
 1

MAGNETIC CARD IDENTIFICATION SECURITY SYSTEM

Final Project Report
December 15, 2003

E155

Kyle Kelley & Karen Lee

Abstract:

The goal of this project was to use a magnetic card reader in designing a security system for a
vehicle. The driver would swipe a card and if the swiped card data matches one of the four sets
of data previously stored, he/she is allowed to start the car. The FPGA handles user control
settings inputted via three sets of four pin dip switches that determine the mode and user of the
system. It decodes the mode and user and outputs accordingly to the PIC. The card reader is
connected directly to the PIC so that when a card is swiped, the data off the card is transmitted
serially to the PIC. Depending on whether the system is in Program or Compare mode, the PIC
either stores the swiped card data in EEPROM or compares it to previously stored data. For the
purposes of this project we did not implement the system in an actual vehicle but used LEDs
instead to demonstrate functionality. The PIC outputs to the correct LEDs indicating either a
match or mismatch in data.

 2

INTRODUCTION

Magnetic cards have become a part of all of our lives. The average person’s wallet likely has
several including a driver’s license, ATM cards, and credit cards. Magnetic cards are used to
identify us in banks, grocery stores, and here at Platt. Each card is unique in the data that is
stored on the magnetic strip. Our project takes advantage of this fact in designing an automobile
anti-theft security system. This project utilizes a magnetic card reader in designing a security
system that can be implemented to prevent the unauthorized use of a vehicle. The main idea is
that the driver must swipe a specific card before being allowed to start the car. One way to get to
the data on the card is to swipe the card through a magnetic card reader. The one we used can be
seen in Figure 2 in the next section.

The system has two states: Program and Compare. In Program mode, the user can store up to
four different cards in memory. This allows up to four different users of the system which is
especially useful in families where more than one person may drive the car. The user setting is
inputted by way of a four pin dip switch. In Compare mode, the PIC will compare the data off of
a swiped card to the data previously stored in memory. The PIC will in fact compare the data
with all four possible sets of data in memory so that the user need not worry about the user
setting when in Compare mode. The normal operating state of the system is the Compare mode
and the system can only be put into Program mode when a specific eight bit code is entered by
way of a pair of four pin dip switches.

If the system were to be fully implemented, we would output a signal which would drive a relay
and untie the automobile’s ignition wire from ground upon a matching card swipe. For the
purposes of this project we will not actually implement the system into an automobile but rather
utilize LEDs that signify whether or not the ignition is allowed to start. Further, while our
proposed idea has the application of preventing unauthorized use of an automobile, this
particular system could have a wide range of uses and be implemented to interact with various
systems.

The three main components of our system are the FPGA, the PIC, and the card reader. Figure 1
on the next page depicts the block diagram of the system and how the components interact with
each other.

 3

Figure 1: System Block Diagram

The card reader is connected directly to the pins of the PIC. The PIC is configured for slave
serial transmission. The MagTek reader sends a signal whenever a card is being swiped (Card
Present) and this signal is used to begin and stop storing data. The Strobe signal outputted from
the card reader is used as a clocking signal by the PIC during transmission and indicates when
the Data signal is valid and should be sampled. The Data signal carries the actual data encoded
on the magnetic strip and is connected to the serial transmission input pin of the PIC.

The FPGA handles user control settings such as which mode the system is in as well as which
user the system is currently set on. The inputs to the FPGA come from the pins connected to the
three different four pin dip switches. It decodes which mode and user the system should be set to
and then outputs accordingly to pins on the PIC. If an invalid user is inputted, the FPGA sends
out all 0’s.

The PIC either stores card data in EEPROM when in Program mode or compares swiped card
data stored in data RAM to stored data in EEPROM when in Compare mode. If a valid card is
swiped while in Compare mode, the PIC outputs to two green LEDs. One blinks and indicates a
match has occurred while the other stays lit for fifteen seconds signifying the ignition is ready to

User

8

4

Mode

User

W
ai

tin
g

fo
r S

w
ip

e

In
va

lid
 U

se
r

In
va

lid
 S

w
ip

e

C
ar

ds
 M

at
ch

C
ar

ds
 D

on
’t

M
at

ch

Ig
ni

tio
n

R
ea

dy

Ig
ni

tio
n

D
is

ab
le

d

Pr
og

ra
m

 M
od

e

Card Present

Data

Strobe (Serial Clock)

Code

4
4 Pin Dip

Switch

Pair of 4 Pin
Dip Switches

MagTek
Card Reader

PIC FPGA

 4

be started during the fifteen second window. If an invalid card is swiped in Compare mode, the
PIC outputs to two red LEDs. One blinks and indicates a mismatch has occurred while the other
stays lit and indicates the ignition is tied to ground and unable to be started. In addition, the PIC
also outputs to two yellow LEDs, one indicating when the system is ready and waiting for a card
to be swiped, the other indicating when the system is in Program mode. We also designed the
system to distinguish from an invalid card from a badly swiped card. If the card is pulled out of
the reader prematurely or swiped excessively slowly, the data can be read incorrectly even if it is
a valid card. The PIC turns on a red “Invalid Swipe” LED indicating when an error in reading
the data has occurred so that the user knows to swipe the same card again. Lastly, the PIC also
outputs to a red “Invalid User” LED when an invalid user has been entered while the system is in
Program mode.

 5

NEW HARDWARE

MAGNETIC CARD READER

Our project made use of a 101mm card swipe reader from MagTek (Figure 2). It can read most
cards with magnetic strips including bank cards, driver’s licenses, and cards issued by super
markets. The only cards we found that wouldn’t work in the course of our testing were copy
center cards and some calling cards.

Table 1: 8 Pin I/O Connector

Figure 2: 101-millimeter Compatible Swipe Reader

The reader has a dual track I/O connector. The connector has eight pins as shown in Table 1
above. We utilized the data off of track two since that’s where the numeric information is mostly
stored. We therefore made use of pins 1, 2, 3, 5, and 6. Pins 5 and 6 correspond to power and
ground. Pins 1, 2, and 3 (i.e. Data, Strobe, and Card Present signals) are high when no card is
being swiped. Card Present goes low when a card is being moved through the unit. This signal
is used by the PIC to determine when the reader is sending data and when it is done. The Data
signal carries the information stored on the card. When the Data signal is high, the bit is a zero
and when the signal is low, the bit is a one. It is valid while the strobe is low and is connected to
the input pin of the PIC for serial transmission. The Strobe signal indicates when Data is valid
and is used by the PIC as the clock for serial transmission. The timing and interaction of these
signals can be seen in Figure 3 below.

Figure 3: Signal Timing

 6

SCHEMATIC

Figure 4: Breadboard Schematic - R1 = 330 Ω; R2 = 1 kΩ

 7

MICROCONTROLLER DESIGN

Figure 5: Inputs and Outputs of the Microcontroller

The inputs and outputs of the microcontroller can be seen in Figure 5 above, labeled with both
the pin number and the signal name. The PIC receives the data from the card reader and stores it
into data RAM in blocks of 8 bits. It then goes through and parses the data into 5 bit blocks so
that it can then do a parity check on the data to see if any errors in transmitting occurred. (See
Reference [3] for details on parity encoding) After the data is checked, the PIC either stores the
data into EEPROM if it is in Program mode or compares it to data previously stored in EEPROM
if it is in Compare mode. The PIC then outputs to the correct pins corresponding to either a
match or mismatch in data. Below is a description of each of the main sections of the program.

waiting

After initialization, the microcontroller enters a “waiting” state, in which it asserts a high output
on B5, indicating that it is ready and waiting for a card to be swiped. It also continually checks
“Program / Compare” on C0 to determine the mode of the system. If it is in Program Mode, it
will poll the inputs D0-D3 looking for a valid user. If none of D0-D3 are high, a high output is
asserted on D6 indicating an invalid user and the program will not exit the waiting state until a
valid user is found.

The Waiting Loop also polls the “Card Present” input on C1. Once it is determined a card is
being swiped (indicated by “Card Present” falling from high to low), the microcontroller exits
the waiting state and proceeds to initializeSend.

intializeSend

Here the output on B5 is driven low to indicate the system is no longer waiting for a card to be
swiped. The PIC continually polls the SSPSTAT[0] bit (Buffer Full Status bit) as the card reader
sends its data serially, and stores the data as an array into the data RAM as 8 bit bytes. Once
“Card Present” returns to high, the sending of data is complete and the PIC exits this loop and
proceeds to sendDone.

Program/Compare

PIC

Data (Serial Data)

Strobe
(Serial Clock)

User [3:0]

 Card Present

Waiting for Swipe

Invalid User

Invalid Swipe

Ignition Ready

Ignition Disabled

Cards Match

Cards Don’t Match

C3

C4

C1

C0

D0-D3

B5

B3

B4

B1

B2

D4

D6

From Card
Reader

From
FPGA

Program Mode
B0

 8

sendDone

Once the PIC has finished receiving serial data, it temporarily disables and then re-enables serial
mode. The purpose of this is to eliminate any trailing bits in the serial receive buffer which
would otherwise appear at the beginning of subsequent card swipes. The PIC then enters
beginCheckParity.

beginCheckParity

This is the beginning of a large block of code with a very specific and simple function. First, the
PIC parses the stored input beginning with the first bit looking for the ISO 7813 standard start
sentinel 11010 (or in our case 00101, since our card reader inverts the data). Once the start
sentinel is found, it is stored as a 5 bit block in a new data memory location (3 leading zeros
make up the full byte), and the PIC advances to foundStart0. If no start sentinel is found and the
end of the data is reached, the PIC branches to invalidRead.

foundStart0

The PIC continues parsing the continuous data into 5 bit blocks and stores them into data
memory (placing 3 leading 0s on each block). Before it stores each 5 bit block it performs a
parity check on it. The parity bit is the least significant bit of each string of 5 bits and makes the
total number of 1s odd (again, since our card reader inverts the data, the total 1s in each byte
should be even). If the parity of any single bit is found to be invalid, the PIC branches to
invalidRead. Once the end sentinel 11111 (00000 for us) is found, the PIC branches to
endOfData.

endOfData

Once the end sentinel is found, there is one more valid 5 bit block of data, the LRC parity bit.
Although we did not implement the multiple-error parity checking that uses this bit, this bit is
stored in data RAM anyway. Once this parity bit is stored, the PIC branches to allDataStored.

invalidRead

Output D4 (Invalid Swipe) is asserted for 2 seconds and the PIC branches back to waiting.

allDataStored

Here the PIC checks input C0 (“Program / Compare”). If it is low, it branches to compareOuter.
Otherwise, it branches to program.

compareOuter

The function of this section is to compare the parsed, parity checked card data recently stored in
data RAM to that programmed into EEPROM. Since our system allows multiple users to
program their cards into EEPROM, the program must check the recently stored data against each

 9

stored user. If a byte fails to match the corresponding byte of a stored user, the program
immediately moves on to check the next user. If a byte fails to match and it is on the last user, it
branches to noUserMatch. If the program reaches the end of a user’s stored data (and therefore
has not found any non-matching bytes), it branches to endCompare.

noUserMatch

When a card not matching one programmed into the system is swiped, this routine blinks the
“Cards Don’t Match” red led fives times. Each time, the led stays on for approximately .125
seconds. This is accomplished by toggling the value outputted to (B2) ten times and calling on a
.125 seconds delay subroutine each time. The program then returns to waiting for the next card
swipe.

endCompare

This routine is accessed when data from the swiped card matches data from one of the stored
cards. Similar to the routine called when the card doesn’t match, this routine blinks a green
“Cards Match” led five times. This is accomplished in the same manner as above; the pin
controlling the green led (B1) is toggled ten times and a delay lasting about .125 seconds is
called after each time. In addition to the blinking led, this routine also turns off the red “Ignition
Disabled” led (B4) and turns on the green “Ignition Ready” led (B3) for a duration of fifteen
seconds, signifying that the driver has a fifteen second window in which he/she can start the car.
The fifteen seconds duration is accomplished by calling another delay routine written to last
approximately one second. Calling this routine repeatedly in a loop a specific number of times
produces the longer delay we desire. At the end of the fifteen seconds, the green “Ignition
Ready” led (B3) is turned off, the red “Ignition Disabled” led (B4) is turned back on, and the
program branches back to waiting.

program

The purpose of this section is to store the parsed, parity checked data in data RAM into the
appropriate section of the EEPROM. The start address within the EEPROM was previously
determined in the waiting loop when it polled inputs D0-D3. Once all of the data has been stored
into EEPROM, the program stores the end address for the appropriate user into another specified
EEPROM location (this address is used when performing later compares, as the program must be
able to “know” when to stop comparing).

SUBROUTINES

delay

This routine produces a delay lasting about one eighth of a second, or .125 seconds. It is used to
blink the “Cards Match” (B1) and “Cards Don’t Match” (B2) LEDs after a card has been swiped
in Compare mode. It is accomplished by implementing loops that execute a sequence of
instructions that don’t affect any other factors of the program.

 10

oneSecDelay

This produces a delays lasting for approximately one second. It is used for asserting D4 (Invalid
Swipe) and B3 (Ignition Ready) for a duration determined by how many times we call the
routine.

FPGA DESIGN

The FPGA is used to manage some of the control signals of the system as shown in Figure 1.
Two sets of 4 pin dip switches are used for inputting a code to put the system in program mode
and another set of 4 pin dip switches is used for inputting a user. The FPGA takes inputs from
the pins connected to these dip switches and outputs the proper values allowing the system to
have the correct settings. Three Verilog modules were created to accomplish this and are
described below.

FPGA CONTROL S IGNALS MODULE

This high level module puts all the functions of the FPGA together by calling the other two
Verilog modules created. Together, these modules handle outputting the proper values to
indicate which mode and user the system is currently set to.

USER MODULE

The system can currently accommodate four different users. That is, four different cards can be
programmed into the system and any one of them will produce a match when swiped in compare
mode. A four pin dip switch is used to indicate which user the system is currently set on.
Currently the users are encoded using the one hot method where 0001 indicates user 1 and 1000
indicates user 4. This module takes the input from the four pin dip switch and then sends the
value to the pins that control PORTD [0:3] so that it can then be used by the PIC. On the
occasion that the FPGA receives an invalid user input (i.e. one that doesn’t follow the one hot
encoding), the FPGA will output 0000.

PROGRAM MODE MODULE

In order for the system to be in program mode, an eight bit code must be entered via two 4 pin
dip switches. The code is currently set to 10101010. This Verilog module takes the inputs from
the pins connected to these dip switches and then outputs a logical high when the input matches
the code and a logical low when it doesn’t. This output is sent to a pin (C0) the PIC can use to
determine when the system should be in program mode and when it should be in compare mode.

 11

RESULTS

In the initial proposal we said that the programmed card data was going to be stored in the PIC’s
instruction memory but in the final design, it is stored in the PIC’s EEPROM. We looked into
the EEPROM at the suggestion of Professor Harris and decided the EEPROM was easier to work
with, gave us what we wanted (i.e. the stored data would not be lost upon powering down), and
we wouldn’t have to worry about the data interfering with the program.

In the initial proposal we had also planned on using the FPGA to interface between the card
reader and the PIC. That is, the FPGA would first store the data coming off of the reader and
then send it to the PIC serially. The data was going to be stored in 7 bit blocks. We eliminated
this intermediary step in the final design so that the card reader sends the data directly to the PIC
where it is initially stored in 8 bit blocks but then parsed to 5 bit blocks to facilitate error
checking. The 5 bit block size was needed because the data and the parity bits are encoded as a
function of 5 bits on the magnetic strip.

Deciding whether or not we needed the FPGA to act as a middleman in the data transmission
was one of the most difficult aspects of this project. The FPGA was ultimately eliminated as an
intermediate step in data transmission because it proved to be an unnecessary step that would
lead to substantially more Verilog code that needed to be written and debugged. We originally
planned on using the FPGA to resolve timing issues with data transmission. We thought it might
be necessary to slow down the transmission of the data in order for it to be received and stored
correctly by the PIC. However, testing the card reader with the PIC directly proved otherwise,
once the settings for slave mode were correct. Since the initial Verilog code written to support
the use of the FPGA in this manner was riddled with bugs that had already consumed many
hours in simulation and debugging, we decided to simply take it out. Therefore, since the card
reader could be interfaced with the PIC directly and reliably, the FPGA was eliminated to avoid
lots of unnecessary code as well as the opportunity for more errors to arise.

Another difficult aspect of our design process was getting the PIC properly set up for slave serial
transmission. Because we had only previously used the PIC in master mode when doing serial
transmission, we had to learn on our own how to use the PIC in slave serial mode. Part of the
reason we had trouble getting it to work was because the PIC we were using was slightly faulty.
We discovered this by using two PICs, one configured in master mode sending data to the other
configured in slave mode. We watched the different signals on the digital oscilloscope and
noticed that the serial clock signal would get irregular when using one of the PICs in slave mode
but would look uniform and as we would expect when using the other PIC. Replacing the faulty
PIC allowed us to configure the PIC properly so that we could send and receive test data
correctly and verify that the slave serial mode on the PIC works as expected.

Another problem we encountered was a bug in the debugging program of MPLAB. The window
used to watch the EEPROM registers while running and debugging the program does not update
and show the current contents of the EEPROM. It simply shows FF as the contents of every
EEPROM register. This at first led us to believe that we weren’t writing to the EEPROM
correctly but upon trying to read from the EEPROM we would get the correct value we stored,
indicating our writing algorithm was indeed correct. Therefore, in one phase of our design and

 12

testing, we had to resort to writing a loop that would rewrite the contents of the EEPROM
registers to data RAM so that we could see its contents.

The system is ready to stand alone independent of the computer. The Verilog code was burned
onto the external EEPROM and the PIC assembly code was downloaded onto the PIC so that as
soon as the board is hooked up to a power supply, it is ready to go. Since the programmed data
is stored in the PIC’s EEPROM, it is still there even after powering down and back up so that the
system doesn’t need to be reprogrammed if the user doesn’t wish to do so.

In the end, we are very pleased with the final outcome of our project. It in fact works better than
we had anticipated. In addition to the initial system we had proposed, we incorporated a few
extra features. We implemented multiple users so that the system can currently support up to
four different cards. We also did some parity checking in the data which allowed us to cut down
on the amount of data stored since we could eliminate the leading and trailing bits before and
after the begin and end sequences in the data; this greatly facilitated comparing. In doing the
parsing and parity checking we were constraining ourselves to cards that conform to the
ANSI/ISO Track 2 BCD standard [3], but since almost all cards we checked conformed to this,
with the exception of a copy card and a calling card, this was not a problem. The parity checking
allowed us to be able to distinguish between an invalid card and a badly swiped card. When a
card is simply swiped poorly so that there is an error in the data transmitted, a red led is lit
indicating that it was a bad swipe so that the user knows to simply swipe again. This means that
when a valid card is swiped, only the “Cards Match” or “Invalid Swipe” LEDs will ever be lit
and a “Cards Don’t Match” shouldn’t ever be produced.

 13

REFERENCES

[1] MagTek Magnetic Card Reader Products,

http://www.magtek.com/prod_guide/cards/SwipeInsert/SwipeInsert.html

[2] MagTek Card Reader Technical Manual,

http://www.magtek.com/documentation/public/99821101-6.pdf

[3] Magnetic Card Information: ANSI/ISO BCD Data Encoding,

http://www.hhhh.org/~joeboy/EE/hardware/magcards/trackdata_ANSI-ISO_BCD.html

PARTS LIST

Part Source Vendor Part # Price

101-MILLIMETER

COMPATIBLE
SWIPE READER

MagTek 21050004 < $10 Used *

* We obtained ours from a fellow student but similar ones can be purchased used for less than
$10 from www.allelectronics.com

http://www.magtek.com/prod_guide/cards/SwipeInsert/SwipeInsert.html
http://www.magtek.com/documentation/public/99821101-6.pdf
http://www.hhhh.org/~joeboy/EE/hardware/magcards/trackdata_ANSI-ISO_BCD.html
http://www.allelectronics.com

 14

Appendix A: FPGA Control Signals Module

module fpga_control(code_switch, user_switch, mode, user);

 input [7:0] code_switch;
 input [3:0] user_switch;

 output mode;
 output [3:0] user;

 code code(code_switch, mode);
 user user(user_switch, user);

endmodule

 15

Appendix B: User Module

module user(s,user);
 input [3:0] s;
 output [3:0] user;

 reg [3:0] user;

 always @ (s)
 case (s)
 4'b0001: user <= s;
 4'b0010: user <= s;
 4'b0100: user <= s;
 4'b1000: user <= s;
 default: user <= 0;
 endcase

endmodule

 16

Appendix C: Program Mode Module

module code(s, q);
 input [7:0] s;
 output q;

 assign q = s[7] & ~s[6] & s[5] & ~s[4] & s[3] & ~s[2] & s[1] & ~s[0];

endmodule

 17

Appendix D: PIC Assembly Code

; CardReader5.asm
; Updated December 7, 2003 by kkelley@hmc.edu and kmlee@hmc.edu
; Most code is based on smaller test code
; Places serial input into data EEPROM when in program mode.
; Places serial input into data RAM when in compare mode.
; Allows Multiple Users To Store Card Data in EEPROM
; Compares data RAM values with those stored in data EEPROM memory.
; Uses Parity Bit Error Checking to Distinguish Between Bad Swipe and Wrong
; Card

; Use the 18F452 PIC microprocessor
 LIST p=18F452
 include "p18f452.inc"

; define variables

DDATA EQU 0x00 ; start of data in data memory
DDATAEND EQU 0x01
DDATA_TRUE EQU 0x0D
DDATAEND_TRUE EQU 0x0E
EDATA EQU 0x02 ; start of data in program memory
EDATAEND EQU 0x03

EDATAEND0 EQU 0xC0
EDATAEND1 EQU 0xC1
EDATAEND2 EQU 0xC2
EDATAEND3 EQU 0xC3

USER EQU 0x13
USERTEMP EQU 0x14

matchCounter EQU 0xD0
counter1 EQU 0xD1
counter2 EQU 0xD2
blinkCount EQU 0xD3

; define constants
EDATA0 EQU 0x00
EDATA1 EQU 0x30
EDATA2 EQU 0x60
EDATA3 EQU 0x90

blinkDur EQU 0x0A

; subroutine variables

INDEX1 EQU 0x04
INDEX2 EQU 0x05
INDEX3 EQU 0x06
DUR EQU 0x07
DURIND EQU 0x08
PARITY EQU 0x09
BITPOINTER EQU 0x0A

mailto:kkelley@hmc.edu
mailto:kmlee@hmc.edu

 18

CHARCOUNTER EQU 0x0B
CURRENTCHAR EQU 0x0C

; subroutine constants

INSA EQU 0xFA ; 250 decimal
INSB EQU 0xC7 ; 199 decimal

; begin main program
 org 0

main:

 clrf TRISA ; set PORTA as output
 clrf PORTA

 movlw 0x20
 movwf DDATA ; set beginning address in data mem

 movlw 0x50
 movwf DDATA_TRUE ; set beginning address of actual encoded bytes

 movlw 0x00
 movwf EDATA ; set beginning address in EEPROM

 clrf TRISB ; set all A ports as Output
 clrf PORTB ; initially turn OFF all LEDs

 bsf PORTB, 4 ; indicate ignition is disabled

 movlw 0x1B
 movwf TRISC ; enable SCK(4) and SDI(3) and CardPresent(1)
 ; and Program/Compare(0)

 bcf TRISD, 4 ; enable bad swipe output LED
 clrf PORTD

 bcf TRISD, 6 ; enable bad swipe output LED
 clrf PORTD

 movlw 0x35
 movwf SSPCON1 ; enable serial ports, slave mode, SS pin
 ; control disabled, clk idle high

 movlw 0x00
 movwf SSPSTAT ; clear SMP for slave mode, transmit on rising
 ; edge to ensure data quality

waiting:

 btfsc PORTC, 0 ; check Program/Compare mode
 bra userCheck
 bra cont

userCheck:

 call user ; determine which user

 19

 btfsc PORTD, 6 ; check if error
 bra userCheck

cont: btfsc PORTC, 0 ; check Program/Compare mode
 ; => indicate with LEDs
 bra programModeOn
 bcf PORTB, 0 ; turn off yellow LED if in compare mode
 bra stillWaiting

; determine which user and assign appropriate start locations in memory

user:
 btfsc PORTD, 0
 bra user0
 btfsc PORTD, 1
 bra user1
 btfsc PORTD, 2
 bra user2
 btfsc PORTD, 3
 bra user3
 bra invalid

user0:
 movlw 0x00
 movwf USER
 movlw EDATA0
 bra storeMemStart

user1:
 movlw 0x01
 movwf USER
 movlw EDATA1
 bra storeMemStart

user2:
 movlw 0x02
 movwf USER
 movlw EDATA2
 bra storeMemStart

user3:
 movlw 0x03
 movwf USER
 movlw EDATA3

storeMemStart:

 movwf EDATA
 bcf PORTD, 6 ; turn off error led
 return

invalid:

 bsf PORTD, 6 ; turn on error led
 return

 20

programModeOn:

 bsf PORTB, 0 ; turn on yellow LED if in program mode

stillWaiting:

 bsf PORTB, 5 ; show that system is waiting for input
 btfsc PORTC, 1 ; poll CardPresent, wait until a card is being
swiped
 bra waiting
 bra initializeSend

; STORE card swipes in data RAM

initializeSend:

 bcf PORTB, 5 ; system is no longer waiting for input
 movf DDATA, 0
 movwf FSR0L

store:

 btfsc PORTC, 1 ; check CardPresent
 bra sendDone

 btfss SSPSTAT, 0 ; poll BF bit of SSPSTAT
 bra store
 movf SSPBUF, 0 ; load the received data into WREG
 movwf INDF0 ; store received data in data memory
 incf FSR0L ; increment the indirect pointer
 bra store

sendDone:

 movlw 0x01 ; store 1 in WREG
 subwf FSR0L, 0 ; subtract 1 from stored data RAM address
 movwf DDATAEND ; store end of RAM data address

 bcf SSPCON1, 5 ; temporarily disable Serial Mode
 movlw 0x15
 movwf SSPCON1
 bsf SSPCON1, 5 ; re-enable Serial Mode

beginCheckParity:

 movff DDATA, FSR0L ; start at beginning of Data
 movff DDATA_TRUE, FSR1L

 clrf PARITY ; clear parity register
 movlw 0x07
 movwf BITPOINTER ; initialize bit pointer register to 7
 clrf CHARCOUNTER ; clear character counter register
 clrf CURRENTCHAR

 21

findStart0:

continueParity0:

 ; check for full byte character count (5)

 movlw 0x05
 cpfseq CHARCOUNTER
 bra checkBit70
 bra checkforStart0

checkforStart0:

 ; check for start of data sentinel

 movlw 0x05 ; place start sentinel into WREG
 cpfseq CURRENTCHAR
 bra notFoundYet0
 bra foundStart0

notFoundYet0:
 decf CHARCOUNTER ; decrease CHARCOUNTER by 1 so it will
 ; be 5 next time it is increased

 ; check for end of data

 movf DDATAEND, 0 ; move end of data address into WREG
 cpfseq FSR0L
 bra checkBit70 ; still bits left to be checked
 bra lastPICByte0

lastPICByte0:
 movlw 0x04
 cpfslt BITPOINTER
 bra checkBit70
 bra invalidRead ; no start sentinel found!!!

checkBit70:
 movlw 0x07
 cpfseq BITPOINTER
 bra checkBit60
 bra examineBit70

checkBit60:
 movlw 0x06
 cpfseq BITPOINTER
 bra checkBit50
 bra examineBit60

checkBit50:
 movlw 0x05
 cpfseq BITPOINTER
 bra checkBit40
 bra examineBit50

checkBit40:

 22

 movlw 0x04
 cpfseq BITPOINTER
 bra checkBit30
 bra examineBit40

checkBit30:
 movlw 0x03
 cpfseq BITPOINTER
 bra checkBit20
 bra examineBit30

checkBit20:
 movlw 0x02
 cpfseq BITPOINTER
 bra checkBit10
 bra examineBit20

checkBit10:
 movlw 0x01
 cpfseq BITPOINTER
 bra checkBit00
 bra examineBit10

checkBit00:
 movlw 0x00
 cpfseq BITPOINTER
 bra checkBitEnd0
 bra examineBit00

checkBitEnd0:
 incf FSR0L
 movlw 0x07
 movwf BITPOINTER ; initialize bit pointer register to 7
 bra checkBit70

examineBit00:
 btfss INDF0, 0
 bra addZero0
 bra addOne0

examineBit10:
 btfss INDF0, 1
 bra addZero0
 bra addOne0

examineBit20:
 btfss INDF0, 2
 bra addZero0
 bra addOne0

examineBit30:
 btfss INDF0, 3
 bra addZero0
 bra addOne0

examineBit40:
 btfss INDF0, 4

 23

 bra addZero0
 bra addOne0

examineBit50:
 btfss INDF0, 5
 bra addZero0
 bra addOne0

examineBit60:
 btfss INDF0, 6
 bra addZero0
 bra addOne0

examineBit70:
 btfss INDF0, 7
 bra addZero0
 bra addOne0

addZero0:
 decf BITPOINTER
 incf CHARCOUNTER
 rlncf CURRENTCHAR, 1
 bcf CURRENTCHAR, 5
 bra continueParity0

addOne0:
 decf BITPOINTER
 incf CHARCOUNTER
 rlncf CURRENTCHAR, 1
 bsf CURRENTCHAR, 0
 bcf CURRENTCHAR, 5
 bra continueParity0

foundStart0:
 movff CURRENTCHAR, INDF1
 incf FSR1L
 clrf CHARCOUNTER
 clrf CURRENTCHAR

continueParity:

 ; check for full byte character count (5)

 movlw 0x05
 cpfseq CHARCOUNTER
 bra checkBit7
 bra checkParity

checkParity:

 ; check for end of data

 movlw 0x00 ; place end sentinel into WREG
 cpfseq CURRENTCHAR
 bra notAtEnd
 bra endOfData

 24

notAtEnd:
 clrf CHARCOUNTER
 btfss PARITY, 0
 bra evenParity
 bra oddParity

checkBit7:
 movlw 0x07
 cpfseq BITPOINTER
 bra checkBit6
 bra examineBit7

checkBit6:
 movlw 0x06
 cpfseq BITPOINTER
 bra checkBit5
 bra examineBit6

checkBit5:
 movlw 0x05
 cpfseq BITPOINTER
 bra checkBit4
 bra examineBit5

checkBit4:
 movlw 0x04
 cpfseq BITPOINTER
 bra checkBit3
 bra examineBit4

checkBit3:
 movlw 0x03
 cpfseq BITPOINTER
 bra checkBit2
 bra examineBit3

checkBit2:
 movlw 0x02
 cpfseq BITPOINTER
 bra checkBit1
 bra examineBit2

checkBit1:
 movlw 0x01
 cpfseq BITPOINTER
 bra checkBit0
 bra examineBit1

checkBit0:
 movlw 0x00
 cpfseq BITPOINTER
 bra checkBitEnd
 bra examineBit0

checkBitEnd:

 25

 incf FSR0L
 movlw 0x07
 movwf BITPOINTER ; initialize bit pointer register to 7
 bra checkBit7

examineBit0:
 btfss INDF0, 0
 bra addZero
 bra addOne

examineBit1:
 btfss INDF0, 1
 bra addZero
 bra addOne

examineBit2:
 btfss INDF0, 2
 bra addZero
 bra addOne

examineBit3:
 btfss INDF0, 3
 bra addZero
 bra addOne

examineBit4:
 btfss INDF0, 4
 bra addZero
 bra addOne

examineBit5:
 btfss INDF0, 5
 bra addZero
 bra addOne

examineBit6:
 btfss INDF0, 6
 bra addZero
 bra addOne

examineBit7:
 btfss INDF0, 7
 bra addZero
 bra addOne

addZero:
 decf BITPOINTER
 incf CHARCOUNTER
 rlncf CURRENTCHAR, 1
 bra continueParity

addOne:
 decf BITPOINTER
 incf CHARCOUNTER
 incf PARITY
 rlncf CURRENTCHAR, 1
 bsf CURRENTCHAR, 0

 26

 bra continueParity

evenParity:
 ; VALID BYTE!
 ; continue checking parity

 clrf PARITY
 movff CURRENTCHAR, INDF1
 incf FSR1L
 clrf CURRENTCHAR

 bra continueParity

oddParity:

 ; BYTE NOT VALID!
 ; indicate invalid read

 clrf CURRENTCHAR

 bra invalidRead

invalidRead:
 bsf PORTD, 4
 call oneSecDelay
 call oneSecDelay
 bcf PORTD, 4

 bra waiting

endOfData:

 ; store END sentinel

 movff CURRENTCHAR, INDF1
 incf FSR1L
 clrf CHARCOUNTER
 clrf CURRENTCHAR
 ; store one more 5 bit byte (LRC Character)

continueParity1:

 ; check for full byte character count (5)

 movlw 0x05
 cpfseq CHARCOUNTER
 bra checkBit71
 bra checkParity1

checkParity1:

 ; store final LRC Character

 movff CURRENTCHAR, INDF1
 movff FSR1L, DDATAEND_TRUE

 27

 bra allDataStored

checkBit71:
 movlw 0x07
 cpfseq BITPOINTER
 bra checkBit61
 bra examineBit71

checkBit61:
 movlw 0x06
 cpfseq BITPOINTER
 bra checkBit51
 bra examineBit61

checkBit51:
 movlw 0x05
 cpfseq BITPOINTER
 bra checkBit41
 bra examineBit51

checkBit41:
 movlw 0x04
 cpfseq BITPOINTER
 bra checkBit31
 bra examineBit41

checkBit31:
 movlw 0x03
 cpfseq BITPOINTER
 bra checkBit21
 bra examineBit31

checkBit21:
 movlw 0x02
 cpfseq BITPOINTER
 bra checkBit11
 bra examineBit21

checkBit11:
 movlw 0x01
 cpfseq BITPOINTER
 bra checkBit01
 bra examineBit11

checkBit01:
 movlw 0x00
 cpfseq BITPOINTER
 bra checkBitEnd1
 bra examineBit01

checkBitEnd1:
 incf FSR0L
 movlw 0x07
 movwf BITPOINTER ; initialize bit pointer register to 7
 bra checkBit71

 28

examineBit01:
 btfss INDF0, 0
 bra addZero1
 bra addOne1

examineBit11:
 btfss INDF0, 1
 bra addZero1
 bra addOne1

examineBit21:
 btfss INDF0, 2
 bra addZero1
 bra addOne1

examineBit31:
 btfss INDF0, 3
 bra addZero1
 bra addOne1

examineBit41:
 btfss INDF0, 4
 bra addZero1
 bra addOne1

examineBit51:
 btfss INDF0, 5
 bra addZero1
 bra addOne1

examineBit61:
 btfss INDF0, 6
 bra addZero1
 bra addOne1

examineBit71:
 btfss INDF0, 7
 bra addZero1
 bra addOne1

addZero1:
 decf BITPOINTER
 incf CHARCOUNTER
 rlncf CURRENTCHAR, 1
 bra continueParity1

addOne1:
 decf BITPOINTER
 incf CHARCOUNTER
 incf PARITY
 rlncf CURRENTCHAR, 1
 bsf CURRENTCHAR, 0
 bra continueParity1

 29

allDataStored:

 btfss PORTC, 0 ; check Program / Compare mode
 bra compareOuter ; Enter Compare mode
 bra program ; Enter Program mode

; COMPARE MOST RECENT SWIPE WITH DATA STORED IN EEPROM

compareOuter:

 clrf USERTEMP

compare:

 movff DDATA_TRUE, FSR0L

checkUser0:
 movlw 0x00
 cpfseq USERTEMP
 bra checkUser1

 movlw EDATAEND0
 movwf EEADR
 bcf EECON1, EEPGD ; point to DATA memory
 bcf EECON1, CFGS ; access program flash OR data EEPROM
 bsf EECON1, RD ; EEPROM read

 movff EEDATA, EDATAEND

 movlw EDATA0
 movwf EEADR
 bra keepComparing

checkUser1:
 movlw 0x01
 cpfseq USERTEMP
 bra checkUser2

 movlw EDATAEND1
 movwf EEADR
 bcf EECON1, EEPGD ; point to DATA memory
 bcf EECON1, CFGS ; access program flash OR data EEPROM
 bsf EECON1, RD ; EEPROM read

 movff EEDATA, EDATAEND
 movlw EDATA1
 movwf EEADR
 bra keepComparing

checkUser2:
 movlw 0x02
 cpfseq USERTEMP
 bra checkUser3

 movlw EDATAEND2

 30

 movwf EEADR
 bcf EECON1, EEPGD ; point to DATA memory
 bcf EECON1, CFGS ; access program flash OR data EEPROM
 bsf EECON1, RD ; EEPROM read

 movff EEDATA, EDATAEND
 movlw EDATA2
 movwf EEADR
 bra keepComparing

checkUser3:
 movlw 0x03

 movlw EDATAEND3
 movwf EEADR
 bcf EECON1, EEPGD ; point to DATA memory
 bcf EECON1, CFGS ; access program flash OR data EEPROM
 bsf EECON1, RD ; EEPROM read

 movff EEDATA, EDATAEND
 movlw EDATA3
 movwf EEADR

 bra keepComparing

keepComparing:

 bcf EECON1, EEPGD ; point to DATA memory
 bcf EECON1, CFGS ; access program flash OR data EEPROM
 bsf EECON1, RD ; EEPROM read
 movf EEDATA, 0 ; store EEPROM data into WREG

 cpfseq INDF0 ; compare EEPROM data with current data
 bra different
 incf EEADR
 incf FSR0L

 movf EDATAEND, 0 ; checks if at end of data in EEPROM
 ; memory
 cpfsgt EEADR
 bra keepComparing

 bra endCompare

different:

 ; CARDS DON'T MATCH
 ; check next user
 ; output proper signal
 ; quit comparing if all 4 users have been checked

 ; car doesn't start

 incf USERTEMP
 movlw 0x03
 cpfsgt USERTEMP

 31

 bra compare
 bra noUserMatch

noUserMatch:

 clrf blinkCount

RedBlink:
 movlw 0x01
 addwf blinkCount
 movlw blinkDur
 cpfseq blinkCount
 bra RedBlinkCont
 bra red

RedBlinkCont:
 btg PORTB, 2
 call delay
 bra RedBlink

red:
 bcf PORTB, 2
 bra waiting

endCompare:

 ; CARDS MATCH!
 ; output proper signal
 ; car does start

 bcf PORTB, 4
 clrf matchCounter

 bsf PORTB, 3

 clrf blinkCount

GreenBlink:
 movlw 0x01
 addwf blinkCount
 movlw blinkDur
 cpfseq blinkCount
 bra GreenBlinkCont
 bra green

GreenBlinkCont:
 btg PORTB, 1
 call delay
 bra GreenBlink

green:
 bcf PORTB, 1
 call oneSecDelay
 movlw 0x01
 addwf matchCounter
 movlw 0x05

 32

 cpfseq matchCounter
 bra green
 bcf PORTB, 3
 bsf PORTB, 4

 bra waiting

; PROGRAM THE MASTER CARD IN EEPROM MEMORY

program:
 movff EDATA, EEADR ; Initialize EEPROM starting address
 movff DDATA_TRUE, FSR0L ; Set indirect address pointer to
 ; beginning of DataRAM

writeByte: ; EEPROM WRITE SEQUENCE

 movff INDF0, EEDATA ; byte to be stored in EEPROM

 bcf EECON1, 7 ; bit 7 = EEPGD (point to data EEPROM memory)
 bcf EECON1, 6 ; bit 6 = CFGS (access data EEPROM memory)
 bsf EECON1, 2 ; bit 2 = WREN (enable writes)

 bcf INTCON, 7 ; bit 7 = GIE (disable interrupts)
 movlw 0x55
 movwf EECON2 ; write 55h
 movlw 0xAA
 movwf EECON2 ; write AAh
 bsf EECON1, 1 ; bit 1 = WR (begin write, cleared when done)

loop1:
 btfsc EECON1, 1 ; poll WR bit for writing to be done
 bra loop1

 movf FSR0L, 0
 cpfseq DDATAEND_TRUE ; check to see if last byte has been
 ; written to EEPROM
 bra keepWriting ; continue writing
 bra writeDone ; done writing to EEPROM

keepWriting:
 incf EEADR ; increment address
 incf FSR0L
 bra writeByte

writeDone:
 bcf EECON1, WREN ; full transfer to EEPROM done, disable
writes

setEnd0:
 movlw 0x00
 cpfseq USER
 bra setEnd1

 movff EEADR, EEDATA ; byte to be stored in EEPROM
 movlw EDATAEND0

 33

 movwf EEADR

 bcf EECON1, 7 ; bit 7 = EEPGD (point to data EEPROM memory)
 bcf EECON1, 6 ; bit 6 = CFGS (access data EEPROM memory)
 bsf EECON1, 2 ; bit 2 = WREN (enable writes)

 bcf INTCON, 7 ; bit 7 = GIE (disable interrupts)
 movlw 0x55
 movwf EECON2 ; write 55h
 movlw 0xAA
 movwf EECON2 ; write AAh
 bsf EECON1, 1 ; bit 1 = WR (begin write, cleared when done)

loop10:
 btfsc EECON1, 1 ; poll WR bit for writing to be done
 bra loop10

 bra waiting

setEnd1:
 movlw 0x01
 cpfseq USER
 bra setEnd2

 movff EEADR, EEDATA ; byte to be stored in EEPROM
 movlw EDATAEND1
 movwf EEADR

 bcf EECON1, 7 ; bit 7 = EEPGD (point to data EEPROM memory)
 bcf EECON1, 6 ; bit 6 = CFGS (access data EEPROM memory)
 bsf EECON1, 2 ; bit 2 = WREN (enable writes)

 bcf INTCON, 7 ; bit 7 = GIE (disable interrupts)
 movlw 0x55
 movwf EECON2 ; write 55h
 movlw 0xAA
 movwf EECON2 ; write AAh
 bsf EECON1, 1 ; bit 1 = WR (begin write, cleared when done)

loop11:
 btfsc EECON1, 1 ; poll WR bit for writing to be done
 bra loop11

 bra waiting

setEnd2:
 movlw 0x02
 cpfseq USER
 bra setEnd3

 movff EEADR, EEDATA ; byte to be stored in EEPROM
 movlw EDATAEND2
 movwf EEADR

 bcf EECON1, 7 ; bit 7 = EEPGD (point to data EEPROM memory)
 bcf EECON1, 6 ; bit 6 = CFGS (access data EEPROM memory)
 bsf EECON1, 2 ; bit 2 = WREN (enable writes)

 34

 bcf INTCON, 7 ; bit 7 = GIE (disable interrupts)
 movlw 0x55
 movwf EECON2 ; write 55h
 movlw 0xAA
 movwf EECON2 ; write AAh
 bsf EECON1, 1 ; bit 1 = WR (begin write, cleared when done)

loop12:
 btfsc EECON1, 1 ; poll WR bit for writing to be done
 bra loop12

 bra waiting

setEnd3:
 movlw 0x03

 movff EEADR, EEDATA ; byte to be stored in EEPROM
 movlw EDATAEND3
 movwf EEADR

 bcf EECON1, 7 ; bit 7 = EEPGD (point to data EEPROM memory)
 bcf EECON1, 6 ; bit 6 = CFGS (access data EEPROM memory)
 bsf EECON1, 2 ; bit 2 = WREN (enable writes)

 bcf INTCON, 7 ; bit 7 = GIE (disable interrupts)
 movlw 0x55
 movwf EECON2 ; write 55h
 movlw 0xAA
 movwf EECON2 ; write AAh
 bsf EECON1, 1 ; bit 1 = WR (begin write, cleared when done)

loop13:
 btfsc EECON1, 1 ; poll WR bit for writing to be done
 bra loop13

 bra waiting

oneSecDelay:

; a subroutine that takes approx 1 second to execute

 clrf INDEX1

for1: ; repeat for INSA iterations
 movlw INSA
 cpfslt INDEX1
 bra break1
 incf INDEX1

 incf INDEX3
 incf INDEX3

 clrf INDEX2

 35

 movlw INSB

for2: ; repeat for INSB iterations
 cpfslt INDEX2
 bra break2
 incf INDEX2

 incf INDEX3
 incf INDEX3
 incf INDEX3
 incf INDEX3
 incf INDEX3

 bra for2
break2:
 bra for1

break1:

 return

; a subroutine that takes approx .125 second to execute

delay: movlw 0x00
 movwf counter1
 movwf counter2

dloop1:
 movf counter1, 0
 sublw 0x19
 bz done
 incf counter1
 clrf counter2

dloop2:
 movf counter2, 0
 sublw 0xFA
 bz dloop1
 nop
 nop
 nop
 nop
 incf counter2
 bra dloop2

done: return

 end

