
A Bomb Controller

Microprocessor-Based Systems (E155)

Final Project Report

Eric Angell

<eoa@cs.hmc.edu>

Matt Livianu

<mlivianu@cs.hmc.edu>

December 15, 2003

Abstract

A bomb controller integrates several different interesting systems, including timing and tam-
per protection. We present a controller implemented in an easy-to-carry metal toolbox with a
cost of approximately $100 and 100 hours.

Contents

1 Overview 1

2 Background 1

3 Implementation 1
3.1 PIC Micro-controller . 1

3.1.1 Initialization . 2
3.1.2 Main Program Loop . 2
3.1.3 Timer1/CCP1 . 2
3.1.4 Interrupts . 2
3.1.5 Serial Peripheral Interface . 3
3.1.6 Main Program Functions . 3
3.1.7 Miscellaneous Functions . 3

3.2 FPGA . 4
3.2.1 Keypad . 4
3.2.2 SPI . 5
3.2.3 Display . 6

3.3 Case . 6

4 Lessons Learned 7
4.1 Relative Clock Speed . 7
4.2 Tamper Protection . 7

i

5 Results 7

A Parts List 9

B PIC Behavior 9
B.1 Program Flow . 9
B.2 Assembly Code . 10

C FPGA Behavior 28
C.1 Block Diagrams . 28
C.2 Verilog . 29

C.2.1 main.v . 29
C.2.2 bombspi.v . 30
C.2.3 keypadpoll.v . 32
C.2.4 display.v . 34
C.2.5 sevenseg.v . 36
C.2.6 divclk.v . 37
C.2.7 edgepulse.v . 37
C.2.8 flop.v . 39
C.2.9 sync.v . 39

List of Figures

1 Miscellaneous Component Schematics . 4
2 Matrix Keypad Schematic . 5
3 Seven-Segment Display Schematic . 6
4 PIC Program Flow . 9
5 FPGA Overview . 28
6 FPGA SPI Overview . 29

ii

1 Overview

We designed and built a bomb controller using
the PIC 18F452 Micro-controller and Xilinx Spar-
tan XCS10-3PC84C FPGA on the E155 utility
board (SMPS 1.0). Our controller features the
following components:

• 4 seven-segment displays

• 4x4 matrix keypad

• Customizable security code

• User-defined countdown timer

• Tamper protection

• Bomb detonation output pin/indicator LED

• Piezoelectric buzzer to indicate both key
presses and detonation

The FPGA handles the I/O, polling the key-
pad for input and acting as the display driver for
the seven-segment displays. The micro-controller
acts as the brain, handling the security code,
countdown timer, buzzer, output LED, and tam-
per switch. The two chips communicate via Se-
rial Peripheral Interface (SPI) with the PIC as
the master device.

2 Background

Much of the logic in a bomb controller has a
variety of other uses. Such a controller is es-
sentially a combination of alarm clock, keypad
security system, tamper detection system, and
external event triggering system. In brainstorm-
ing our project proposal, we entertained the idea
of an alarm clock by itself, but we wanted to
create something with more functionality; ideal
would be a device that could not be readily pur-
chased and could potentially be easily leveraged
to create other interesting applications. With
relatively minor modifications, portions of our
controller can be adapted to become an elec-
tronic keypad-based door lock, door alarm sys-
tem, light timer, alarm clock, or several other
similar devices.

It should be stressed that this project has no
malicious intent and is simply an interesting aca-
demic exercise. While it is theoretically possible
to trigger an explosive device with our controller,
neither of us can support this as a wise idea. Re-
gardless of its functionality, the stability of our
assembly code is somewhat questionable, at least
as regards actual use controlling explosives.

3 Implementation

Both the PIC assembly code and the FPGA Ver-
ilog represent significant amounts of effort, and
significant complexity. We will examine here in
detail the implementation of the project in its
final form, as demonstrated in class.

3.1 PIC Micro-controller

Being that both of us are receiving degrees in
computer science rather than engineering, we have
several years of high-level coding under our belts,
but only a moderate amount of assembly. As
such, we find it more natural to think at a high
level, and our code reflects that. While we re-
spect the need to define our own calling conven-
tions, we exhibit what is perhaps a gratuitous use
of functions for PIC assembly. While it may have
made sense to implement our code in C rather
than assembly, we believe that the overhead in-
volved in learning how to use and debug C in the
MPLAB IDE would have negated any of its ben-
efits, especially considering our use of interrupts.
Our code is separated into several distinct

portions to handle various states, and is mainly
event driven, busy-waiting in the main loop until
new input becomes available. A timer interrupt
is triggered every quarter second, at which time
the countdown is potentially decremented, new
input is potentially received, and the display is
updated. The main program loop then proceeds
to act on the newly available input, busy-waiting
in various functions which require more input be-
fore they can return to the default state of main.
An interrupt is also triggered when the tamper-

protection circuit is disturbed, at which point the

1

state of the bomb is checked (armed?) before de-
ciding to ignore the event or explode.
As with most any software, more debugging

would be useful, but things appear to behave
normally most of the time. The system at least
functions well enough to demonstrate success-
fully, though it should again be stressed that
this should not be treated as production-quality
code.
Useful in understanding the code will be the

flowchart in figure 4.

3.1.1 Initialization

When the PIC first starts running, it initializes
all of the necessary registers. It first sets SCK
and SDO as output so that it can send informa-
tion to the FPGA, and sets SDI as input, so that
it can receive data from the FPGA. It sets pin 2
on Port B as input for the FPGA interrupt re-
quest and sets pin 4 on Port B as input for the
tamper protection circuit interrupt. It also sets
pins 0 and 7 on port D as output for the serial ac-
knowledge pin and the explosion indication LED
output.
The PIC then initializes Timer 1 to a pre-

scale of 1:4, using Fosc/4 and turns the timer
on. It sets the CCP interrupt to 1/4 of a sec-
ond, sets the default security code of 1-2-3-4 and
clears all of the flags. The next step is to initial-
ize the SPI as master with an Fosc/64 pre-scale
setting and to indicate transmission of data on
the rising edge of the clock. Next on the task
list is interrupts. The Pic initializes global, pe-
ripheral, and port B interrupts only and disables
priority interrupts.
Finally, it sends the FPGA the data to dis-

play “OFF” to the user.

3.1.2 Main Program Loop

Once in the main loop, the PIC checks only for a
few key presses, ignoring all others. If no new key
was pressed, main busy-waits. If the main loop
finds that the newinput flag has been set, then
it checks the contents of the inputbuffer which
stores new key presses. If the bomb is armed,
the PIC only checks if the button pressed was

cancel. Otherwise, the PIC checks to see if the
button pressed was “cancel”, “code”, or “arm”
and branches to the appropriate operation rou-
tine.

3.1.3 Timer1/CCP1

Originally, Timer 1 counted up 1 second. Ev-
ery second, the CCP would compare positively
to the timer and would trigger an interrupt, at
which point the timer would be reset and other
actions taken if appropriate. We originally had
two interrupts, however: one interrupt for the
input, and one for the one-second timer. We
had problems with unwanted key bounces with
the keypad we used when the user pressed a key.
Our solution was to eliminate the input inter-
rupt. We decreased the timer interrupt wait
time to 1/4 second, and added a state machine
to record which quarter second the PIC was in.
This solution obviated the need for the second
interrupt, because we simply dealt with input
requests in the 1/4 second interrupt loop along
with any other appropriate actions. The 1/4 sec-
ond timer loop solved our key bounce problem,
as the user could only press a maximum of 4 keys
per second, rather than an undetermined number
of key presses which often resulted in unwanted
input.

3.1.4 Interrupts

When the timer counts up to 1/4 of a second, a
counter interrupt occurs. In this interrupt, the
timers are cleared, the timerstate is incremented,
or reset if the process was in the last state, and
the display function is called to send the con-
tents of DISPLAYHI and DISIPLAYLO to the
FPGA. If there is input waiting at the FPGA to
be sent, then the PIC goes to the input interrupt
function to receive that input. The contents of
the display registers are determined by various
flags. If the bomb armed flag is set, then the
timer is decremented and its value is moved into
the display registers. If there is less than one
minute left on the timer, then the display will be
sent blank or the counter value depending on the
current state. If the bomb is armed and the can-

2

cel button is pressed, the display will alternate
between the time and “CODE”. Furthermore, if
the old code flag is set, then the PIC alternates
between “olD” and “CODE”. Similarly, if the
code flag is set, then “CODE” is moved into the
display registers to be sent to the FPGA. After
checking the relevant flags, the PIC sends the
data to the FPGA over SPI and then checks if
the bomb has reached zero in its count, in which
case it branches to the explode operation.
The second interrupt which can occur is on

Port B and is triggered by the tamper protection
circuit on the bomb case. In the event of the
bomb case opening while the bomb is armed, a
connection is broken and the circuit triggers an
interrupt. The interrupt handler decides which
interrupt occurred and if it was the tamper pro-
tection circuit, then the bomb explodes. Unfor-
tunately, since the bomb protection circuit causes
an interrupt to occur, the explosion also occurs
within the interrupt and so we could not imple-
ment a ’reset’ key as we had desired.

3.1.5 Serial Peripheral Interface

All data between the PIC and the FPGA is sent
over the serial peripheral interface. Since the
PIC is the master of the SPI, the FPGA must
wait until the PIC acknowledges a request to
sent data before actually sending data. In order
to facilitate the sending of data over SPI both
from the PIC to FPGA and FPGA to PIC, a
sendssp function performs the sending of data.
The sendssp function starts sending the first byte
and then busy-waits until the data is done send-
ing, indicated by the buffer full (SSPSTAT, BF)
flag being raised. The function then sends the
second byte of data and returns.
The input interrupt routine is not really a

separate interrupt, but is called from the counter
interrupt. In this routine, the serial acknowl-
edge(SAC) pin is raised high, indicating to the
FPGA that the PIC is ready to receive the key
press data. The PIC then sends dummy data to
the FPGA and receives the key press over SPI,
which it saves in the inputbuffer. The input in-
terrupt routine then lowers SAC and returns to

the counter interrupt routine.

3.1.6 Main Program Functions

The op functions perform the major functions
for the PIC such as getting user input, setting
the appropriate flags, and generally running the
bomb controller. There are as many operation
functions as there are special operation keys on
the keypad, and this report discusses each of
them in turn.
The cancel operation checks to see if the bomb

is armed. If it is not, it branches back to main,
ignoring the key press. If the bomb is armed,
then it sets the cancel request flag and waits for
user input of the security code. After obtaining
the user input, it lets the nextaction routine take
care of the rest.
The arm bomb operation checks to see if the

arm flag is set. If it is, then it starts the count-
down timer. Otherwise, it sets the time flag,
displays “CODE”, and gets the user input of the
security code. After obtaining the user input, it
lets the nextaction routine take care of the rest.
The set code operation sets the old code flag

and gets the user input of the old code. After
obtaining the old code input from the user, it
branches to the nextaction routine.
The explode operation clears the armed flag,

turns on the explode red LED, turns on the piezo-
electric buzzer and then loops indefinitely. The
PIC must be reset in order to reset the bomb
and exit from this loop.

3.1.7 Miscellaneous Functions

Aside from the main loop, interrupts, and oper-
ation functions, there are many special functions
which are crucial to the correct operation of the
bomb controller.
The getuserinput function busy-waits until

the new input flag is set by the interrupt rou-
tine. It then checks to see if the input was “re-
turn”, “cancel”, any other button. If the input is
“enter”, then the routine returns with the enter
flag set. If input is “cancel”, then the routine
returns with the return flag cleared. Otherwise,
if the input was a number, calls the inputshiftreg

3

routine to input the new key press into the shift
register and loops back to wait for more input.
The nextaction function serves the purpose of

deciding what to do after the user has inputted
a code, whether or not the code is correct. If the
bomb has been armed and the code is correct
then the bomb is off. If the code is wrong, the
system simply continues to display the decreas-
ing countdown timer. If the time flag is set and
the code is correct, then the PIC branches to the
entertime function, which prompts the user for a
time and then sets that new time in the counter.
If the time flag is set and the code is wrong, then
the bomb is off. Otherwise, the code flag must
be set, and so if the code is correct, the PIC
branches to the enternewcode routine to request
a new security code from the user.
Another important function in the operation

of the bomb controller is the dectimer function
that decrements the timer by one each time it
is called. The interesting feature is that it takes
hexadecimal numbers and turns them into deci-
mal numbers as it counts down. The only time a
hex number is shown is when the user first inputs
the timer. At that point, the user can input a
time with up to 99 minutes and 99 seconds, even
though there are not 99 seconds in a minute. As
soon as the seconds timer reaches zero, it loops
back to 59. the dectimer function first checks to
see if decrementing the timer causes it to pro-
duce a negative number. If so, then the minutes
must have decreased by one and so the minutes
are decreased and the seconds are wrapped to
59. If the low counter has not reached zero, then
only the low counter has a chance at wrapping.
Other miscellaneous functions include the clear-

all function, which clears all of the flags, buffers,
and the sound, and tells the bomb to display
“off”. Finally, the many display functions sim-
ply serve to move the correct hexadecimal values
into the DISPLAYHI and DISPLAYLO registers
for transmission to the FPGA.

3.2 FPGA

The FPGA is the input/output driver for the
PIC. Its two main functions are to output infor-

RB4

Magnetic
Tamper Switch

1k

VCC
(+5V)

P35/
sck

RC3

RB2

Piezoelectric
buzzer

RD7
Explosion

indicator LED

Figure 1: The magnetic tamper switch, piezo-
electric buzzer, explosion LED, and serial clock
from RC3 to P35. Not shown is FPGA reset tied
to P26, one of the otherwise unused dip switches
on the board (and grounded when open).

mation on the four displays and input informa-
tion from the keyboard. To accomplish these
tasks it must support its third task, which is
bidirectional communication with the PIC. As
the comments in the main module describe, the
overview of the system is fairly simple.
First we slow the clock since we don’t need

to be running at 1 MHz and we don’t want our
display to flicker. We poll the keypad contin-
ually to observe key presses, and we store the
most recent one in an enabled flip-flop. We also
store in a flip-flop the fact that there is a new
key press which should be sent to the PIC; that
flop is part of the bombspi module which handles
all the communication with the PIC. We syn-
chronize the digits being returned from the SPI
logic because that logic runs on the serial clock
provided by the PIC. After that synchronization,
the digits go into yet more enabled flip-flops, and
the display module takes the output from those
flops to constantly keep the display updated.

3.2.1 Keypad

The keypadpoll module is pretty much the same
as what Eric created for lab 4, although the names
of some of the buttons have been changed. We
push one column high at a time, and check to
see if that causes any of the rows to go high
(if so, the button connecting that row with that
column is being pushed). When we get a but-

4

1 2 3

1k

4 5 6 Code

1k

7 8 9 Arm

1k

Enter 0 Cancel Reset

1k

P47/
row[3]

P46/
row[2]

P45/
row[1]

P44/
row[0]

P40/
column[0]

P39/
column[1]

P38/
column[2]

P37/
column[3]

Figure 2: The matrix keypad has a ribbon cable
running back to the breadboard to connect to
the pins; the resistors are on the breadboard as
well, and only the keypad is remote.

ton push, we pulse an enable signal high for one
clock cycle to indicate that the value we are out-
putting at that moment corresponds to a key
press. There is a fairly simple state machine that
handles the polling, and a fairly straightforward
always block that handles the digit output. See
appendix C.2.3.
One fairly major thing we changed from lab 4

was that we switched to the other style of key-
pad. In lab 4, both of us had used the new
red keypads, but they proved to be flaky enough
both then and in our initial use of them here that
we switched to one of the older keypads. The two
keypads have different bouncing characteristics,
but the keypadpoll module works despite those
differences. This is somewhat surprising when
combined with the fact that lab 4 used a 1 KHz
clock and that we use a 32 KHz clock in this
project (1 MHz divided by 32 rather than 2 MHz
divided by 2048). The keys have not proven com-
pletely bounce-free, but it works well enough to
at least demonstrate the device.
We have kept the digits 0–9 but renamed the

hexadecimal keys for this project. ‘A’ and ‘B’
have become ‘Enter’ and ‘Cancel’, respectively,
‘C’ has been left blank and doesn’t do anything,
and ‘D’ through ‘F’ are ‘Code’, ‘Arm’, and ‘Re-
set’.
The circuit to run the keypad (fig. 2) is fairly

simple. Since we expect the rows to be low unless
they are pulled high by a key press, we must en-
sure that they do not float when no key is being
held. Hence we tie each row to ground through
a resistor as well as connecting it to a pin on the
utility board.

3.2.2 SPI

The bombspi module (appendix C.2.2) takes the
serial communication pins from the PIC and cre-
ates a two-way conversation. However, the serial
clock must only have one master, so the FPGA
can’t drive it directly when it wants to send data.
To make bidirectional communication function,
we’ve created a Serial Request pin (srq, in the
Verilog) and a Serial Acknowledge pin (sac). The
request pin is pulled high by the FPGA when it
has data to be sent (actually, it’s the output of
a flop that gets set when a button is pushed and
reset after data is sent). The acknowledge pin
is pulled high by the PIC when it is ready to
receive said data. If sac is high and the PIC is
oscillating sck, we define it to be sending garbage
data while receiving good data from the FPGA.
Otherwise, if sac is low, we define the PIC to
be sending data to be displayed on the seven-
segments. Such data always comes in pairs, as
we use four bits to define each of the displays
and the PIC sends data in quantities of bytes.
When the FPGA sends key press data, it sends
four zero bits followed by four bits defining the
most recently pressed key.
The module begins with a state machine in

the form of a three bit counter. Since there are
eight bits to each byte the PIC sends, when this
counter is zero, we know we’re between bytes,
and that is when we can flush the shift register
to a flop or become eligible to start sending the
last key press. Actually, srq can be raised at any
time, but sac will only go high between bytes.
The always block in bombspi handles increment-
ing the counter each time we see a positive edge
of sck, and running the shift registers appropri-
ately. There is also a single bit of state taken
care of in the block to keep track of which digit
pair the current byte represents.

5

P56/
segment[6]

P57/
segment[5]

P60/
segment[4]

P59/
segment[3]

P58/
segment[2]

P50/
segment[1]

330
G

P51/
segment[0]

Digit 3 Digit 2 Digit 1 Digit 0

P48/
select[3]

4.7k

P49/
select[2]

4.7k

P62/
select[0]

4.7k

P61/
select[1]

4.7k

330
F

330
E

330
D

330
C

330
A

330
B

VCC
(+5V)

Figure 3: Four multiplexed seven-segment dis-
plays. All of the shown components are on a
remote board with a ribbon cable running back
to the breadboard to reach the FPGA pins on
the utility board.

The assign statements which follow the al-
ways block were first included in the block, and
caused nothing but trouble. Looking at the block
diagram of the Verilog synthesis, we slowly de-
termined several assignments which had to move
outside the block because there were too many
flip-flops in the data path, delaying the data. In
its final form, however, it is pretty straightfor-
ward and works almost exactly as advertised.

3.2.3 Display

Lab 3 required us to build a pair of multiplexed
seven-segment displays, but that only involved
a few lines of Verilog in the main module. In
order to drive our four displays in this project,

we created the display module to package ev-
erything up nicely. A four-state machine drives
each digit in turn for one clock cycle, running on
our 32 KHz main clock. We see a small amount
of bleed through with the clock that fast, but it
is not very noticeable with a reasonable amount
of ambient light present. We decided that the
other parts of the project more warranted our
time and energy so we didn’t seek to improve
this bleed through to surrounding digits. How-
ever, we did spend the energy to rewrite the basic
seven-segment display decoder in the style of the
Verilog tutorial in the lab manual, rather than
leave it in the complicated logic of lab 1 (sev-
enseg.v, appendix C.2.5).
In the final implementation in the toolbox,

the displays and accompanying resistors and tran-
sistors (see figure 3) are all mounted on a piece
of perf board attached to the case. In previ-
ous labs and in development of this controller,
the displays were on the breadboard right next
to the utility board. However, it is significantly
more usable if you can see the display from the
outside, next to the keypad. All that runs from
this remote board to the final breadboard is a
section of ribbon cable, one pin of which con-
nects to VCC, the rest of which connect directly
to pins on the utility board.
We only need to display decimal numbers for

our timer, but we wanted also to be able to
prompt the user for certain input. Hence we
changed our output driver so that ‘A’ and ‘B’
are instead blank and dash, respectively. The
rest of the letters remain useful, so we still have
‘C’ through ‘F’, and we use ‘0’ both as a digit
and a letter.

3.3 Case

To house our device, we purchased a toolbox
made out of sheet metal. With the help of a
Dremel and a cordless drill, we made several cuts
in the box and were successfully able to mount
everything we wanted. We cut a rectangular hole
in the top to fit the seven-segment displays and
drilled four holes around it with which to mount
the board to the inside. We had hoped that the

6

motherboard standoffs we had purchased would
work for the displays, but they were too long
so we created some standoffs out of several 4-
40 nuts and washers and a few reasonably long
screws. We cut another hole through which we
passed the pins of the keypad, but only barely
big enough to do so. Hence unscrewing the key-
pad will not give an attacker much more access
to the innards of the case. We also drilled a
hole to mount the explosion indicator LED. On
the inside, the two pieces of the magnetic switch
were attached with screws and adhesive, and the
battery was attached with poster mounts. The
breadboard and the wires were all held in place
by electrical tape. The buzzer is attached to the
wall of the case with a poster mount, and both
the poster mount and the case have small holes
in them, in an attempt to make the buzzer more
audible outside. The alignment isn’t perfect, but
it helps anyway.
All things considered, it was significantly eas-

ier to purchase the toolbox rather than attempt
to construct a container from scratch.

4 Lessons Learned

4.1 Relative Clock Speed

One of the difficulties we ran into with the SPI
communication (specifically in the FPGA mod-
ule) had to do with the timing of the two input
clocks. The serial clock from the PIC and the
main clock on the FPGA have no particular re-
lation, especially since the serial clock only runs
when there is data to be sent or received. We had
initially been running the main clock slowed by
a factor of 2048 since that was how Eric’s lab 4
had been constructed, and it took us a while to
realize that we needed the FPGA clock to be run-
ning faster than the serial clock. Since we didn’t
do any bidirectional SPI communication in any
of the labs, we hadn’t run into that issue before.
Lab 6 had the FPGA implement a shift register
to translate data from SPI into traffic light dis-
plays, but there it had no clock other than the
serial clock from the PIC.
Since we were now trying to run a section

of the FPGA on a separate clock, we discov-
ered that the PIC was clocking SCK so quickly
that the FPGA never even got to see the sig-
nals change. When we change the clock to be
only slowed by a factor of 16, things worked a
lot better. In the end, we settled on dividing the
FPGA clock by 32 and having the PIC run the
SCK at its clock divided by 64. This proved to
be the major breakthrough it took us to get the
data transfer from the PIC to the FPGA working
correctly, and the ensuing bidirectional commu-
nication had no similar clock issues.

4.2 Tamper Protection

We had originally planned on using the A/D con-
verter for our tamper protection circuit. The cir-
cuit would have detecting the voltage on wires
running though diodes, and setting off the bomb
if any of the voltages dropped too low (i.e. a
wire was cut). We decided not to use this sys-
tem because the magnetic circuit breaker was
much more effective at tamper protection than
wire cutting protection, and because we put the
entire bomb into a box, we felt that we would
have more problems with someone simply dis-
connecting the battery rather than cutting wires,
and thus our protection circuit would fail. We
needed a tamper protection device which would
not only protect the bomb from cut wires, but
also from battery disconnection. Thus, we se-
lected the magnetic circuit as a more simplistic,
but more effective solution.

5 Results

Overall, we achieved most of our original specifi-
cation. From the original proposal to the midterm
report to the final project, we changed some of
the details of the bomb controller flow chart,
modified the tamper protection circuit, and changed
some of the extra output features as we dove into
the nitty-gritty details of our bomb controller
output. However, we met all of our goals as
stated in our modified project proposal.
The most difficult part of our design pro-

cess was the asynchronous clock problems we en-

7

countered, the bouncing keys, and the PIC code
structure. We learned a great deal about syn-
chronizing clocks and problems with communi-
cation of data from fast clocked systems to slow
clocked systems. We also learned how to better
diagnose problems on the oscilloscope through-
out this project. The Oscilloscope proved in-
valuable to our success in this project, because
so much of the problematic output, especially
the SPI communication and bouncy key presses,
could not be simulated accurately. Also, the
sheer amount of PIC code that had to be writ-
ten for the bomb controller really pushed us to
code in higher level helper functions such that
our debugging would be tractable.
Our demonstration to Professor Harris went

very well, and we demonstrated each of the fea-
tures of the bomb controller as well as the or-
ganization of the code. Also, the class presenta-
tion was enjoyable, even though the entire class
“died” when they triggered the tamper protec-
tion switch while trying to open the armed bomb.

8

A Parts List

Part Source Vendor Part # Price

3-20VDC Buzzer Radioshack 273-0059 $2.99
PC board Radioshack 276-0149 $1.69
Heatsink (fits 7805C) Radioshack 276-1368 $1.59
Heatsink Compound Radioshack 276-1372 $1.99
Magnetic Switch Radioshack 490-0497 $4.99
Female Spade Terminals Radioshack 640-4039 $1.69
4-40 Screws, Nuts, Washers Radioshack 640-30{11, 18, 22} 3 @ $1.99
Male DB25/Ribbon Connector MarVac IDC-25MA-P $5.04
16” Metal Tool Tray Lowe’s 132774 $12.96
12V SLA Battery Old UPS Panasonic UP-RW1245P1
Ribbon Cable Old Computer

B PIC Behavior

B.1 Program Flow

Figure 4: Flowchart describing execution path of main program loop in the PIC assembly

9

B.2 Assembly Code

We developed our code in raw assembly for our PIC 18F452 Micro-controller, and used Microchip’s
MPLAB development environment to compile the code and program the chip. Our code as of the
demonstration follows, and though it has been slightly edited for formatting and readability, no
instructions have been changed.

; bomb.asm

; written 10/26/2003 by Matt_Livianu@hmc.edu and Eric_Angell@hmc.edu

; bomb controller

; $Id: bomb.asm,v 1.11 2003/12/15 07:55:53 eric Exp $

; - accepts keypad input

; - talks to FPGA over SPI

; - keeper of bomb security code

; Use the 18F452 PIC microprocessor

LIST p=18F452

include "p18f452.inc"

; variables (uppercase)

INPUT_TEST EQU 0x12

; time remaining till boom (in seconds)

COUNTHI EQU 0x20

COUNTLO EQU 0x21

; display registers

DISPLAYHI EQU 0x23

DISPLAYLO EQU 0x24

; state register to count seconds

TIMERSTATE EQU 0x27

INPUTBUF EQU 0x30 ; input from FPGA

; input buffer

BUF1 EQU 0x31

BUF2 EQU 0x32

BUF3 EQU 0x33

BUF4 EQU 0x34

; security code register

SEC1 EQU 0x35

SEC2 EQU 0x36

SEC3 EQU 0x37

SEC4 EQU 0x38

; timer registers

TIME1 EQU 0x39

TIME2 EQU 0x40

10

TIME3 EQU 0x41

TIME4 EQU 0x42

COUNT EQU 0x43 ; for debugging

TMRTEST EQU 0x44

COUNTERWRAP EQU 0x45

; flag bits

; 7 = time flag

; 6 = enter code flag

; 5 = armed flag

; 4 = accept flag

; 3

; 2

; 1

; 0

FLAGS EQU 0x70

TIMEF EQU 7 ; timer flag

GETTIMEF EQU 6 ; waiting for new time input flag

ONEMINF EQU 5 ; less than a minute left flag

ARMEDF EQU 4 ; armed flag

ACCEPTF EQU 3 ; accept flag

NEWINPUT EQU 2 ; new input in buffer flag

ENTERF EQU 1 ; enter pressed flag

ARMF EQU 0 ; ’bomb has ability to be armed’ flag

FLAGS2 EQU 0x71

OLDCODEF EQU 7 ; old code flag

CANCELF EQU 6 ; cancel flag

CODEF EQU 5 ; code flag

; constants (lowercase)

; number of states needed to count to 1...note: start at 0

num_states EQU 0x04

; time to count 1/2 second using TMR1 (at 1Mhz)

timerval_hi EQU 0x3D

timerval_lo EQU 0x09

; pre-defined outputs to display

offhi EQU 0xA0 ; blank | O

offlo EQU 0xFF ; F | F

codehi EQU 0xC0 ; C | 0

codelo EQU 0xDE ; D | E

oldhi EQU 0xA0 ; blank | 0

oldlo EQU 0x1D ; 1 | D

11

dashes EQU 0xBB ; - | -

blank EQU 0xAA ; blank | blank

; inputs from keypad

enter EQU 0x0A

cancel EQU 0x0B

time EQU 0x0C

setcode EQU 0x0D

arm EQU 0x0E

resetall EQU 0x0F

; program

org 0x00

bra start

org 0x08

bra highinthandle

org 0x18

bra lowinthandle

org 0x20

highinthandle:

btfsc PIR1, CCP1IF ; is the timer interrupt set?

bra counter_interrupt ; yes: go to timer interrupt

btfsc INTCON, RBIF ; is the RB flag set?

bra check_rbif ; yes: check which interrupt it is

retfie

check_rbif

btfss PORTB, RB4 ; is tamper protection circuit open?

bra tamper_interrupt ; yes? bomb tampered with..

;btfsc PORTD, RD2 ; is srq set?

;bra input_interrupt ; yes? fpga wants to send info

retfie ; no? unsupported interrupt, return

lowinthandle:

retfie

start:

; set SCK, SDO as output, SDI as input

bcf TRISC, RC3

bcf TRISC, RC5

bsf TRISC, RC4

clrf TRISB ; set most of port b for output/unused

bsf TRISB, RD2 ; but leave RD2 for input for SRQ

bsf TRISB, RB4 ; input for tamper protection

12

bcf TRISB, RB2 ; and set port B pin 0 as output

bcf PORTB, RB2 ; turn off sound element

setf TRISD ; leave most of portd floating

bcf TRISD, RD0 ; SPI acknowledge bit = output

bcf PORTD, RD0 ; clear SAC

bcf TRISD, RD7 ; explode_op indicator

bcf PORTD, RD7 ; clear explode indicator

; ********timeR 1 SETTINGS********

; 7 RD16 = 1 (ie. synchronously read all 16 bits)

; 5-4 T1CKPS[1:0] = 10 (ie. clock prescale = 1:4)

; 3 T1OSCEN = 0 (ie. disable timer oscillator

; 1 TMR1CS = 0 (ie. use internal clock Fosc/4)

; 0 TMR1ON = 1 (ie. turn on timer)

; note: timer1 has to be turned on before initializing the

; CCP module, or it will not compare to the timer correctly

; and interrupts will never occur

movlw 0xA1

movwf T1CON

; Disable timer 3

clrf T3CON

; initial CCP to interrupt every second

movlw timerval_lo

movwf CCPR1L

movlw timerval_hi

movwf CCPR1H

; initialize countdown timer and security code for testing

movlw 0x99

movwf COUNTHI

movlw 0x59

movwf COUNTLO

movlw 0x01

movwf SEC1

movlw 0x02

movwf SEC2

movlw 0x03

movwf SEC3

movlw 0x04

movwf SEC4

; initialize timer state to 0

clrf TIMERSTATE

; clear flags

clrf FLAGS

clrf FLAGS2

13

; **************SPI**************

; set SSPCON1

bsf SSPCON1,SSPEN ; enable serial port

bcf SSPCON1,CKP ; idle clock is low

; master mode with OSC/64

bcf SSPCON1,SSPM0

bsf SSPCON1,SSPM1

bcf SSPCON1,SSPM2

bcf SSPCON1,SSPM3

; set SSPSTAT

bsf SSPSTAT, CKE ; transmit data on rising edge clk

bsf SSPSTAT, SMP ; sample at end of output time

; ***********INTERRUPTS***********

clrf INTCON

bsf INTCON, GIE ; set global interrupts

bsf INTCON, PEIE ; set peripheral interrupts

bcf INTCON, RBIF ; must clear flag before enabling interrupt

movf PORTB, 0 ; read port B to ensure RBIF cleared

bsf INTCON, RBIE ; set port B change interrupt

; disable priority interrupts

movlw 0x1F

movwf RCON

; CCP1CON

; 3-0 CCP1M[3-0] = 1010 (ie. compare mode and set interrupt flag)

movlw 0x0A

movwf CCP1CON

; set CCP1 interrupt enable

clrf PIR1 ; make sure PIR1, CCP1IF is off

clrf PIE1 ; clear all interrupt enables

bsf PIE1, CCP1IE ; ...except CCP1 interrupt

clrf TMR1H ; clear timer1

clrf TMR1L

; display off

call queueoff

call display

;***

;*********************** MAIN WAIT LOOP ***********************

;***

main:

btfss FLAGS, NEWINPUT ; test if new input has been entered

bra main ; no? busy-wait

14

; check inputs

btfsc FLAGS, ARMEDF ; armed?

bra checkcancelonly ; yes? check only if cancel pressed

movlw arm

cpfslt INPUTBUF ; arm?

bra armbomb_op

movlw setcode

cpfslt INPUTBUF ; set code?

bra setcode_op

; movlw time

; cpfslt INPUTBUF ; set time?

; bra settime_op

checkcancelonly

movlw cancel

cpfslt INPUTBUF ; cancel?

bra cancel_op

bra main

;***

;************************* INTERRUPTS ************************

;***

; counter interrupt

counter_interrupt:

; one second timer (TMR1) has interrupted

; Transmit the next display output to the FPGA (if counting down)

incf COUNT, 1

clrf TMR1H

clrf TMR1L

bcf PIR1, CCP1IF ; clear interrupt flag

movlw 0x03

cpfseq TIMERSTATE ; are we in the last state?

bra no_decrement ; no? don’t decrement timer

; clrf TIMERSTATE

btfsc FLAGS, ARMEDF ; yes? is the bomb armed?

call dectimer ; yes? decrement timer

no_decrement

btfsc PORTD, RD2 ; check if srq high

call input_interrupt ; yes? get input

btfsc FLAGS, ONEMINF ; check if < one min left

call onemindisplay ; yes? call special display function

btfsc FLAGS2, CANCELF ; check if cancel pressed and bomb armed

call cancelarmeddisplay ; yes? call special display function

btfsc FLAGS2, OLDCODEF ; check if asking for old code

call oldcodedisplay ; yes? call special display function

btfsc FLAGS2, CODEF ; check if asking for code

15

call codedisplay ; yes? call special display function

incf TIMERSTATE ; increment timer state

movlw num_states

cpfseq TIMERSTATE ; are we in the last state?

bra disp ; no? don’t decrement timer

clrf TIMERSTATE

disp

call display ; update display always

btfss FLAGS, ARMEDF ; bomb armed?

retfie ; no? return, enabling global interrupts

movlw 0x00

cpfseq COUNTHI ; check if top of timer is zero

retfie ; no? return, enabling global interrupts

bsf FLAGS, ONEMINF ; set less than one minute left flag

cpfseq COUNTLO ; yes? check if bottom of timer is zero

retfie ; no? return, enabling global interrupts

bra explode_op ; yes? explode!

;***

; input interrupt

input_interrupt:

bsf PORTB, RB2 ; sound element on

call waitabit ; make sure that SPI is finished before

; raising SAC

bsf PORTD, RD0 ; raise SAC (SPI acknowledgement of RD2)

movf DISPLAYLO, 0 ; "arbitrary" dummy data (cheap hack)

call sendssp ; send dummy data over SPI

recloop

btfss SSPSTAT, BF ; wait for SPI to finish

bra recloop

movff SSPBUF, INPUTBUF ; read digit in from SPI

bsf FLAGS, NEWINPUT ; set new input flag

movf PORTB, 0 ; clear interrupt FLAGS

bcf INTCON, RBIF

bcf PIR1, SSPIF

bcf PORTD, RD0 ; clear SAC

bcf PORTB, RB2 ; sound element off

;retfie ; return, enabling global interrupts

return ; return to counter_interrupt

;***

; tamper interrupt

tamper_interrupt:

btfsc FLAGS, ARMEDF ; bomb armed?

bra explode_op ; yes? EXPLODE!

retfie ; no? back to main

16

;***

;*********************** OP FUNCTIONS **********************

;***

; cancel operation

; METHOD

; checks to see if bomb armed. If so, prompts for code

cancel_op:

bcf FLAGS, NEWINPUT ; reading...clear new input flag

btfss FLAGS, ARMEDF ; armed?

bra main ; no? nothing to cancel, back to main

bsf FLAGS2, CANCELF ; yes? set cancel request flag

call getuserinput ; get user input

bra nextaction ; perform next action

;***

; arm bomb operation

; METHOD

; if armflag not set

; sets timeflag, sets display to show "code" and calls the

; getuserinput function

; else

; sets armedflag to start bomb

armbomb_op:

bcf FLAGS, NEWINPUT ; reading...clear new input flag

btfsc FLAGS, ARMF ; if time and code inputted

bra startcountdown ; return to main

bsf FLAGS, TIMEF ; otherwise...set time flag

; call queuecode ; display "code"

bsf FLAGS2, CODEF ; set code flag

call getuserinput ; get user input

bra nextaction ; perform next action

startcountdown

bsf FLAGS, ARMEDF ; set armed status

bra main ; return to main

;***

; set code operation

setcode_op:

bcf FLAGS, NEWINPUT ; reading...clear new input flag

bsf FLAGS2, OLDCODEF ; set old code flag

call getuserinput ; get user input

bra nextaction ; perform next action

;***

; arm bomb operation

;armbomb_op:

17

; bcf FLAGS, NEWINPUT ; reading...clear new input flag

; bra main

; start counter if code accepted

; btfss FLAGS, ARMF ; can bomb be armed?

;***

; blow up the bomb now...for debugging

explode_op:

bcf FLAGS, NEWINPUT ; reading...clear new input flag

bcf FLAGS, ARMEDF ; clear armed flag

bsf PORTB, RB2 ; turn speaker on

bsf PORTD, RD7 ; turn on led

makenoise

; btfss FLAGS, NEWINPUT ; check for new input

bra makenoise

; movlw resetall

; cpfseq INPUTBUF ; is the input ’resetall’?

; bra clearflag

; bra clearall

;clearflag

; bcf FLAGS, NEWINPUT

; bra makenoise

;***

;******************** HELPER FUNCTIONS **********************

;***

;***

; getuserinput

; METHOD:

; waits till newinput flag is set then checks if enter or cancel were pressed

; and returns, setting the appropriate flag if so. if neither enter nor cancel

; were pressed, puts the new input into the shift register and waits for more

; input

getuserinput: ; busy wait loop

btfss FLAGS, NEWINPUT ; test if new input has been entered

bra getuserinput ; no? busy-wait

bcf FLAGS, NEWINPUT ; reading...clear new input flag

movlw 0x0C

cpfslt INPUTBUF ; check if input other than number,

; ..enter, or cancel

bra getuserinput ; yes? ignore input and continue

18

movlw enter ; no? ...

cpfseq INPUTBUF ; check if input is "enter"

bra notpressedenter ; no? keep checking

bra pressedenter ; yes? return with return flag set

notpressedenter

movlw cancel

cpfseq INPUTBUF ; check if input is "cancel"

bra notpressedcancel ; no? keep checking

bra quit ; yes? return with enter flag not set

notpressedcancel

call inputshiftreg ; put code in shift reg

btfsc FLAGS, GETTIMEF ; inputting time?

call displaytime ; yes? display the current time

bra getuserinput ; either way wait for more input

pressedenter

bsf FLAGS, ENTERF ; set enter flag

return

quit

bcf FLAGS, ENTERF ; clear enter flag

return

;***

; nextaction

; PURPOSE:

; performs the next action after code is entered. ’pass’ or ’fail’ should be

; in the WREG when this function is called

nextaction:

btfss FLAGS, ENTERF ; test if enter flag set

bra failed ; no? clear all and wait in main

bcf FLAGS, ENTERF ; yes? clear enterflag

call checkcode ; check if entered code is correct

btfss FLAGS, ACCEPTF ; correct?

bra failed ; no - go to failed

passed ; yes - passed

btfsc FLAGS, ARMEDF ; bomb armed flag set?

bra clearall ; yes? clear all and wait in main

btfsc FLAGS, TIMEF ; time flag set?

bra entertime ; yes? branch to enter time function

; btfsc FLAGS, CODEF ; code flag set?

bra enternewcode ; yes? branch to enter new code function

failed

btfsc FLAGS, ARMEDF ; bomb is armed?

bra clearbuf ; yes? clear buffer only

btfsc FLAGS, CANCELF ; cancel flag set?

bra clearbuf ; yes? clear buffer only

bra clearall ; no? clear all

19

;***

; decrement the timer

dectimer: ; decrements the timer by 1

decf COUNTLO

bnn declowonly

dechighandlow ; checks if low part of timer wrapped

; ..past 0x00 to avoid going to 0xFF

decf COUNTHI

movf COUNTHI, 0 ; move counter into wreg

call onewrapped

movwf COUNTHI

movlw 0x59

movwf COUNTLO

bra next

declowonly

movf COUNTLO, 0 ; COUNTLO -> WREG

call onewrapped

movwf COUNTLO

next

movff COUNTLO, DISPLAYLO

movff COUNTHI, DISPLAYHI

movlw 0x00

; LFSR FSR0, 0x00

; movwf TIMERSTATE ; reset timerstate

return

;***

; turn hex timer into decimal timer

onewrapped:

movwf COUNTERWRAP

movlw 0x0F

andwf COUNTERWRAP, 0 ; bitmask top 4 bits to check for 0x_F

movwf TMRTEST

movlw 0x0E

cpfsgt TMRTEST

bra done

movlw 0x06

subwf COUNTERWRAP

done

movf COUNTERWRAP, 0 ; COUNTERWRAP -> WREG

return

;***

; cancel bomb function

cancelbomb:

20

;***

; entertime function

entertime:

movlw blank

movwf DISPLAYLO

movwf DISPLAYHI

bcf FLAGS, NEWINPUT ; reading...clear new input flag

bcf FLAGS2, CODEF ; clear code flag

bsf FLAGS, GETTIMEF ; getting new time

movlw 0x00 ; clear buffer

movwf BUF1

movwf BUF2

movwf BUF3

movwf BUF4

getinput

call getuserinput

call displaytime

movlw 0x00

cpfseq COUNTHI

bra timeok

cpfseq COUNTLO

bra timeok

bra getinput

timeok

; bcf FLAGS, GETTIMEF ; done getting new time

clrf FLAGS ; make sure no extra flags set

clrf FLAGS2

bsf FLAGS, ARMF

bra main

;***

; displaytime consolidates the buffers and displays them

displaytime:

swapf BUF1, 0 ; combine buf1 and buf2

addwf BUF2, 0

movwf DISPLAYHI

movwf COUNTHI

swapf BUF3, 0 ; combine buf3 and buf4

addwf BUF4, 0

movwf DISPLAYLO

movwf COUNTLO

return

;***

; enternewcode

21

enternewcode:

bcf FLAGS, NEWINPUT ; reading...clear new input flag

bcf FLAGS2, OLDCODEF ; clear oldcode flag

bsf FLAGS2, CODEF ; set code flag

; call queuecode ; display "code"

movlw 0x00 ; clear buffer

movwf BUF1

movwf BUF2

movwf BUF3

movwf BUF4

call getuserinput ; get new code

movff BUF1, SEC1 ; store new code

movff BUF2, SEC2

movff BUF3, SEC3

movff BUF4, SEC4

bra clearall ; back to main

;***

clearbuf: ; clear buffer and return to main

movlw 0x00

movwf BUF1

movwf BUF2

movwf BUF3

movwf BUF4

bcf FLAGS2, CANCELF ; clear cancel flag

bra main

;***

clearall: ; clear all flags, buffer, and timer registers

; stop timer and return to main

clrf FLAGS ; clear flags

clrf FLAGS2

clrf BUF1

clrf BUF2

clrf BUF3

clrf BUF4

clrf TIME1

clrf TIME2

clrf TIME3

clrf TIME4

bcf PORTB, RB2 ; turn sound off

call queueoff ; set to display "off"

bra main

;***

22

error1:

; input error...reset code accept FLAGS and branch back to main

movlw 0

; movwf accept_flag ; reset accept flag

movlw 0x11

movwf INPUTBUF ; reset input buffer

bra main

;***

sendssp:

bcf SSPCON1, WCOL

movwf SSPBUF

btfss SSPCON1, WCOL

return

bra sendssp

;***

inputshiftreg: ; shift register for input

movff BUF2, BUF1

movff BUF3, BUF2

movff BUF4, BUF3

movff INPUTBUF,BUF4

return

;***

checkcode: ; check if values in buf match the stored code

movf SEC1, 0

cpfseq BUF1

bra codefail

movf SEC2, 0

cpfseq BUF2

bra codefail

movf SEC3, 0

cpfseq BUF3

bra codefail

movf SEC4, 0

cpfseq BUF4

bra codefail

bsf FLAGS, ACCEPTF

codefail

return

;***

display:

movf DISPLAYHI, 0 ; DISPLAYHI -> WREG

call sendssp ; WREG -> SPI

23

movf DISPLAYLO, 0 ; DISPLAYLO -> WREG

call sendssp ; WREG -> SPI

return

;***

; onemindisplay flashes the timer if less than one min remaining

onemindisplay:

movlw 0x01

cpfsgt TIMERSTATE ; check if timerstate > 2

bra blankscreen ; no? show clear

call queuetimer ; yes? show timer value

return

blankscreen

call queueblank

return

;***

cancelarmeddisplay:

movlw 0x01

cpfsgt TIMERSTATE ; check if timerstate < 1

bra showtime ; no? show clear

call queuecode ; yes? show timer value

return

showtime

call queuetimer

return

;***

oldcodedisplay:

movlw 0x01

cpfsgt TIMERSTATE ; check if timerstate > 2

bra old ; no? show clear

call queuecode ; yes? show timer value

return

old

call queueold

return

;***

codedisplay:

movlw 0x00

cpfsgt TIMERSTATE ; check if timerstate = 0

bra code1 ; no? show "C "

movlw 0x01

cpfsgt TIMERSTATE ; check if timerstate = 1

bra code2 ; no? show "C0 "

movlw 0x02

cpfsgt TIMERSTATE ; check if timerstate = 2

24

bra code3 ; no? show "C0D "

call queuecode ; yes? show "C0DE"

return

code1

call queuecode1

return

code2

call queuecode2

return

code3

call queuecode3

return

;***

queuecode1:

movlw 0xCA ; set to display "C "

movwf DISPLAYHI

movlw 0xAA

movwf DISPLAYLO

return

;***

queuecode2:

movlw 0xC0 ; set to display "C0 "

movwf DISPLAYHI

movlw 0xAA

movwf DISPLAYLO

return

;***

queuecode3:

movlw 0xC0 ; set to display "C0D "

movwf DISPLAYHI

movlw 0xDA

movwf DISPLAYLO

return

;***

queuecode:

movlw codehi ; set to display "C0DE"

movwf DISPLAYHI

movlw codelo

movwf DISPLAYLO

return

;***

25

queueblank:

; display bomb status (over SPI): blank

movlw blank

movwf DISPLAYHI

movlw blank

movwf DISPLAYLO

return

;***

queueold:

movlw oldhi ; set to display "OlD"

movwf DISPLAYHI

movlw oldlo

movwf DISPLAYLO

return

;***

queuetimer:

; display bomb status (over SPI): timer value

movff COUNTHI, DISPLAYHI

movff COUNTLO, DISPLAYLO

return

;***

queueoff:

; display bomb status (over SPI): " 0FF"

movlw offhi

movwf DISPLAYHI

movlw offlo

movwf DISPLAYLO

return

;***

waitabit:

call waitabitmore

call waitabitmore

call waitabitmore

call waitabitmore

call waitabitmore

call waitabitmore

call waitabitmore

call waitabitmore

call waitabitmore

call waitabitmore

call waitabitmore

call waitabitmore

call waitabitmore

26

call waitabitmore

call waitabitmore

call waitabitmore

call waitabitmore

return

waitabitmore:

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

27

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

return

end

C FPGA Behavior

C.1 Block Diagrams

Figure 5: Overview of FPGA functionality

28

Figure 6: Overview of SPI communication implemented on the FPGA

C.2 Verilog

For the sake of completeness, all Verilog has been included in this appendix. However, the modules
of primary interest are main, bombspi, and possibly keypadpoll, though it is similar to the lab 4
code.

C.2.1 main.v

// Eric Angell <eoa@cs.hmc.edu>

// Matt Livianu <mlivianu@hmc.edu>

// 2003/11/12

// Input from keypad, output to 7-segment displays, communication via SPI

// $Id: main.v,v 1.12 2003/12/15 23:42:58 eric Exp $

module main(clk,reset,sck,sdi,sac,srq,sdo,row,column,segment,select);

input clk, reset; // Clock and ground

input sck, sdi; // Serial clock and Serial data in

input sac; // Serial data request accepted

output srq; // Serial data send request

output sdo; // Serial data out

input [3:0] row; // Keypad rows

output [3:0] column; // Keypad columns

output [6:0] segment; // 7-segment display output

output [3:0] select; // Which digit is segment currently showing?

wire slowclk; // divide 1MHz down to about 32KHz.

wire [3:0] newkey, lastkey, dig3, dig2, dig1, dig0;

wire en_key; // enable shifting the value of the keypress

// only when new data is available.

wire [1:0] en_dig_unsync, en_dig; // enable bit for each digit pair

29

wire [7:0] digit_unsync, digit; // the digits themselves

// Make the slow clock.

div32clk mainclk(clk, reset, slowclk);

// Do the hard work of polling.

keypadpoll poll(slowclk, reset, row, column, newkey, en_key);

// Save the most recent key press.

flopenr4 keypress(slowclk, reset, en_key, newkey, lastkey);

// Deal with the I/O from the PIC

bombspi talkToPIC(slowclk, reset, sck, sdi, sdo, srq, sac, en_key,

lastkey, en_dig_unsync, digit_unsync);

halfsync8 sync_digits(slowclk, reset, digit_unsync, digit);

halfsync2 sync_digit_enables(slowclk, reset, en_dig_unsync, en_dig);

// Save the currently displaying digits.

flopenr4 dig3(slowclk, reset, en_dig[1], digit[7:4], dig3);

flopenr4 dig2(slowclk, reset, en_dig[1], digit[3:0], dig2);

flopenr4 dig1(slowclk, reset, en_dig[0], digit[7:4], dig1);

flopenr4 dig0(slowclk, reset, en_dig[0], digit[3:0], dig0);

// And display those digits.

display74 disp(slowclk, reset, dig3, dig2, dig1, dig0, segment, select);

endmodule

C.2.2 bombspi.v

// Eric Angell <eoa@cs.hmc.edu>

// Matt Livianu <mlivianu@hmc.edu>

// 2003/11/12

// Deal with communication with PIC via SPI for bomb controller.

// $Id: bombspi.v,v 1.11 2003/12/16 05:37:25 eric Exp $

module bombspi(clk,reset,sck,sdi,sdo,srq,sac,en_key,lastkey,en_dig,digit);

input clk, reset;

input sck, sdi; // Serial clock, serial data in

output sdo; // Serial data out

output srq; // Serial data send request

input sac; // Serial data request accepted

input en_key; // Keypress trigger

input [3:0] lastkey; // The last key pushed

output [1:0] en_dig; // Which digit pair is currently being output?

output [7:0] digit; // Output digit

reg [7:0] qin, qout;

30

wire lowersrq;

wire [1:0] en_dig;

wire [7:0] digit;

reg state;

reg [2:0] counter;

always @(posedge sck, posedge reset)

if (reset) begin

counter <= 3’b000;

qin <= 8’b0000_0000;

state <= 0;

qout <= 8’b0000_0000;

end

else case (counter) // data transfer in 8-bit blocks

3’b000: begin // so we do special stuff between

counter <= counter + 1; // always increment counter

qin <= {7’b000_0000, sdi}; // restart qin with the next bit

qout <= {4’b0000, lastkey}; // reset qout with the output data

if (~sac) state <= ~state; // if this is a receive cycle,

// ..then it’s for the next digit,

// ..so switch state

end

default: begin // just send and/or receive

counter <= counter + 1; // increment counter

qin <= {qin[6:0], sdi}; // shift new bit into qin

qout <= {qout[6:0], 1’b0}; // shift new bit out of qout into

// ..sdo (happens below) and shift

// ..qout over by one.

//state <= state; // no reason to change state, but

// ..specifying that explicitly

// ..makes the compiler laugh

end

endcase

// lower srq when it’s acknowledged (sac is high) and we get to the

// ..beginning sending state (counter 0)

assign lowersrq = (sac & (counter == 3’b000));

// en_dig either selects one pair of digits to be active, but only when

// ..we’re in counter state 0 and sac is low. If sac is high, we’re

// ..sending data so we’d better not try to display the garbage that’s

// ..being sent to us

assign en_dig = (~sac & (counter == 3’b000)) ? {state, ~state} : 2’b00;

// sdo is always going to be the high bit of qout, even though it doesn’t

// ..matter if sac is high

assign sdo = qout[7];

31

// digit only matters when en_dig is hot, but that only happens when qin

// ..is okay to be read

assign digit = qin;

halfsync lowersrqsync(clk, reset, lowersrq, sync_lowersrq);

flopenr sendkey(clk, reset, en_key | sync_lowersrq, en_key, srq);

endmodule

C.2.3 keypadpoll.v

// Eric Angell <eoa@cs.hmc.edu>

// Matt Livianu <mlivianu@hmc.edu>

// 2003/11/12

// Controller to sample input from 4x4 matrix keypad.

// $Id: keypadpoll.v,v 1.7 2003/12/15 23:42:58 eric Exp $

module keypadpoll(clk,reset,asyncrow,column,nextdigit,hotrow);

input clk;

input reset;

input [3:0] asyncrow;

output [3:0] column;

output reg [3:0] nextdigit;

output hotrow;

wire [3:0] row;

/* Actually, synchronizing the row input delays it by two clock cycles

* and breaks everything. However, we can get away with not synchronizing

* it because the clock we’re running here is approximately 62.5kHz and the

* aperture in which metastability could be a problem is 20ns, a tiny

* fraction of the clock cycle.

*/

//fullsync4 rowsync(clk, reset, asyncrow, row);

assign row = asyncrow;

// First we define output values.

parameter ZERO = 4’b0000;

parameter ONE = 4’b0001;

parameter TWO = 4’b0010;

parameter THREE = 4’b0011;

parameter FOUR = 4’b0100;

parameter FIVE = 4’b0101;

parameter SIX = 4’b0110;

parameter SEVEN = 4’b0111;

parameter EIGHT = 4’b1000;

parameter NINE = 4’b1001;

parameter ENTER = 4’b1010;

parameter CANCEL= 4’b1011;

32

parameter TIME = 4’b1100;

parameter CODE = 4’b1101;

parameter ARM = 4’b1110;

parameter BOOM = 4’b1111;

// Now we define states for polling various columns.

// One-hot encoding seems like a good way to do this

parameter poll0 = 4’b0001;

parameter poll1 = 4’b0010;

parameter poll2 = 4’b0100;

parameter poll3 = 4’b1000;

/* When a row first goes hot, we want to pulse enable to the flip-flops

* that store the most recently pressed number, but we don’t want to

* leave it high while the button is being held down, or the number will

* just flood through. This pulses hotrow for one clock cycle when any

* row first goes high.

*/

edgepulse enable(clk, reset, |row, hotrow);

reg [3:0] state, nextstate;

// State Register

always @(posedge clk, posedge reset)

if (reset) state <= poll0;

else state <= nextstate;

// Next State

always @(state, row)

case (state)

// Stay in current state if any row hot, else move to next state.

poll0: if (|row) nextstate <= poll0;

else nextstate <= poll1;

poll1: if (|row) nextstate <= poll1;

else nextstate <= poll2;

poll2: if (|row) nextstate <= poll2;

else nextstate <= poll3;

poll3: if (|row) nextstate <= poll3;

else nextstate <= poll0;

default: nextstate <= poll0;

endcase

// Output

assign column = state; // Hence the encoding for the different states.

33

always @(state, row) // This could have been combined with next state

case (state) // logic, but that would intermingle logically

// separate parts.

poll0: if (row[0]) nextdigit <= ENTER;

else if (row[1]) nextdigit <= SEVEN;

else if (row[2]) nextdigit <= FOUR;

else if (row[3]) nextdigit <= ONE;

else nextdigit <= CANCEL;

/* This CANCEL should never actually propogate to the

* flip-flops that store the two recent numbers because

* if none of the rows is hot, those flip-flops won’t

* get their enable signal. However, we want to

* specify it here to avoid implying latches.

*/

poll1: if (row[0]) nextdigit <= ZERO;

else if (row[1]) nextdigit <= EIGHT;

else if (row[2]) nextdigit <= FIVE;

else if (row[3]) nextdigit <= TWO;

else nextdigit <= CANCEL; // Same with this CANCEL.

poll2: if (row[0]) nextdigit <= CANCEL;

else if (row[1]) nextdigit <= NINE;

else if (row[2]) nextdigit <= SIX;

else if (row[3]) nextdigit <= THREE;

else nextdigit <= CANCEL; // And with this one.

poll3: if (row[0]) nextdigit <= BOOM;

else if (row[1]) nextdigit <= ARM;

else if (row[2]) nextdigit <= CODE;

else if (row[3]) nextdigit <= TIME;

else nextdigit <= CANCEL; // And this one.

default: nextdigit <= CANCEL; // And this one.

/* If we get to the default, we managed to find our way into

* an invalid state, which shouldn’t happen.

*/

endcase

endmodule

C.2.4 display.v

// Eric Angell <eoa@cs.hmc.edu>

// Matt Livianu <mlivianu@hmc.edu>

// 2003/11/12

// Display module to handle four seven segment displays.

// $Id: display.v,v 1.5 2003/11/26 11:12:06 eric Exp $

module display74(clk,reset,dig3,dig2,dig1,dig0,segment,select);

input clk, reset;

input [3:0] dig3, dig2, dig1, dig0;

34

output [6:0] segment; // Connect the actual display to these pins

output [3:0] select; // Which digit is segment currently showing?

reg [3:0] state;

reg [3:0] nextstate;

reg [3:0] digit;

parameter DIG0 = 4’b1110;

parameter DIG1 = 4’b1101;

parameter DIG2 = 4’b1011;

parameter DIG3 = 4’b0111;

// State Register

always @(posedge clk, posedge reset)

if (reset) state <= DIG0;

else state <= nextstate;

// Next State

always @(state, dig3, dig2, dig1, dig0)

case (state)

DIG0: begin

digit <= dig0;

nextstate <= DIG1;

end

DIG1: begin

digit <= dig1;

nextstate <= DIG2;

end

DIG2: begin

digit <= dig2;

nextstate <= DIG3;

end

DIG3: begin

digit <= dig3;

nextstate <= DIG0;

end

default: begin // should never get here

digit <= dig0;

nextstate <= DIG0;

end

endcase

// Output

assign select = state; // here’s the benefit of 1-hot state encoding

sevenseg current(digit, segment);

endmodule

35

C.2.5 sevenseg.v

// Eric Angell <eoa@cs.hmc.edu>

// Matt Livianu <mlivianu@hmc.edu>

// 2003/11/12

// Seven segment display decoder

// Based on example in section 4.4 of David Harris’s Introduction to Verilog

// $Id: sevenseg.v,v 1.5 2003/11/26 11:12:06 eric Exp $

module sevenseg(s,seg);

input [3:0] s;

output reg [6:0] seg;

// Number abc_defg hex

parameter BLANK = 7’b111_1111; // 0x7f

parameter ZERO = 7’b000_0001; // 0x01

parameter ONE = 7’b100_1111; // 0x4f

parameter TWO = 7’b001_0010; // 0x12

parameter THREE = 7’b000_0110; // 0x06

parameter FOUR = 7’b100_1100; // 0x4c

parameter FIVE = 7’b010_0100; // 0x24

parameter SIX = 7’b010_0000; // 0x20

parameter SEVEN = 7’b000_1111; // 0x0f

parameter EIGHT = 7’b000_0000; // 0x00

parameter NINE = 7’b000_0100; // 0x04

parameter CEE = 7’b011_0001; // 0x31

parameter DEE = 7’b100_0010; // 0x42

parameter EEE = 7’b011_0000; // 0x30

parameter EFF = 7’b011_1000; // 0x38

parameter DASH = 7’b111_1110; // 0x7e

always @(s)

case (s)

0: seg <= ZERO;

1: seg <= ONE;

2: seg <= TWO;

3: seg <= THREE;

4: seg <= FOUR;

5: seg <= FIVE;

6: seg <= SIX;

7: seg <= SEVEN;

8: seg <= EIGHT;

9: seg <= NINE;

10: seg <= BLANK; // No need for hex digits here, but we want to

11: seg <= DASH; // ..be able to spell out certain things

12: seg <= CEE;

13: seg <= DEE;

14: seg <= EEE;

36

15: seg <= EFF;

default: seg <= BLANK;

endcase

endmodule

C.2.6 divclk.v

// Eric Angell <eoa@cs.hmc.edu>

// Matt Livianu <mlivianu@hmc.edu>

// 2003/11/12

// Divide a clock signal

// $Id: divclk.v,v 1.3 2003/12/07 04:07:37 eric Exp $

module div16clk(clk,reset,slowclk);

input clk, reset;

output slowclk;

reg [3:0] counter;

always @(posedge clk, posedge reset)

if (reset) counter <= 0;

else counter <= counter + 1;

assign slowclk = counter[3];

endmodule

module div32clk(clk,reset,slowclk);

input clk, reset;

output slowclk;

reg [4:0] counter;

always @(posedge clk, posedge reset)

if (reset) counter <= 0;

else counter <= counter + 1;

assign slowclk = counter[4];

endmodule

C.2.7 edgepulse.v

// Eric Angell <eoa@cs.hmc.edu>

// Matt Livianu <mlivianu@hmc.edu>

// 2003/11/12

// Go hot for one cycle when a signal goes hot

// $Id: edgepulse.v,v 1.5 2003/12/07 04:35:43 eric Exp $

module edgepulse(clk,reset,hot,enable);

input clk;

input reset;

37

input hot;

output enable;

reg [1:0] state, nextstate;

parameter S0 = 2’b00;

parameter S1 = 2’b01;

parameter S2 = 2’b10;

/* The idea here is to take a signal, hot, and when hot goes high, push

* enable high for one clock cycle. Then bring enable low again,

* regardless of how long hot stays high. Once hot goes low, be ready to

* do it again. Basically go high for one cycle at posedge hot.

*/

// State Register

always @(posedge clk, posedge reset)

if (reset) state <= S0;

else state <= nextstate;

// Next State

always @(state, hot)

case (state)

S0: if (hot) nextstate <= S1;

else nextstate <= S0;

S1: nextstate <= S2;

S2: if (~hot) nextstate <= S0;

else nextstate <= S2;

default: nextstate <= S0;

endcase

// Output

assign enable = (state == S1);

endmodule

module edgepulse4(clk,reset,hot,enable);

input clk;

input reset;

input [3:0] hot;

output [3:0] enable;

edgepulse e3(clk, reset, hot[3], enable[3]);

edgepulse e2(clk, reset, hot[2], enable[2]);

edgepulse e1(clk, reset, hot[1], enable[1]);

38

edgepulse e0(clk, reset, hot[0], enable[0]);

endmodule

C.2.8 flop.v

// Eric Angell <eoa@cs.hmc.edu>

// Matt Livianu <mlivianu@hmc.edu>

// 2003/11/12

// Enabled, resettable, 4-bit flip-flop

// $Id: flop.v,v 1.4 2003/11/26 11:12:06 eric Exp $

module flopenr4(clk,reset,enable,d,q);

input clk,reset,enable;

input [3:0] d;

output reg [3:0] q;

always @(posedge clk, posedge reset)

if (reset) q <= 0;

else if (enable) q <= d;

endmodule

module flopenr(clk,reset,enable,d,q);

input clk,reset,enable;

input d;

output reg q;

always @(posedge clk, posedge reset)

if (reset) q <= 0;

else if (enable) q <= d;

endmodule

C.2.9 sync.v

// Eric Angell <eoa@cs.hmc.edu>

// Matt Livianu <mlivianu@hmc.edu>

// 2003/11/12

// Syncronizers of different bus widths

// $Id: sync.v,v 1.4 2003/12/15 23:42:58 eric Exp $

module fullsync(clk,reset,d,q);

input clk,reset,d;

output reg q;

reg d2;

always @(posedge clk, posedge reset)

if (reset) d2 <= 0;

else d2 <= d;

39

always @(posedge clk, posedge reset)

if (reset) q <= 0;

else q <= d2;

endmodule

module halfsync2(clk,reset,d,q);

input clk,reset;

input [1:0] d;

output [1:0] q;

halfsync q1(clk, reset, d[1], q[1]);

halfsync q0(clk, reset, d[0], q[0]);

endmodule

module halfsync8(clk,reset,d,q);

input clk,reset;

input [7:0] d;

output [7:0] q;

halfsync2 q76(clk, reset, d[7:6], q[7:6]);

halfsync2 q54(clk, reset, d[5:4], q[5:4]);

halfsync2 q32(clk, reset, d[3:2], q[3:2]);

halfsync2 q10(clk, reset, d[1:0], q[1:0]);

endmodule

module halfsync(clk,reset,d,q);

input clk,reset,d;

output reg q;

always @(posedge clk, posedge reset)

if (reset) q <= 0;

else q <= d;

endmodule

40

