
writeByte: ; EEPROM WRI TE SEQUENCE
movf f | NDFO, EEDATA ; byte to be stored in EEPROM
bcf EECONL, 7 ; bit 7 = EEPGD (point to data EEPROM nenory)
bcf EECON1, 6 ; bit 6 = CFGS (access data EEPROM nenory)
bsf EECONL, 2 ; bit 2 = WREN (enable writes)
bcf I NTCON, 7 ; bit 7 = GE (disable interrupts)
nmov| w 0x55
nmovwf EECON2 ; write 55h
nmovl w OxAA
nmovwf EECON2 ; Wwite AAh
bsf EECONL, 1 ; bit 1 = WR (begin wite, cleared when done)
| oopl:
bt fsc EECON1, 1 ; poll WRbit for witing to be done
bra | oopl
nov f FSROL, O
cpfseq DDATAEND TRUE ; check to see if last byte has been
; Wwitten to EEPROM
bra keepWiting ; continue witing
bra writeDone ; done witing to EEPROM
keepWi ting:
i ncf EEADR ; i ncrement address
i ncf FSROL
bra witeByte
wri t eDone:
bcf EECON1, WREN ; full transfer to EEPROM done, disable
wites
set EndO:
nmov| w 0x00
cpfseq USER
bra set Endl
nmovf f EEADR, EEDATA ; byte to be stored in EEPROM
nmov| w EDATAENDO

32

nmovwf

bcf
bcf
bsf

bcf
nmovl w
movwf
nmov!| w
nmovwf
bsf

| oop10:
bt fsc
bra

bra

set End1;:
nmov! w
cpfseq
bra

novf f
nmov!| w
nmovwf

bcf
bcf
bsf

bcf
nmovl w
nmovwf
nmov! w
nmovwf
bsf

| oopll:
bt fsc
br a

bra

set End2:
nmov! w
cpfseq
bra

novf f
nmov! w
movwf

bcf
bcf
bsf

EEADR

EECON1,
EECON1,
EECONL,

| NTCON, 7 :
0x55

EECON2

OxAA

EECON2
EECON1, 1 :

EECONL, 1 ;
| oopl10

wai ti ng

0x01
USER
set End2

EEADR, EEDATA
EDATAEND1
EEADR

EECON1,
EECONL,
EECONL,

| NTCON, 7 :
0x55

EECON2

OxAA

EECON2
EECON1, 1 :

EECONL, 1 ;
| oopll

wai ti ng

0x02
USER
set End3

EEADR, EEDATA
EDATAEND2
EEADR

EECONL, 7 ;
EECONL, 6 ;
EECONL, 2 ;

bi t
bi t
bi t

bi t

bi t

pol

bi t
bi t
bi t

bi t

bi t

pol

bi t
bi t
bi t

EEPGD (point to data EEPROM nenory)
CFGS (access data EEPROM nenory)
VWREN (enable wites)

N o~
I

\l
1

G E (disable interrupts)
; write 55h

write AAh

i = WR (begin wite, cleared when done)

WR bit for witing to be done

; byte to be stored in EEPROM

EEPGD (point to data EEPROM nenory)
CFGS (access data EEPROM nenory)
WREN (enable wites)

N o N
1

\‘
1

G E (disable interrupts)
; write 55h

write AAh

i = WR (begin wite, cleared when done)

WR bit for witing to be done

; byte to be stored in EEPROM

7 = EEPGD (point to data EEPROM nenory)
6 = CFGS (access data EEPROM nenory)
2 = V\REN (enable wites)

33

bcf
nmovl w
nmovwf
nmov! w
nmovwf
bsf

| oopl2:
bt fsc
bra

bra

set End3:
nmov!| w

nmovf f
nmovl w
nmovwf

bcf
bcf
bsf

bcf
nmov!| w
movwf
nmovl w
nmovwf
bsf

| oop13:
bt fsc
bra

br a

oneSecDel ay:

I NTCON, 7 ; bit 7 = GE (disable interrupts)

0x55

EECON2 ; Wwite 55h

OxAA

EECON2 ; write AAh

EECONL, 1 ; bit 1 = WR (begin wite, cleared when done)
EECON1, 1 ; poll WR bit for witing to be done

| oopl2

wai ti ng

0x03

EEADR, EEDATA ; byte to be stored in EEPROM
EDATAEND3

EEADR

EECONL, 7 ; bit 7 = EEPGD (point to data EEPROM nenory)
EECON1, 6 ; bit 6 = CFGS (access data EEPROM nenory)
EECONL, 2 ; bit 2 = WREN (enable writes)

I NTCON, 7 ; bit 7 = GE (disable interrupts)

0x55

EECON2 ; Wwite 55h

OxAA

EECON2 ; write AAh

EECONL, 1 ; bit 1 = WR (begin wite, cleared when done)
EECON1, 1 ; poll WRbit for witing to be done

| oopl3

wai ting

; a subroutine that takes approx 1 second to execute

clrf

forl:
nmov| w
cpfslt
br a
i ncf

i ncf
i ncf

clrf

I NDEX1

; repeat for INSA iterations
| NSA
| NDEX1
breakl
| NDEX1

| NDEX3
| NDEX3

| NDEX2

for2:

break?2:

breakl:

nmov!| w

cpfslt
br a
i ncf
i ncf
i ncf
i ncf
i ncf
i ncf
bra

br a

return

| NSB

| NDEX2
br eak?2
| NDEX2

| NDEX3
| NDEX3
| NDEX3
| NDEX3
| NDEX3

for2

forl

repeat for

INSB i terations

; a subroutine that takes approx .125 second to execute

del ay:

dl oopl:

dl oop2:

done:

mov! w
nmovwf
movwf

novf
subl w
bz

i ncf
clrf

nmovf
subl w
bz
nop
nop
nop
nop

i ncf
br a

return

end

0x00
counterl
counter?2

counterl, O
0x19

done
counterl
counter2

counter?2, 0O
OxFA
dl oopl

counter2
dl oop2

35

