

Joystick-to-Keyboard A/D Converter

Final Project Report
December 14, 2003

E155

Brad Greer and Knut Strom-Jensen

Abstract:

Analog control is often desirable in video games that only accept keyboard input. This
project allows for an analog joystick output to be converted into modulated key presses
on a standard PS/2 keyboard port. The hardware consists of an analog joystick, a
keyboard, a PIC microcontroller, and an FPGA. The PIC will sample the analog signals
coming from the joystick and sends corresponding bytes of data to the FPGA. The FPGA
then buffers the data and controls communication between the host PC, the keyboard feed
through, and the digital modulated signal from the PIC. Output from either the keyboard
or the PIC will be sent serially to the host PC’s PS/2 keyboard port.

Introduction

Only a select few video games accept analog input. Normally, these include flight
simulators and driving simulators. Many games, however, are only configured to accept
digital keyboard input. Games like scrolling shooters could greatly benefit from the
advantages of analog control. With this in mind, we intend to give the flexibility of
analog control to a system that only accepts keyboard inputs.

Bu
tto

n
A

Si
gn

al

Analog Joystick

X-Axis Voltage

Y-Axis Voltage

10-Bit A/D Converter
(PIC)

Y
Bi

ts
 9

:6

Modulation and Sending
Algorithms

(PIC)
Button Signal Amplification

Button A Signal

Bu
tto

n
B

Si
gn

al

Button B Signal

FPGA

D
at

a
By

te

En
ab

le
 P

ul
se

PS/2 Keyboard

Se
ria

l D
at

a

Host PC

Serial Data

Se
ria

l C
lo

ck

Serial Clock

X
Bi

ts
 9

:6

Figure 1: System Block Diagram

The joystick generates two analog voltages – one for each axis of motion. The PIC A/D
converter samples each analog voltage. The top four bits of each result are then used to
determine which keys should be pressed and with what duty cycle. Concurrently, the PIC
samples the two button signals from the joystick, which are amplified by operational
amplifiers. The PIC sends the byte corresponding to the key being pressed in parallel to
the FPGA, which acts as a serial buffer, adding start, stop, and parity bits and the
appropriate clock signal. In addition, the FPGA handles the bi-directional
communication between the computer and the peripheral keyboard.

 2

New Hardware

The joystick used in this project was an Interact PC Raider. Internally, it consists of two
potentiometers on a gimbal, two buttons, which act as switches, and a 10 Hz precision
timer for auto-fire functionality. We only consider the case where auto-fire is left off, as
the oscillation had a tendency to lead to invalid logic levels.

The first problem encountered with the hardware was that the voltage range of the output
pins was only 50 mV, or 1% of Vcc. We found that though one side of the potentiometer
was tied to power, the other side was left unforced, which accounted for the extremely
small range of voltages. This is fairly reasonable, as the manufacturer would expect the
user to calibrate the joystick in software. For our purposes, however, it was necessary to
tie the other side to ground in order to achieve the desired resolution for A/D conversion.
This also gave the added convenience of not needing to specify reference voltages.

X-Axis Voltage

Y-Axis Voltage

Vcc

X-Axis Voltage

Y-Axis Voltage

Vcc

Figure 2: Original and Modified Analog Joystick Schematics

Configuring the buttons was far more difficult, as they did not behave consistently, or
predictably according to standard electrical models. Standard joystick buttons pull low:

Button A Signal

Button B Signal

Figure 3: Standard Joystick Button Configuration

This, however, clearly assumes that the signal is being driven high by the host computer.
Attempting to verify this, we used a multimeter to read the voltages output when the
buttons were pressed or not. Surprisingly, the voltage was higher when pressed, so we
assumed that the joystick had some nonstandard configuration and abandoned the
schematic. We did not notice, however, that the signal should be driven high; otherwise
we would have noticed that our “higher” voltage was merely 8 mV, the level of our
ground at the point where it was plugged in. This incorrect assumption led to results that

 3

were inconsistent with electrical theory, and following that, many hours of frustrating
trial and error, until an op-amp design was found that worked:

R1

Vout

R2

Vin

Figure 4: Empirically Designed Amplifier (R1 = 1kΩ, R2 = 470kΩ)

This design is a non-inverting amplifier with a gain of 470 because we originally
observed the voltage was either 0V or 8mV, which, after amplification, would be 0V or
3.76V, making the output a valid logic level. Unfortunately, since the assumptions we
made were wrong, the output actually went from 15V to 0.3V. By lowering the power to
the op-amp, we were able to reach a range of 5V to 0.1V, which was enough to make the
system work in its intended fashion. We suspect that the op-amp is merely a roundabout
way of driving the data line, and a much more efficient solution would be a pull-up
resistor:

Button A Signal

Button B Signal

Vcc

Figure 5: Revised Button Schematic

This design is most likely the way the joystick port handles button inputs, so it is more
representative of the actual joystick’s operation.

 4

Board Schematics

X-Axis Voltage

Y-Axis Voltage RA0

RA1

R1
R2

Button A Signal
RB0

R1
R2

Button B Signal
RB1

P40 (reset)

Figure 6: Breadboard Schematic

 5

Microcontroller Design

The PIC is programmed to sample two analog voltages, determine quadrant in which the
joystick is located, and send pulse-width modulated signals corresponding to the amount
of time the key is being pressed. The program begins by initializing all necessary control
registers then entering into the main program loop. Each of the two analog voltages are
sampled in series and saved in separate registers. Using the top bit of the y-axis result,
the program determines whether the joystick’s position corresponds to the “up” key, or
the “down” key. Likewise, the program determines whether to press the “left” key, or the
“right” key.
After determining which directions to press for each axis, a mask is applied to the results
so that only the three relevant bits are considered. This is done so that if these three bits
are zero, then the key will not be pressed at all, instead of being pressed for a very short
period of time. The sending algorithm sends the signal for the key to be pressed, then
waits an amount of time proportionate to the magnitude of the 3-bit number. After
waiting, the program sends the “stop” signal for the key that was just pressed, and then
waits the remainder of the period with no key being pressed. If the masked result is equal
to zero, the sending algorithm is skipped, and the program waits the entirety of the
period. Before proceeding to the sending algorithm for the second axis, the program
checks the status of the buttons, and sends any necessary signals (start, continue, stop)
based on their current and previous status. Then the program goes through the send and
wait algorithms for the second axis, then samples the voltages again.

Subroutines
send*: All of the send methods are essentially the same, with the notable difference being
the byte that is sent to the FPGA. First, the value is loaded into Port C, which is
connected in parallel with the FPGA. After a couple of no-operations, the value in Port C
will be stable, and the program sends a pulse on Port E, bit 2, which acts as an enable
signal for the FPGA, and it begins sending the data. It would be possible to check for the
FPGA feedback bit “good”, but instead the program simply waits 2 milliseconds, which
is long enough for a byte to be sent serially.

adwait: It takes 12 instruction cycles for the PIC to finish the A/D conversion, so this
method executes no-operations for a long enough time for the result to be received. This
time could not be productively used otherwise, so dealing with interrupts is unnecessary.

uswait500: This method uses timer0, which is configured as an 8-bit timer running off of
the instruction clock (500 KHz) with no prescale. It does not use interrupts, but does
loop and watch for the interrupt flag when the timer rolls over, and then branching out of
the loop. This results in a wait of approximately 500 microseconds. All other wait
routines call this routine a number of times.

buttontest: This method samples the value of the two button inputs, sends the appropriate
signals, and stores their previous values. This way, if the button was not being pressed
previously, the program will not tell it to stop sending if it is not being pressed now.

 6

Likewise, if it was being pressed before, it is necessary that the program tell it to stop
sending if it is no longer being pressed.

FPGA Implementation

The FPGA was used to send the output from the PIC to the computer’s keyboard input.
The PS/2 Keyboard uses a six-line cable, but only four of those lines are used as shown in
the figure.

6-pin Mini-DIN (PS/2):
1 - Data
2 - Not Implemented
3 - Ground
4 - Vcc (+5V)
5 - Clock
6 - Not Implemented

In order to attach the FPGA to the computer, we routed the device to the data and clock
lines as shown. A keyboard was also attached so that we could still use the computer if
we were not using the joystick. Since we used a patch through to access the Data and
Clock lines we powered the keyboard directly off the protoboard, although we could have
simply routed the power and ground wires from the computer. To send out key presses
as signals to the computer, the FPGA had to input 8-bits of data from the PIC if the PIC
sends an enable signal. Then, if the computer or keyboard was not already sending
something, send the 8-bits with appropriate leading and ending bits on the data line while
pulsing a clock with a period of 80 microseconds on the clock line. After it is done
sending data, the FPGA sends a signal back indicating that it is ready for new data. This
signal was never used, as the PIC simply counts on an internal timer until it is sure that
the FPGA is done sending data. Here is a block diagram of the system.

 7

Keyboard

DC 5V

FPGAPIC
Enable

Data

8

Computer

Data

Clock

Good

Figure 7: System Connection to Computer

As seen in the diagram, the Data and Clock lines have to be bi-directional on the FPGA
so it can keep track of whether or not the lines are already in use by either the computer
or the keyboard. Since the direction of the ports is determined by the signals on the ports
themselves, the FPGA only drives the Data and Clock lines when it needs to send data, at
all other times in uses the ports as inputs. This I/O management is done by the main.v
module, which also manages all other functions by calling sub-modules.

The first task handled by the FPGA is tracking if the computer or keyboard is sending
data. The module compin.v tracks the input on the clock line from the computer since the
computer will push the clock low before sending any data. If the clock line is low, and
the FPGA is not sending data, compin will set the variable “compgood” high. This
variable is then used by other modules to determine whether or not they should run.

Next, once “compgood” goes high, the module stopclock.v begins counting. It counts up
an amount of time greater than the maximum time needed by the computer or keyboard
to send data. Once it is done counting, compin will set “compgood” low again to allow
the other modules to operate.

The module gooder.v watches the “enable” input from the PIC, and if the computer and
keyboard are not using the lines, will set “good” high which then causes the I/O pins to
switch to output.

 8

When “good” has gone high, and “enable” is also high, holder.v inputs 8 bits of data from
the PIC. These 8 bits represent the scancodes for the PS/2 port. These 8 bits are held in
registers until they are needed.

Also enabled when “good” goes high is the module clocker.v, which counts out a period
of 80 microseconds, the lowest clock speed at which the PS/2 port should run (although
our tests shower some keyboards transmitting with slightly faster clocks). This clock is
used to run the data output.

The computer expects the keyboard to output the clock signal 5-25 microseconds after it
outputs the data since the computer reads on the falling edge when the data would
normally be changing. To accommodate this, the module delay.v forces the clock output
from clocker through a series of registers to delay it the required amount of time. This is
the clock sent out on the clock line, not the one directly from clocker.

The module counter4.v is a 4 bit counter intended to count from 0 to10, in order to output
the 11-bit packet of data to the computer. This module runs on the non-delayed clock.

Finishing the data sending is packeter.v which uses the variable “count” from counter4
and goes through all the data bits of the packet sent to the computer. First it sends a low
bit to indicate the data has started. Next it sends the scancode the FPGA received from
the PIC from the most significant bit down too the least significant bit. Finally it sends a
parity bit and a high bit to indicate the data is complete. Once “count” exceeds 10,
“good” is set low by gooder and the FPGA is ready to send the next packet the PIC sends
it.

The module feedback.v takes a further delayed clock and checks to see if the clock output
is being forced low by the computer. If it is, it stops the FPGA from sending data and
waits for the next command from the PIC.

 9

Results

In the end, we were able to get the computer to recognize the output from the FPGA as
actual keyboard presses. The initial stages of the project, which were mostly getting the
FPGA and PIC to communicate with each other and having them receive and send the
expected inputs and outputs was fairly easy. The greatest challenges were, without a
doubt getting the joystick to communicate to the PIC and getting the PC to receive the
data from the FPGA.

As stated in our proposal, the project took two analogue voltages from a joystick, one for
the up and down directions and one for the left right directions, and pulse width
modulated key presses from those inputs. The directions were mapped to the keys on the
number pad (“8” for up, “4” for left, “2” for down, and “6” for right) rather than the
arrow keys, because the arrow keys have additional scancodes that lengthen the time
needed to send signals. The two buttons on the joystick were mapped to “z” and “x”, but
mapping those buttons was not in out proposal.

In dealing with the joystick, the primary challenge was the very inconsistent outputs it
gave us. Almost every time we plugged the device in, it gave different outputs.
Knowing now that the button lines must be driven high and that the potentiometers inside
needed to be rewired to ground, many of the hardware difficulties we experienced could
be easily avoided in the future.

When interfacing with the computer, the primary challenge was setting up the bi-
directional ports to allow the computer to drive the line. Using the bi-directional ports
was a direct response to our inability to stop the computer from beeping constantly. By
allowing the computer to send signals back and to stop the FPGA from sending data
prevented the beeping. The primary challenge in setting up the ports was the fact that the
lines themselves indicated if the computer needed to use the lines. When the FPGA
wasn’t sending the ports could be set to constantly input data.

Unfortunately, the computer can seize control of the lines at any time by forcing the clock
line low for more than 100 microseconds. Because of this, we had to monitor the clock
line while sending data to see if the computer was trying to force the line low. When it
is, the clock only kicks high for a few moments.

 10

By checking to see if the clock is low when it should be high allows the FPGA to
determine if the computer is trying to force the line low. The only problem is that the
data the FPGA is trying to send is simply dropped and is never resent. Given time, a
more efficient system could be implemented in which the FPGA resends the data. At
present, the FPGA assumes the computer is pushing clock low if one clock that should be
high is low. Since the clock sometimes stays low longer in its last cycle, the FPGA
interprets this as the computer trying to send input even when it is not. This is not a
problem normally, but can cause problems if we want to resend data. Thus to properly
resend data, the FPGA would have to sample multiple time and make a decision based on
multiple data points. Also, the PIC would have to be notified so that it does not try to
send new data while the FPGA is resending old data.

Not resending the data resulted in the somewhat erratic behavior of our device when
sending many button presses to the computer. Sometimes the system speeds up and then
slows down depending on how many packets are being dropped by the computer. The
computer is likely dropping the packets because we are sending too many signals in too
short a time, forcing the computer to halt inputs until it is ready for more. Sometimes the
lost packets are the stop signals for the various button presses, resulting in the computer
assuming that the key is still pressed and causing results after the joystick is no longer
being pressed in any direction.

 11

References

[1] A. Chapweske, Adam’s Micro-Resources,
http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/
[2] Op-Amp Varieties,
http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/opampvar.html
[3] Texas Instruments, Precision Timer Data Sheet
http://physics.gac.edu/~huber/classes/phy270/SpecSheets/lm555_ti.pdf
[4] Standard Joystick Schematic
http://www.hut.fi/Misc/Electronics/docs/joystick/pc_stick.gif

Parts List
Part Source Price
Interact PC Raider Ebay $10.00
Mini-DIN 6 Pin
Sockets (2)

Digi-Key $2.00

Keyboard Cable Digi-Key $3.00

 12

http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/
http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/opampvar.html
http://physics.gac.edu/~huber/classes/phy270/SpecSheets/lm555_ti.pdf
http://www.hut.fi/Misc/Electronics/docs/joystick/pc_stick.gif

Appendix A: PIC code
; JoyAD9.asm
; written on 12/06/03 by Brad Greer <bgreer@hmc.edu>
; Joystick A/D converter and keyboard output PWM controller

; use the 18F452 PIC microprocessor
 LIST p=18F452
 include "p18f452.inc"

; define constants
YON EQU 0x05
XON EQU 0x0D
UKEY EQU 0xAE
DKEY EQU 0x4E
LKEY EQU 0xD6
RKEY EQU 0x2E
AKEY EQU 0x58
BKEY EQU 0x44
STOP EQU 0x0F
MASK EQU 0x70

; define variables
YKEY EQU 0x00
XKEY EQU 0x01
YRES EQU 0x02
XRES EQU 0x03
BRES EQU 0x04
STAT EQU 0x05

; set interrupt branches
 org 0x0
 bra init
 org 0x20
; initialize control registers
init:
 setf TRISA ; set port A to input
 setf TRISB ; set port B to input
 clrf TRISC ; set port C to output
 movlw 0x03 ; set port E, bits 0,1 to input
 movwf TRISE ; bit 2 to output
 movlw 0x42
 movwf ADCON1 ; configure A/D converter
 movlw 0x48
 movwf T0CON ; configure Timer0
sample:
 movlw YON ; sample y axis
 movwf ADCON0
 call adwait ; wait for A/D to finish
 movff ADRESH, YRES ; move result
 movlw XON ; sample x axis
 movwf ADCON0
 call adwait ; wait for A/D to finish
 movff ADRESH, XRES ; move result
sety:
 btfsc YRES, 7 ; if result > 1/2 of maximum
 bra up ; set y axis key press to Up
 bra down ; else set y axis key press to Down
up:
 movlw UKEY ; move Up to register storing y axis key
 movwf YKEY
 bra setx ; bypass Down
down:
 comf YRES ; invert bits for accurate operation
 movlw DKEY ; move Down to register storing y axis key
 movwf YKEY
setx:
 btfsc XRES, 7 ; if result > 1/2 of maximum
 bra left ; set X axis key press to Left
 bra right ; else set x axis key press to Right
left:
 movlw LKEY ; move Left to register storing x axis key
 movwf XKEY
 bra mask ; bypass Right
right:
 comf XRES ; invert bits for accurate operation
 movlw RKEY ; move Right to register storing x axis key
 movwf XKEY
mask:
 movlw MASK
 andwf YRES, 1

 13

 andwf XRES, 1
testy:
 tstfsz YRES ; if zero, do not send "y" signal
 bra makey
 bra waity
makey:
 call sendy
 btfsc YRES, 6 ; test individual bits to hold key
 call mswait16 ; for portions of overall period
 btfsc YRES, 6
 call sendy
 btfsc YRES, 6
 call mswait16
 btfsc YRES, 6
 call sendy
 btfsc YRES, 6
 call mswait16
 btfsc YRES, 6
 call sendy
 btfsc YRES, 6
 call mswait16
 btfsc YRES, 5
 call sendy
 btfsc YRES, 5
 call mswait16
 btfsc YRES, 5
 call sendy
 btfsc YRES, 5
 call mswait16
 btfsc YRES, 4
 call sendy
 btfsc YRES, 4
 call mswait16
 call sendstop
 call sendy
waity:
 btfss YRES, 6 ; wait remaining portion of overall
 call mswait64 ; period
 btfss YRES, 5
 call mswait32
 btfss YRES, 4
 call mswait16
 call buttontest ; test if either button is being pressed
testx:
 tstfsz XRES ; if zero, do not send "x" signal
 bra makex
 bra waitx
makex:
 call sendx
 btfsc XRES, 6 ; test individual bits to hold key
 call mswait16 ; for portions of the overall period
 btfsc XRES, 6
 call sendx
 btfsc XRES, 6
 call mswait16
 btfsc XRES, 6
 call sendx
 btfsc XRES, 6
 call mswait16
 btfsc XRES, 6
 call sendx
 btfsc XRES, 6
 call mswait16
 btfsc XRES, 5
 call sendx
 btfsc XRES, 5
 call mswait16
 btfsc XRES, 5
 call sendx
 btfsc XRES, 5
 call mswait16
 btfsc XRES, 4
 call sendx
 btfsc XRES, 4
 call mswait16
 call sendstop
 call sendx
waitx:
 btfss XRES, 6 ; wait remaining portion of overall
 call mswait64 ; period
 btfss XRES, 5

 14

 call mswait32
 btfss XRES, 4
 call mswait16
 call buttontest ; test if either button is being pressed
 bra sample ; sample again

adwait
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 return

sendy
 movff YKEY, PORTC ; send data to FPGA
 nop
 nop
 nop
 nop
 bsf PORTE, 2 ; send enable pulse
 bcf PORTE, 2
 call mswait2
 return

sendx
 movff XKEY, PORTC ; send data to FPGA
 nop
 nop
 nop
 nop
 bsf PORTE, 2 ; send enable pulse
 bcf PORTE, 2
 call mswait2
 return

senda
 movlw AKEY ; send data to FPGA
 movwf PORTC
 nop
 nop
 bsf PORTE, 2 ; send enable pulse
 bcf PORTE, 2
 call mswait2
 return

sendb
 movlw BKEY ; send data to FPGA
 movwf PORTC
 nop
 nop
 bsf PORTE, 2 ;send enable pulse
 bcf PORTE, 2
 call mswait2
 return

sendstop
 movlw STOP
 movwf PORTC ; send data to FPGA
 nop
 nop
 bsf PORTE, 2 ; send enable pulse
 bcf PORTE, 2
 call mswait2
 return

buttontest
 movff PORTB, BRES ; store button-press value
 btfss BRES, 0 ; if button is not being pressed
 bra makea ; do not send the signal
 btfsc STAT, 0 ; if the button was being pressed before
 call sendstop ; send the stop signal
 btfsc STAT, 0 ; if the button was being pressed before (or pressed
now)
makea:

 15

 call senda ; send the button signal
 btfss BRES, 0 ; if button is being pressed
 bsf STAT, 0 ; store status
 btfsc BRES, 0 ; if button is not being pressed
 bcf STAT, 0 ; store status
 btfss BRES, 1 ; repeat process for second button
 bra makeb
 btfsc STAT, 1
 call sendstop
 btfsc STAT, 1
makeb:
 call sendb
 btfss BRES, 1
 bsf STAT, 1
 btfsc BRES, 1
 bcf STAT, 1
 return

uswait500
 clrf TMR0L ; waits approximately 500 microseconds
 bsf T0CON, 7
back:
 btfss INTCON, 2
 bra back
 bcf T0CON, 7
 bcf INTCON, 2
 return

mswait1
 call uswait500
 call uswait500
 return

mswait2
 call mswait1
 call mswait1
 return

mswait4
 call mswait2
 call mswait2
 return

mswait8
 call mswait4
 call mswait4
 return

mswait16
 call mswait8
 call mswait8
 return

mswait32
 call mswait16
 call mswait16
 return

mswait64
 call mswait32
 call mswait32
 return

mswait128
 call mswait64
 call mswait64
 return

 end

 16

Appendix B: Verilog Code
module main(clk,reset,enable,picin,keyout2,sloclk,good);//,kbin,kbclk);
 input clk;
 input reset;
 input enable;
 input [7:0] picin;
 inout keyout2;
 inout sloclk;
 output good;
// inout kbin;
// inout kbclk;

 reg [3:0] inobuf;
// reg [1:0] inobuf;

 wire keyout;
 wire [3:0] count;
 wire [3:0] stopcount;
 wire stopper;
 wire [7:0] holdy;
 wire fstclk;
 wire [4:0] dummy;
 wire [4:0] dummy2;
 wire lower;
 wire res;
// wire rdwrtkb;
 wire rdwrtcomp;
 wire boardgood;
 wire compgood;

 assign boardgood = 0;
 // Receives data from PIC, checks if data has all been sent.
 gooder first(clk,reset,enable,good,count,compgood,boardgood);

 holder second(reset,picin,enable,good,holdy);

 // slows clock and increments count wire
 clocker third(clk,reset,good,fstclk);

 delay fourth(clk,reset,fstclk,dummy);

 delay five(clk,reset,dummy[4],dummy2);

 feedback check(dummy2[4],reset,inobuf[3],lower);

 counter4 six(fstclk,reset,enable,count);

 packeter seven(fstclk,good,count,holdy,keyout);

 always @(posedge clk)
// begin
// if (good)
 begin
 inobuf[0] <= keyout;
 inobuf[1] <= dummy[4];
// end
// else
// begin
// inobuf[0] <= kbin;
// inobuf[1] <= kbclk;
// end
 inobuf[2] <= keyout2;
 inobuf[3] <= sloclk;
 end

// boardin keytocomp(clk,reset,good,compgood,boardgood,stopcount,inobuf[0]);

 compin
comptokey(clk,reset,good,boardgood,compgood,stopcount,inobuf[3],lower);

 stopclock coreclk(clk,reset,good,boardgood,compgood,stopcount);

 //resend pray(clk,reset,enable,lower,res,count);

// readwrite comp(clk,reset,good,boardgood,rdwrtcomp);

 assign rdwrtcomp = good ? 1 : 0;
 assign keyout2 = ~rdwrtcomp ? 1'bZ : inobuf[0];
 assign sloclk = ~rdwrtcomp ? 1'bZ : inobuf[1];

 17

// assign kbin = rdwrtkb ? inobuf[2] : 1'bZ;
// assign kbclk = rdwrtkb ? inobuf[3] : 1'bZ;

endmodule

module gooder(clk,reset,enable,good,count,compgood,boardgood);
 input clk;
 input reset;
 input enable;
 output good;
 input [3:0] count;
 input compgood;
 input boardgood;

 reg good;

 always @(posedge clk or posedge reset)
 if (reset)
 good <= 0;
 else
 if (enable & ~boardgood & ~compgood) //changes only on enable or
count>12
 good <= 1;
 else
 if ((count > 4'b1010) | compgood)
 good <= 0;

endmodule

module holder(reset, picin,enable,good,holdy);
 input reset;
 input [7:0] picin;
 input enable;
 input good;
 output [7:0] holdy;

 reg [7:0] holdy;

 always @(posedge good or posedge reset)
 if (reset)
 holdy <= 8'b11111111;
 else
 if (enable)
 holdy <= picin;

endmodule

module clocker(clk,reset,good,sloclk);
 input clk;
 input reset;
 input good;
 output sloclk;

 reg sloclk;

 wire [7:0] clk8;

 // 8 bit counter
 counter880 here(clk,reset,clk8);

 always @(posedge clk or posedge reset)
 if (reset)
 sloclk <= 1;
 else
 if (good)
 sloclk <= ~clk8[7]; //sloclk always based on system clock
 else
 sloclk <= 1;

endmodule

 18

module counter880(clk,reset,cntr);
 input clk;
 input reset;
 output [7:0] cntr;

 reg [7:0] cntr;

 always @(posedge clk or posedge reset)
 if (reset) cntr <= 8'b00110000;
 else
 if (cntr < 8'b11010001)
 cntr <= cntr+1;
 else
 cntr <= 8'b00110000;

endmodule

module delay(clk,reset,fstclk,gate5);
 input clk;
 input reset;
 input fstclk;
 output [4:0] gate5;

 reg [4:0] gate5;

 always @(posedge clk or posedge reset)
 if (reset)
 gate5 <= 5'b00000;
 else
 begin
 gate5[0] <= fstclk;
 gate5[1] <= gate5[0];
 gate5[2] <= gate5[1];
 gate5[3] <= gate5[2];
 gate5[4] <= gate5[3];
 end

endmodule

module feedback(clk,reset,inobuf,lower);
 input clk;
 input reset;
 input inobuf;
 output lower;

 reg lower;

 always @(posedge clk or posedge reset)
 if (reset)
 lower <= 0;
 else
 if (inobuf)
 lower <= 0;
 else
 lower <= 1;

endmodule

 19

module counter4(clk,reset,enable,count);
 input clk;
 input reset;
 input enable;
 output [3:0] count;

 reg [3:0] count;

 always @(posedge clk or posedge reset or posedge enable)
 if (reset)
 count <= 4'b0;
 else
 if (enable)
 count <= 4'b0;
 else
 count <= count+1;

endmodule

module packeter(clk,good,count,holdy,keyout);
 input clk;
 input good;
 input [3:0] count;
 input [7:0] holdy;
 output keyout;

 reg keyout;

 //sets keyout based on count value
 always @(negedge clk)
 if (good)
 case (count)
 4'b0000: keyout <= 0;
 4'b0001: keyout <= holdy[7];
 4'b0010: keyout <= holdy[6];
 4'b0011: keyout <= holdy[5];
 4'b0100: keyout <= holdy[4];
 4'b0101: keyout <= holdy[3];
 4'b0110: keyout <= holdy[2];
 4'b0111: keyout <= holdy[1];
 4'b1000: keyout <= holdy[0];
 4'b1001: keyout <= ~^holdy;
 4'b1010: keyout <= 1;
 default: keyout <= 1;
 endcase
 else
 keyout <= 1;

endmodule

module compin(clk,reset,good,boardgood,compgood,stopcount,compclk,lower);
 input clk;
 input reset;
 input good;
 input boardgood;
 output compgood;
 input [3:0] stopcount;
 input compclk;
 input lower;

 reg compgood;

 always @(posedge clk or posedge reset)
 if (reset)
 compgood <= 0;
 else
 if (~compclk & ~good & ~boardgood) //changes only on enable or
count>12
 compgood <= 1;
 else
 if (stopcount == 4'b1111)
 compgood <= 0;
 else
 if (lower)
 compgood <= 1;

endmodule

 20

 21

module stopclock(clk,reset,good,boardgood,compgood,stopcount);
 input clk;
 input reset;
 input good;
 input boardgood;
 input compgood;
 output [3:0] stopcount;

 reg [3:0] stopcount;

 wire [7:0] clk8;

 // 8 bit counter
 counter880 here2(clk,reset,clk8);

 always @(posedge clk or posedge reset)
 if (reset)
 stopcount <= 4'b1111;
 else
 if (good & (stopcount == 4'b1111))
 stopcount <= 4'b0000;
 else
 if (good)
 stopcount <= stopcount + 1;
 else
 if (boardgood & (stopcount == 4'b1111))
 stopcount <= 4'b0000;
 else
 if (boardgood)
 stopcount <= stopcount + 1;
 else
 if (compgood & (stopcount == 4'b1111))
 stopcount <= 4'b0000;
 else
 if (compgood)
 stopcount <= stopcount + 1;
 else
 stopcount <= 4'b1111;

endmodule

 22

	Joystick-to-Keyboard A/D Converter
	Brad Greer and Knut Strom-Jensen
	[1] A. Chapweske, Adam’s Micro-Resources, http://panda.cs.nd

