
 1

Slot Machine
Final Project Report

Dec. 14, 2002

E155

Jason Quach and Daniel Sutoyo

ABSTRACT:

Over the years, slot machines have evolved from its mechanical roots and now are
completely run by electronic systems. In light of this paradigm shift in operations, the
objective of this project is to design and implement a slot machine that is run by the
FPGA and HC11. The project incorporates 3 stepper motors, 3 reels (with eight icons
on each reel), a keypad, two seven segment displays, wooden supports, along with the
FPGA and HC11 in the creation of the slot machine. The main problem associated
with this project is determining where the reels need to spin in each game and how to
get them there with consistency. The result of the project is a working slot machine
that is very fun to play.

 2

1. INTRODUCTION

1.1. BACKGROUND
Slot machines, unlike traditional table games, require no gambling knowledge. Its

simplicity has brought it unparalleled success as the most popular and profitable game in
casinos worldwide. Although modern versions of slot machines retain the old classic view, it
has steadily evolved over the years and now is run by an electronic system rather than a
mechanical system. Thus, modern slot machines may look like the old ones, but they are run
on an entirely different principle. The outcome of each game is actually determined by the
central computer inside the machine, not the motion of the reels.

The slot machine created in this project is quite similar to that of a modern slot
machine. The project consists of three stepper motors, three reels (each with eight icons),
wooden supports for the reels, a 4x4 keypad using three buttons (spin, increase bet, and
decrease bet), two dual seven segment displays which show the remaining credits and the
amount of credits being bet, and a LED that lights up when the player hits the jackpot. When
the user presses start, the amount bet is deducted and the reels all begin to spin. The first reel
makes about ten full revolutions before stopping, while the second reel makes about twelve,
and the third makes about fifteen. There are three spinning speeds for the reels: slow (810
rad/s), medium (1014 rad/s), and fast (1206 rad/s). The reels initially start out at medium
speed, increase to fast speed, and finally revert to slow speed as they near their destination. If
two or three icons match, the player is rewarded accordingly.

1.2. MOTIVATION
The motivation for creating a slot machine deals with the shift from mechanical to

electrical systems in recent years. With modern slot machines being controlled by electrical
systems rather than mechanical systems, it is feasible and desirable to create such a device
with the tools at our disposal.

1.3. BLOCK DIAGRAM
The following picture is the block diagram of the slot machine. There are five major

modules that are used in the implementation of the slot machine: the keypad, random number
generator, motor, encoder, and credits module. The keypad module controls the button
presses. The random number generator module does what its name suggests and generates
pseudo random bit sequences using LFSR (linear feedback shift registers). The encoder
module takes as inputs the random numbers and encodes it into the corresponding icons that
will be displayed. The motor module’s function is to spin the reels to the correct location.
Finally, the credits module keeps tracks of the remaining credits, bets, and winnings.

 3

Figure 1: Overall Block Digram

1.4. PARTITIONS OF THE OVERALL SYSTEM

1.4.1. FPGA
At the heart of any modern slot machine is a random number generator, which ensures

that each game has an equal chance of hitting the jackpot. The FPGA acts as the central
computer of the slot machine and performs three important functions: generating random
numbers, controlling the movement of the reels, and keeping track of the number of credits.
When the user presses the start button, the FPGA automatically deducts the amount of credits
being bet and also obtains three random numbers which will be used to determine the next set
of symbols that will appear on the reel. Using this information, the FPGA sends the
necessary information that will drive the stepper motors to the correct location. After the
reels stop spinning, the FPGA determines if there is a win or not and rewards the amount of
credits won; in the case of a jackpot, an LED lights up.

 4

1.4.2. HC11
The microcontroller is used to control the spinning speed of the reels. For the

purposes of this project, the microcontroller is used to generate a square wave that exhibits a
different frequency for three intervals. The first interval of the square wave has a frequency
of 323 Hz, the second has a frequency of 384 Hz, and the final interval has a frequency of
258 Hz. When the start button is pressed, the EVB (polling for this signal) generates a square
wave with 323 Hz for about 1 second, then changes to 384 Hz for about 1.2 second, and
finally adjusts to 258 Hz until all the motors stop spinning. Once this happens, the EVB
reverts to outputting a square wave of 323 Hz until another game is started, which causes the
EVB to repeat the same set of instructions. The square wave signal outputted from the EVB
is sent to the motor module, which is responsible for generating the pulses which run the
stepper motors.

2. NEW HARDWARE

2.1. STEPPER MOTOR
The Airpax unipolar stepper motor is an inexpensive device ($1.95) that offers great

precision and control. It has high torque, step angles of 7.5 degrees, the ability to spin either
clockwise or counterclockwise, in addition to supporting a wide variety of supply voltages.
Also, the rotation speed of a stepper motor is independent of load, provided it has sufficient
torque to overcome slipping.

In this project, stepper motors are used to move the reels to their correct location. The
team decided to use plastic reels due to its relatively light weight. This would prevent the
motors from slipping from insufficient torque. The team connected circular metal plates with
a tiny hole in the center to the metal shaft of the stepper motor. The metal plate was super
glued to the shaft and acted as a platform to which the reels could be attached. As can be
seen, slot machines require consistent and accurate positioning of the reels and stepper
motors fulfill both of these requirements nicely.

A unipolar stepper motor is made up of two coils and has 5, 6, or 8 leads. The stepper
motors that the team worked with had 6 leads, consisting of: ground, power, and the 4 phase
signals that control the two coils of the motors. To drive these motors, the team utilized a
motor driver chip and an H bridge to facilitate its operation. More specifically, the team used
the EDE1200 chip to translate a pulse into the 4 phase signals needed to drive the motor and
the L293D to amplify the current of these 4 phase signals.

2.2. EDE1200 MOTOR DRIVER CHIP
The EDE1200 unipolar stepper motor driver chip is a 5 volt 18 pin device that

provides control over 5/6 leads stepper motors. Its two main capabilities are driving motors in
stand alone “run” mode or external pulse drive “step” mode. In run mode, the stepper motors
freely spin based on the predetermined pin settings. In step mode, the stepper motor takes a
step on every falling edge of a pulse. Other features in the motor driver chip include half-
stepping, direction, and speed control (only in “run” mode). Inputs to the EDE1200 are
power, ground, oscillator connection, and an external pulse if the chip is set to “step” mode.

 5

The main reason the EDE1200 was chosen is because of the simplicity of outputting
stepper motor phase sequences through the input of a single pulse. Other reasons included
the variety of stepper motor behavior controls. Instead of creating logic to output alternating
phase sequences to the 4 leads of the stepper motor, one only needs to output a pulse to the
EDE1200. At the falling edge of the pulse, the EDE1200 will generate the phase signals for
each of the 4 leads which will drive the motor.

The FPGA outputs the correct number of
digital pulses (which corresponds to the
number of motor steps) to the pin 9 of the
EDE1200 chip. The pin connections for
the EDE1200 are: P3, P4, P6, P7, P8, P10,
P14 to 5V DC, P5, P11, P12, P13 to
ground, and P15, P16 to the FPGA master
clock signal (1 MHz). The digital pulse
emitted from the FPGA is sent to P9 of
the EDE1200. This will generate output
drive signals P1, P2, P17, P18 (each of
which have a 40mA maximum rating) for
the four coils of a stepper motor. Refer
to the bread board schematic to see how
the chip is hooked up.

In order to ensure that the stepper motor is configured correctly, the team first tested
the stepper motor in its “run” mode (P10 on ground) to make sure that it would freely spin.
Once the team got the motor working in this mode, the team went on to test it in “step” mode.
To test that the motor works in step mode, a square wave signal from the Agilent Wavetek
Generator was applied to P9 of the EDE1200 chip. An observation that was made is that the
EDE1200 speed control pins only apply in RUN mode. In step mode, the frequency of the
square wave applied to P9 and the speed of the stepper motor are directly related.

For references on other key features and specifications of the EDE1200, please refer
to http://www.componentkits.com/dslibrary/EDE1200.pdf (trouble shooting document) or
http://www.elabinc.com/1200_faq.pdf (provides answers to several frequently asked
questions).

2.3. L293D H-BRIDGE
Because the stepper motors require more current to operate than the EDE1200 can

output, the team utilized the L293D to remedy this problem. The L293D integrated circuit is
a very common motor driver chip that
provides up to 600mA, which is more than
enough current to sufficiently drive the
stepper motors. The inputs to the L293D are
power, ground, and the four phase drive
signals.

Figure 2: EDE1200 Motor Driver Pin Diagram

 6

The pin connections for the L293D are: P1, P8, P9, P16 to 5V DC, P4, P5, P12, P13 to
ground, and P2, P7, P10, P15 receiving the corresponding EDE1200 drive signals. Then the
L293D pins P3, P6, P11, P14 will deliver the same EDE1200 output signals but with much
more current. The six lead stepper motor is connected in the following manner: red to 5V
DC, orange to P2, yellow to P7, brown to P11, green to P14, and black unconnected (refer to
figure 4).

3. SCHEMATICS

Figure 4: EDE1200 and L293D Hookup Diagram

Figure 3: L293D Motor Drive Pin Diagram

 7

Figure 5: Bread Board Circuitry

FPGA I / O Pins
Input Pins
P10, P45, P47-49, P81,
Vdd, ground (not shown)

Output Pins
P7-9, P13-14, P18, P23- 29, P46, P50-51, P61-62,
P65-69, P82-83

EVB I / O Pins
Input Pins
PortC[3:0]

Output Pins
PortB[0]

Note
The three blocks with Step, Osc 1 &
2, and OUT 1-4 are the overall block
for the EDE1200 and L293D hook up
diagram from figure 4.

Orange
Yellow
Green
Brown
Red

 8

4. FPGA
The FPGA takes in as inputs the EVB generated square wave and the user key

presses. It outputs the credits and bet display, pulses that will be used to run the stepper
motors, and a signal that informs the EVB when to start its instruction. The following
descriptions are of the key modules involved in the implementation of the slot machine.

4.1. KEYPAD, CREDITS DISPLAY, AND BET DISPLAY
The keypad decoder module polls a 4x4 matrix keypad for input. The slot machine

uses three input keys: spin, up, and down. The amount bet is controlled by the up and down
buttons, ranges from 1 to 3, and is displayed on a dual seven segment display. The credits
remaining are shown on a separate dual seven segment display and is initially set to 40.
When the spin button is pressed, the credits remaining decreases based on the amount of
credits bet. Once the player reaches zero, the game will not start until it is reset.

In our design, the number of credits available range from 0-99 and is represented in
the verilog code as 8 bits. The 4 most significant bits are used to represent the ten’s place
and the 4 least significant bits are used to represent the one’s place. In the verilog code, the
ten’s place is designated as “dig1” and the ones place designated as “dig0.” This is done
because the seven-segment decoder is limited to decoding single digit values. By splitting up
the credits into two separate numbers, it will be easier to decode and display them. For more
information, refer to appendix A – module 20.

4.2. RANDOM NUMBER GENERATOR
The random number generator used in this slot machine is emulated by the FPGA

through the use of LFSR. Our design constantly generates three random numbers that range
from 0 to 63. This is accomplished by using three different lengths of LFSR (6, 7 and 8 bit).
Three random numbers are acquired directly from the three LFSR when the player presses
spin.

4.3. ICON ENCODER
The encoder takes in, as inputs, each of the three random numbers. It outputs the

current set of symbols and the next set of symbols. When the FPGA is turned on or when it
is reset, the current set of symbols is defaulted to the watermelon icons. However, the reel
positions will have to be manually reset because the FPGA has no memory of the previous
position of the reels. On the rising edge of spin, three random numbers are sent to the
encoder. At this point, the current set of symbols gets the values of the next set of symbols
while the next set of symbols gets new values based on the three random numbers. In effect,
this module acts as an encoder and shift register. The random numbers range from 0 to 63
and each of these values is mapped to one of the eight slot machine icons. Some icons have
more than one number associated with it. Based on the icon LUT, the random numbers are
encoded into their corresponding icons. Since there are eight different icons, they are
encoded by using three bits. The following is a table of the icon encoding used in this
project.

 9

Table 1 – Icon Encoding Table

Dec. Val. 6-bit Random Sequence Icon encoding Icon
63 111111 111 Jackpot
61 – 62 111101 to 111110 110 Triple Bar
57 – 60 111001 to 111100 101 Double Bar
52 – 56 110100 to 111000 100 Bar
47 – 51 101111 to 110011 011 Cherry
37 – 46 100101 to 101110 010 Apple
27 – 36 011011 to 100100 001 Oranges
00 – 26 000000 to 011010 000 Watermelon

4.4. MOTOR PULSE ENCODER
The step motors rotate counterclockwise at 7.5 degree steps on the falling edge of a

pulse. Since there are 8 icons on the reel, it will take 45 degrees to move from one icon to
the next. Thus, it will take 6 steps at 7.5 degrees to move from one icon to the next. In order
to determine the number of steps needed to go from one icon to the next, the encoder needs to
take in as inputs the current set of symbols and next set of symbols. It is not difficult to
create logic (Appendix A module 12 - 14) that will determine the number of steps that the
current icon is away from the next icon. First, the number of icons between the current and
next icon are found. Multiplying this number by six will yield the number of steps needed to
go from the current icon to the next icon.

Table 2 – Steps Needed by Motor to move from Current

Symbol to Next Symbol
How to read this chart: the current icons are located in column
one and the next icons are located in row one, i.e. to go from
orange to cherry is 36 steps.

 Jackpot Bar x 3 Bar x 2 Bar Cherry Apple Orange W.Melon
Jackpot 0 6 12 18 24 30 36 42
Bar x 3 42 0 6 12 18 24 30 36
Bar x 2 36 42 0 6 12 18 24 30
Bar 30 36 42 0 6 12 18 24
Cherry 24 30 36 42 0 6 12 18
Apple 18 24 30 36 42 0 6 12
Orange 12 18 24 30 36 42 0 6
W.Melon 6 12 18 24 30 36 42 0

Each of the three reels will complete several revolutions before stopping at their

destination. The first reel spins an extra 10 revolutions, the second reel spins an extra 12
revolutions, and the third reel spins an extra 15 revolutions. Since 48 steps constitute a
complete revolution, 48*10 will be added to the number of steps for the first reel, 48*12
steps will be added to the second, and 48*15 steps will be added to the third.

The number of steps needed to move from the current icon to the next icon is then
used to create a series of pulses that will drive the step motors. As previously mentioned,

 10

stepper motors only respond on the falling edge of a pulse. Thus, setting the pulse signal
equal to the least significant bit of a counter that counts up to 2 times the number of steps
needed will accomplish this end. When the counter is equal to 2 times the number of steps
needed, then the pulses will stop emitting until the user starts another game.

This module takes in as input the square wave generated by the EVB, which has a
direct effect on the speed of the reels. By decreasing/increasing the frequency of the square
wave that drives the series of pulses, the pulses themselves will occur at a lower/higher
frequency which will in turn cause the step motor angular velocity to increase/decrease
accordingly. Thus, the reels initially spin at medium speed, change to high, and then change
to slow as they near their destination. This achieves the desired effect of gradually slowing
down the spinning as the reel approaches its destination.

4.5. WINNING CREDITS
There are two ways to win when playing the slot machine. A player can either match

two icons or match all three icons. This encoder takes in the next set of symbols and
determines if there is a win. If there is a win, it will output the corresponding prize money.
Else, it will output zero as the prize money. The prize money will not be added until the reels
are finished spinning. The team created a signal named cred_change which informs the
FPGA when to subtract/add credits. (refer to appendix A – module 19 for more information
on this). In addition, if the user wins the jackpot, the LED will light up.

Table 3 Probabilities and Payoff
Table shown is credit bet = 1, for other payoffs refer to appendix A- module 18

3 Matching
Icons

 Prob. Of
Winning
Seq.

Numerical
Value

Credits
Won

2 Matching
Icons

Prob. of
Winning
Seq.

Numerical
Value

Credits
Won

Jackpot (1/64)^3 .0000038 LEDlight Jackpot (1/64)^2 .0002441 10
Triple Bar (2/64)^3 .0000305 50 Triple Bar (2/64)^2 .0009765 7
Double Bar (4/64)^3 .0002441 30 Double Bar (4/64)^2 .0002441 6
Bar (5/64)^3 .0004768 10 Bar (5/64)^2 .0039063 5
Cherry (5/64)^3 .0004768 10 Cherry (5/64)^2 .0061035 4
Apple (10/64)^3 .0038146 5 Apple (10/64)^2 .0244146 2
Oranges (10/64)^3 .0038146 5 Oranges (10/64)^2 .0244146 2
W. melon (27/64)^3 .0750846 2 W. melon (27/64)^2 .177978 0

5. MICROCONTROLLER DESIGN

5.1. OVERVIEW
The microcontroller design functions as a multiple frequency square wave generator.

Its purpose is to provide a frequency varying square wave to the verilog module driveMotors
and thereby accomplishing varying rotation speeds for the motors. A one-bit signal spinning
is the only input PORTC[0] to the microcontroller design, and indicates when the instruction
should be started. Spinning is a signal that goes high once the start button is pressed, and
goes low once the motors are all finished rotating. The following finite state machine
diagram explains the process of outputting the modulated square wave signal. Actual values
calculated and used will be described in the next subsection

 11

Figure 6: FSM of HC11 Varying Frequency Square Wave Generator

The actual output is not shown in this state diagram, but it should be noted that the output bit
Port B[0] is toggled on and off every time the HC11 loops to the same state. On reset, the
HC11 polls to detect when the spin button is pressed. Once an initial input is provided, the
HC11 goes to the Frequency 1 state. Every time the HC11 loops to the same state the index
is decremented by 1 as long as spinning is high. Thus, the higher the index, the longer the
interval of that particular square wave frequency. When the index is reduced to zero in the
Frequency 1 state, the HC11 jumps to the Frequency 2 state and repeats the process. Once
the HC11 reaches the third state, it stays there until all the motors are finishing spinning (in
other words, when spinning = 0), at which point it will return to the first state and await for
another game to begin (spinning = 1).

5.2. DESIGN
Designing a varying square wave generator can be accomplished by two general time

delays. The first is an index looping that can dictate the time period spent in each frequency
state. The second is the output compare function with the timer counter, which can
accurately determine when the output bit is toggled (half of the square wave period). Index
looping is a fairly trivial concept. For example, if it takes the HC11 .01 seconds to execute all
the commands within a loop, then looping a hundred times will now result in the HC11
taking an entire second to execute the instructions. The index values are selected by first
calculating the total number of cycles within the loop and then dividing by the HC11
operating speed of 2.46 MHz to find the time period to complete one loop. Multiplying by the
index value will determine the time period in each state. With some further experimentation,
the index values 1000 and 1200 were found to produce the desired results for the project.

Output compare time delays determine the half period of the square wave. A 10 ms
delay program using the output compare can be found in Software and Hardware
Engineering by Fredrick M. Cady Pg 194. Using the example as the basic algorithm and

 12

changing the offsets to correspond to the right frequency, the remaining task is to output the
square wave. The output should alternate high low to achieve a square wave signal. Therefore
each output compare also includes an output check to toggle the output on / off. This is
accomplished by simply loading 1 (toggles on) or clearing the register (toggles off).

In Appendix B, the offsets chosen are 20490, 20492, and 20495 which yields
respective frequencies of 258, 323, and 385 Hz. Typically, taking the offset and dividing by
the clock frequency will give the time delay. Calculations were done on offset values 20000
and 10000 which yielded the expected results of 121 and 242 Hz for a 2.4567 MHz
oscillation. However, similar calculations were unsuccessful for other desired frequencies.
This could possibly be due to the timer flag overflow during the other commands such as the
output toggle. The team chose the simple solution of trial and error and obtained the desired
frequency by verifying the results with the logic analyzer.

6. RESULTS
The slot machine has three reels each with eight icons. The player begins with 40

available credits and has the ability to increase the credit bet to a maximum of three. The
credit bet is deducted from the credits available at the beginning of each play. The reels spin
at three speeds, starting with medium, changing to high, and ending with slow as they
approach their destination. The amount won is added to the credits available after the last reel
is done spinning. The user can reach a maximum of 99 credits and will not be able to play if
the remaining credits available are insufficient. In the case of a jackpot, an LED will light up.
A prominent feature in the final results that were not in the initial proposal was a safe guard
against a player continually pressing or holding down the start button while the reels are
spinning. Without this safeguard, these actions can potentially disrupt the system and cause
the reels to spin to the wrong position.

The most difficult part of this design was ensuring that the motors would spin to the
correct location. The electrical aspect of this design was not too difficult, while the
mechanical aspect proved quite problematic. First, the team had to determine the logic that
would give the number of steps going from one motor to the next. Getting the motors to spin
at the correct speeds and verifying that the motors would spin to the correct location
consistently took many hours of testing or debugging. There were three main reasons why
the motors would not spin to the correct location. First, the L293D chip was initially not set
up properly. Second, the electrical wiring was not secure, which resulted in the motor
vibrating rather than stepping. The final reason was the connection between the reel and the
stepper motor. The team realized that when the icons did not display correctly, it was not
because of the bugs in the program or the electrical wiring. It was because the reels were not
securely attached to the stepper motors, which would cause the stepper motor and reel to not
spin in synchronization. Once the connection between the stepper motor and reel were
secure, the icons displayed correctly

Some improvements that could be made in this project would be to rely more on the
HC11 to ease the burden of using too many CLBs on the FPGA. Also, since the random
number generator is such an integral part of the modern slot machine, the project would be
well served if a genuine random number generator could be implemented as opposed to the
pseudo bit sequences of the LFSR.

 13

7. REFERENCES
[1] Fredrick M. Cady, Software and Hardware Engineering, Oxford University Press, 1997.
[2] EDE1200 Spec Sheet http://www.componentkits.com/dslibrary/EDE1200.pdf
[3] EDE1200 FAQ http://www.elabinc.com/1200_faq.pdf

8. PARTS LIST
Part Source Vendor Part # Price
EDE1200 Jameco 141532 3 x 8.95 = 26.85
L293 Digikey 296-9518-5-ND 3 x 2.70 = 8.10
Stepper Motor Jameco 164056 3 x 1.95 = 5.85

Total = $40.80

 14

APPENDIX A: VERILOG MODULES
1. module top_level(clk,reset,evbClk,rows,cols,led,sclk,sclk2,

 segments,segments2,pulse1,pulse2,pulse3,
 start,spins);

input clk, evbClk;
input reset;
input [3:0] rows, cols;
output start, sclk, sclk2;
output led,pulse1,pulse2,pulse3;
output [6:0] segments,segments2;
output spins;

wire en;
wire start2;
wire [1:0] bet;
wire [3:0] press;
wire [3:0] dig0,dig1;
wire [7:0] prizeMoney;

//this module used to create a slower clock signal
//which will be used in the dual seven seg display, keypad,
//and debouncer
delayclk delayclk(clk,reset,sclk,sclk2);

//these two modules are used to control the keypad
keypad keypad(sclk,reset,rows,cols,press);
debouncer debouncer(sclk,reset,press,en);

//start only goes high if enough credits available.
//This ensures that the player
//cannot go under zero credits.
assign start = ~press[3] && ~((dig0 < bet)&& (dig1==0));

//this module makes sure that the game only starts at the
//appropiate times. in other words, it guards against the
//player holding on to the start button and pressing it rapidly
spinning spinning(clk,reset,add,start,spins);

//this module allows the user to change their bet
creditBet creditBet(clk,reset,en,~press[2],~press[1],bet);

//this module creates the random numbers used in the slot machine
//In addition, it determines if the player has won and it also
//creates the pulses that will run the stepper motors
randomNumGen_Encode randomNumGen_Encode(clk,evbClk,reset,start,bet,
 pulse1, pulse2, pulse3, prizeMoney, add);

//this module keeps track of when the credits need to be change
//it tells the win_credits module when to add and subtract credits
creditchange creditchange(clk,reset,spins,add,cred_change);

//this module adds and subtracts the credits when necessary
wins_credits wins_credits(clk,reset,bet,prizeMoney,

 cred_change,dig0,dig1,led);
//this module displays the credits remaining
disp disp(sclk,reset,dig1,dig0,segments);

//this module displays the number of credits being bet
sevenseg sevenseg({2'b00,bet}, segments2);

 15

endmodule

2. module delayclk(clk,reset,sclk,sclk2);

input clk;
input reset;
output sclk;
output sclk2;
/* this module will be used to control the
mux for the dual segment display. it generates
a clock that is much slower, which is used
to alternately power the two transistors
that control the dual segment display */

reg [10:0] count;
always @(posedge clk or posedge reset)
if (reset) count <= 0;
else count <= count + 1;

 assign sclk = count[10];
 assign sclk2 = ~count[10];

endmodule

3. module keypad(clk,reset,rows,cols,press);

 input clk;
 input reset;
 input [3:0] rows;
 output [3:0] cols;
 output [3:0] press;
// this module determines when one of the three keys are pressed

 reg state;
 reg [3:0] cols;
 reg [3:0] keys;
 reg [3:0] press;

 always @(posedge clk or posedge reset)
 if (reset) begin
 state <= 0;
 cols <= 4'b1110;
 press <= 4'b1111;
 end else if (&rows) begin //if &rows =1, then no button being pressed

 state <= 0; //otherwise,a button being pressed
 press <= 4'b1111;
 cols <= {cols[0],cols[3:1]};
 //polling the columns,since no button is being pressed
 end else if (~state) begin
 state <= 1;
 press <= keys;// one of the buttons being pressed
 end

 always @ (rows or cols) //determines which button is being pressed
 case ({rows,cols})
 //we are only concerned with three buttons
 8'b0111_1110: keys <= 4'b0111;
 8'b1011_1110: keys <= 4'b1011;
 8'b1101_1110: keys <= 4'b1101;
 default: keys <= 4'b1111;
 endcase
endmodule

 16

4. module debouncer(clk,reset,din,en);

input clk;
input reset;
input [3:0] din; // row input from matrix keypad
wire press; // press signal, is any row shorted?
output en; // if an input is debounced it will
 // be a signal when we want to shift inputs

reg [1:0] state, nextstate;

assign press = ~& din; // NAND of rows, which means true when there
 // is a 0 since we know a button is pushed

 // when a row is shorted (having a 0 in 4
 // bit)

// STATE REGISTER
always @ (posedge clk or posedge reset)
 if (reset) state <= 2'b0;
 else state <= nextstate;

// NEXT STATE LOGIC
always @ (state) // This code basically is 4 states, and will

 // generate through until it hits the
4th

 // state
 case (state)

 2'b0: if(press) nextstate <= 2'b01;
 else nextstate <= 2'b0;
 2'b01: if(press) nextstate <= 2'b10;
 else nextstate <= 2'b0;
 2'b10: if(press) nextstate <= 2'b11;
 else nextstate <= 2'b0;
 2'b11: if(press) nextstate <= 2'b11;
 else nextstate <= 2'b0;
 default: nextstate <= 2'b0;
 endcase

assign en = (state == 2'b11); // Simply whenever it hits final state,
 // the inputs need to be shifted since the
 // signal is debounced

endmodule

5. module spinning(clk,reset,add,spin,spinning);

input clk,reset,add,spin;
output spinning;

reg state,nextstate;
//This module makes sure that while the motors are spinning,
//another game cannot be started.

always @ (posedge clk or posedge reset)
 if (reset) state <= 0;
 else state <= nextstate;

/*
The time between posedge spin and posedge add is the time

 17

wherein we want to guard against the player pushing and holding the spin
button. On posedge of spin, we want to make sure from that point
that any instances where the player presses start will not restart the
game. Thus, on posedge spin, we set state = 1 if add = 0. Once add
becomes high, we set state = 0.
*/

always @ (spin or add)
 if(spin)
 if(add) nextstate <=0;
 else nextstate <=1;
 else if(add)
 nextstate <= 0;
 else nextstate <= state;

assign spinning = state;

endmodule

6. module creditBet(clk,reset,en,up,down,val);

/* this module controls the betting mechanism in the slot machine.
 there is an increase and decrease button. the betting range is
 1 to 3. if you try to go higher than 3 it recycles to 1. if you try
 to go lower than 1, it goes to 3.
*/
input clk,reset,up,down,en;
output [1:0] val;

parameter ONE = 2'b01;
parameter TWO = 2'b10;
parameter THREE = 2'b11;

reg [1:0] state;
reg [1:0] nextstate;

// STATE REGISTER

always @ (posedge clk or posedge reset)
 if (reset) state <= ONE;
 else state <= nextstate;

//enable is acquired through the debouncer module
always @ (posedge en or posedge reset)
 if (reset) nextstate <= ONE;
 else

 case (state)
 ONE: begin
 //if you press up, bet goes to two
 if(up) nextstate <= TWO;
 //if you press down, bet goes to one
 else if (down) nextstate <= THREE;
 else nextstate <= ONE;
 end
 TWO: begin
 if(up) nextstate <= THREE;
 else if (down) nextstate <= ONE;
 else nextstate <= TWO;
 end
 THREE:begin

 18

 if(up) nextstate <= ONE;
 else if (down) nextstate <= TWO;
 else nextstate <= THREE;
 end
 default: nextstate <= ONE;

 endcase

// OUTPUT LOGIC

 assign val = state; //val is the amount of the bet

endmodule

7. module randomNumGen_Encode(clk,evbClk,reset,start,bet,
 pulse1, pulse2, pulse3,
 prizeMoney, add);

input clk,evbClk, reset,start;
input [1:0] bet;
wire [5:0] randNum1,randNum2,randNum3;
wire [2:0] currentIcon1, currentIcon2, currentIcon3;
wire [2:0] nextIcon1, nextIcon2, nextIcon3;
wire [10:0] motorData1, motorData2, motorData3;
wire revolve;
output [7:0] prizeMoney;
output add;
output pulse1,pulse2,pulse3;

//These three modules are the 6,7,8 bit LSFRs.
randomGen1 randomGen1(clk,reset, randNum1);
randomGen2 randomGen2(clk,reset, randNum2);
randomGen3 randomGen3(clk,reset, randNum3);

//This module encodes the random numbers into the corresponding icons
//upon the posedge of start.
iconEncoding

 iconEncoding1(reset,start,randNum1,currentIcon1,nextIcon1);

iconEncoding

 iconEncoding2(reset,start,randNum1,currentIcon2,nextIcon2);

iconEncoding

 iconEncoding3(reset,start,randNum1,currentIcon3,nextIcon3);

// These modules encodes the current and next icons into the
// corresponding motor information. The alternator module is used to
// facilitate the encoding of motor information
alternator alternator(reset, start, alternate,revolve);

motorEncoding

 motorEncoding(currentIcon1,nextIcon1,alternate,revolve,motorData1);

motorEncoding2

 motorEncoding2(currentIcon2,nextIcon2,alternate,revolve,motorData2);

motorEncoding3

 motorEncoding3(currentIcon3,nextIcon3,alternate,revolve,motorData3);

 19

/*
This module encodes the motor information into the pulses that drive the
stepper motors. The third driveMotor module outputs a signal add, which
tells you when the credits won should be added. This add signal goes
high after the final motor has stopped spinning.
*/

driveMotors driveMotor1(evbClk,reset, motorData1 ,pulse1);
driveMotors driveMotor2(evbClk,reset, motorData2 ,pulse2);
driveMotorsAdd driveMotor3(evbClk,reset, motorData3 ,pulse3,add);

// This module encodes the next icons to determine if there is a win and
// it also outputs the money won.

winsequence2 winsequence2(bet,nextIcon1,nextIcon2,nextIcon3,prizeMoney);

endmodule

8. module randomGen1(clk,reset,randNum1);

input clk;
input reset;
output [5:0] randNum1;

//this module is an 6 bit LFSR

reg [5:0] rand;

always @(posedge clk or posedge reset)

 if(reset)
 rand <= 6'b111111;

 else
 begin
 //polynomial for 6 bit LFSR: 1 + x^5 + x^6
 rand[0] <= rand[4]^rand[5];
 rand[5:1] <= rand[4:0];
 end

assign randNum1 = rand[5:0]; //outputs the random 6 bit sequence

endmodule

9. module randomGen2(clk,reset,randNum2);

input clk;
input reset;
output [5:0] randNum2;

//this module is a 7 bit LFSR
reg [6:0] rand2;

always @(posedge clk or posedge reset)

 if(reset)
 rand2 <= 7'b1111111;
 else
 begin
 //polynomial for 7-bit LFSR is: 1 + x^6 + x^7
 rand2[0] <= rand2[5]^rand2[6];

 20

 rand2[6:1] <= rand2[5:0];
 end
assign randNum2 = rand2[5:0]; //outputs the random 6 bit sequence

endmodule

10. module randomGen3(clk,reset,randNum3);

input clk;
input reset;
output [5:0] randNum3;
//this module is an 8 bit LFSR

reg [7:0] rand3;

always @(posedge clk or posedge reset)

 if(reset)
 rand3 <= 8'b11111111;

 else
 begin
 //polynomial for 8 bit LFSR is: 1 + x + x^6 + x^7 + x^8
 rand3[0] <= rand3[1]^rand3[5]^rand3[6]^rand3[7];
 rand3[7:1] <= rand3[6:0];
 end

assign randNum3 = rand3[5:0]; //outputs the random 6 bit sequence

endmodule

11. module iconEncoding(reset,start,randNum,currentIcon,nextIcon);

input reset,start;
input[5:0] randNum;
output [2:0] currentIcon,nextIcon;

//this module takes in random number and outputs the corresponding icon

//randNum will be between 0 and 63

parameter watermelon = 3'b000;
parameter orange = 3'b001;
parameter apple = 3'b010;
parameter cherry = 3'b011;
parameter bar = 3'b100;
parameter bar2 = 3'b101;
parameter bar3 = 3'b110;
parameter jackpot = 3'b111;

reg[2:0] currentIcon,nextIcon;

always @(posedge start or posedge reset)
 //will encode the random number
 //once user lets go of start button

 if (reset)
 begin
 nextIcon <= watermelon;
 currentIcon <= watermelon;
 end
 else

 21

 begin
 if(randNum <= 6'b011010)
 nextIcon <= jackpot;

 else if (randNum > 6'b011010 & randNum <= 6'b100100)
 nextIcon <= orange;

 else if (randNum > 6'b100100 & randNum <= 6'b101110)
 nextIcon <= apple;

 else if (randNum > 6'b101110 & randNum <= 6'b110011)
 nextIcon <= cherry;

 else if (randNum > 6'b110011 & randNum <= 6'b111000)
 nextIcon <= bar;

 else if (randNum > 6'b111000 & randNum <= 6'b111100)
 nextIcon <= bar2;

 else if (randNum > 6'b111100 & randNum <= 6'b111110)
 nextIcon <= bar3;

 else
 nextIcon <= watermelon;
 currentIcon <= nextIcon;
 end

endmodule

12. module alternator(reset,start,alternate,revolve);

input reset, start;
output alternate, revolve;

/*the purpose of this module is to facilitate the interaction between
motorEncoding and drivedata module. Alternate is one bit and swithes
back and from to 1 and 0 everytime slot machine is played. This means
that the motor coming into DriveData will always be different than the
previous entry, meaning that the data will change everytime a new game
is played. Revolve is used so that upon reset, the stepper motors do
not spin when reset is implemented.
*/

reg alternate, revolve;
always@(posedge start or posedge reset)

 if (reset) begin
 alternate <= 0;
 revolve <= 0;
 end
 else begin
 alternate <= alternate + 1;
 revolve <= 1;
 end

endmodule

13. module motorEncoding(currentIcon,nextIcon,alternate,revolve,stepData);

input alternate, revolve;
input [2:0] currentIcon,nextIcon;
output [10:0] stepData;

 22

//this module takes in the current state and the next state of icons
//and outputs the number of steps it will take to go from
//the current icon to the next icon

parameter watermelon = 3'b000;
parameter orange = 3'b001;
parameter apple = 3'b010;
parameter cherry = 3'b011;
parameter bar = 3'b100;
parameter bar2 = 3'b101;
parameter bar3 = 3'b110;
parameter jackpot = 3'b111;

reg [2:0] motorData;
always @ (nextIcon or currentIcon)
 //motorData is the number of icons that the current icon is away
 //from the next icon. the following is the algorithm for solving
 //this number

 if(currentIcon > nextIcon)
 motorData <= 8 + nextIcon - currentIcon;
 else
 motorData <= nextIcon - currentIcon;

 assign stepData = 6*{4'b0, motorData}+ 480*revolve + 48*alternate;

 /*

The first term is the number of actual steps to next icon. Each step
is 7.5 degrees and each icon covers 45 degrees on the reel so you
need 6 steps to go from one icon to the next.

 The second term is the number of extra revolutions we want the reel
 to spin. Since one full revolution is 48 steps,
 then the number of extra revolutions in this case is
 10. The revolve variable is zero on reset and one after start has
 been pressed

 The third term is used so that each set of stepData will always be
 different on each successive play. Since the module that codes for
 the motor pulse depends on stepData being different everytime, the
 slot machine would work incorrectly if stepData was the same on two
 consecutive plays. This case would happen if a player were to
 get the same icon on the same reel on two consecutive plays.

 */

endmodule

14. module motorEncoding2(currentIcon,nextIcon,alternate,revolve,stepData);

input alternate,revolve;
input [2:0] currentIcon,nextIcon;
output [10:0] stepData;

//this module takes in the current state and the next state of icons
//and outputs the number of steps it will take to go from
//the current icon to the next icon

parameter watermelon = 3'b000;

 23

parameter orange = 3'b001;
parameter apple = 3'b010;
parameter cherry = 3'b011;
parameter bar = 3'b100;
parameter bar2 = 3'b101;
parameter bar3 = 3'b110;
parameter jackpot = 3'b111;

reg [2:0] motorData;
always @ (nextIcon or currentIcon)
 //motorData is the number of icons that the current icon is away
 //from the next icon. the following is the algorithm for solving
 //this number

 if(currentIcon > nextIcon)
 motorData <= 8 + nextIcon - currentIcon;
 else
 motorData <= nextIcon - currentIcon;

 assign stepData = 6*{4'b0, motorData}+ 576*revolve + 48*alternate;

 /*
 The first term is the number of actual steps to next icon.

 Each step is 7.5 degrees and each icon covers 45 degrees on the reel
 so you need 6 steps to go from one icon to the next.

 The second term is the number of extra revolutions we want the reel
 to spin. Since one full revolution is 48 steps,
 then the number of extra revolutions in this case is
 12. The revolve variable is zero on reset and one after start has
 been pressed

 The third term is used so that each set of stepData will always be
 different on each successive play. Since the module that codes for
 the motor pulse depends on stepData being different everytime, the
 slot machine would work incorrectly if stepData was the same on two
 consecutive plays. This case would happen if a player were to
 get the same icon on the same reel on two consecutive plays.
 */

endmodule

15. module motorEncoding3(currentIcon,nextIcon,alternate,revolve,stepData);

input alternate,revolve;
input [2:0] currentIcon,nextIcon;
output [10:0] stepData;

//this module takes in the current state and the next state of icons
//and outputs the number of steps it will take to go from
//the current icon to the next icon

parameter watermelon = 3'b000;
parameter orange = 3'b001;
parameter apple = 3'b010;
parameter cherry = 3'b011;
parameter bar = 3'b100;
parameter bar2 = 3'b101;

 24

parameter bar3 = 3'b110;
parameter jackpot = 3'b111;

reg [2:0] motorData;
always @ (nextIcon or currentIcon)
 //motorData is the number of icons that the current icon is away
 //from the next icon. the following is the algorithm for solving
 //this number

 if(currentIcon > nextIcon)
 motorData <= 8 + nextIcon - currentIcon;
 else
 motorData <= nextIcon - currentIcon;

 assign stepData = 6*{4'b0, motorData}+ 720*revolve + 48*alternate;

 /*
 The first term is the number of actual steps to next icon.

 Each step is 7.5 degrees and each icon covers 45 degrees on the reel
 so you need 6 steps to go from one icon to the next.

 The second term is the number of extra revolutions we want the reel
 to spin. Since one full revolution is 48 steps,
 then the number of extra revolutions in this case is
 15. The revolve variable is zero on reset and one after start has
 been pressed

 The third term is used so that each set of stepData will always be
 different on each successive play. Since the module that codes for
 the motor pulse depends on stepData being different everytime, the
 slot machine would work incorrectly if stepData was the same on two
 consecutive plays. This case would happen if a player were to
 get the same icon on the same reel on two consecutive plays.
 */

endmodule

16. module driveMotors(clk,reset,motorData,pulse);

input clk,reset;
input [10:0] motorData;
output pulse;

//motorData is the number of steps needed to get to next icon

reg [10:0] currentData, nextData;
reg [10:0] state,nextState;

// the following is the state machine that creates the pulses
// that will drive the step motor

always @(posedge clk or posedge reset)

 if (reset) begin
 state <= 0;
 nextData <= 0;
 currentData <= 0;
 end
 else begin
 state <= nextState;

 25

 currentData <= nextData;
 nextData <= motorData;
 end
// he step motor spins on the falling edge the pulse. thus,
// the newData and currentData are used to tell when a new set of
// motorData arrives, so that state will be reset to zero

always @(state or motorData or nextData or currentData)

/*we need to count to 2 * motorData to get the appropiate amount
 of falling edges needed to run the motor*/

 if (state == motorData<<1)
 nextState <= state;

/* if (state == 2* motorData), we don't want to create any more pulses.
 we want to reset state to zero only when we get a new motorData
 input. And if (state < 2*motorData), we want to add 1 to state*/

 else if (motorData > currentData)
 if (state == currentData<<1)
 nextState <= 0;
 else
 nextState <= state + 1;

 else if (motorData < currentData)
 if (state == currentData<<1)
 nextState <= 0;
 else nextState <= state + 1;

 else nextState <= state+1;

 assign pulse = state[0];

//the pulse is generated from the least significant bit of state

endmodule

17. module driveMotorsAdd(clk,reset,motorData,pulse,add);

input clk,reset;
input [11:0] motorData;
output pulse,add;

// motorData is the number of steps needed to get to next icon
// add is a signal that will go high once the pulse is done being
// emitted. It will be used to determine when the credits should be
// added.

reg [11:0] currentData, nextData;
reg [11:0] state,nextState;
reg add,nextAdd,spike,nextSpike;

// the following is the state machine that creates the pulses
// that will drive the step motor

always @(posedge clk or posedge reset)

 26

 if (reset) begin
 state <= 0;
 nextData <= 0;
 currentData <= 0;
 add <=1;
 spike <=0;
 // spike is used so that add will behave like a 'spike',
 // meaning that add will go high only for one clock cycle

 end
 else begin
 state <= nextState;
 currentData <= nextData;
 nextData <= motorData;
 add <=nextAdd;
 spike <= nextSpike;
 end

 // the step motor spins on the falling edge the pulse. thus,

 // the newData and currentData are used to tell when a new set
 // of motorData arrives, so that state will be reset to zero

always @(state or motorData or nextData or currentData
 or add or spike)

/*we need to count to 2 * motorData to get the appropiate
amount of falling edges needed to run the motor*/

/* if (state == 2* motorData), we don't want to create any more
pulses. We want to reset state to zero only when we get a new
motorData input. If (state < 2*motorData), we want to add 1 to
state*/

 if (state == motorData<<1)
 if(spike == 1)
 begin
 nextState <=state;
 nextAdd <= 0;
 //add goes low again, remaining high for only one
 nextSpike <= spike; //clock cycle
 end
 else

 begin
 nextState <= state;
 nextAdd <= 1;
 //here add goes high. This happens only when
 nextSpike <= 1;
 //spike=0 and state =2*motorData.
 end

// at this point, add will remain low because state is still
// increasing.

 else if (motorData > currentData)
 begin

 27

 if (state == currentData<<1)
 nextState <= 0;
 else
 nextState <= state + 1;

 nextAdd <= 0;
 nextSpike <= 0;
 end

 else if (motorData < currentData)
 begin
 if (state == currentData<<1)
 nextState <= 0;
 else
 nextState <= state + 1;

 nextAdd <= 0;
 nextSpike <= 0;
 end

 else
 begin
 nextState <= state+1;
 nextAdd <= 0;
 nextSpike <= 0;
 end

 assign pulse = state[0];
 //the pulse is generated from the least significant bit of state

endmodule

18. module winsequence2(bet,icon1,icon2,icon3,prizeMoney);

input [1:0] bet;
input [2:0] icon1,icon2,icon3;

output [7:0] prizeMoney;

// win goes high if all three icons are the same

parameter watermelon2 = 4'b0000;
parameter orange2 = 4'b0001;
parameter apple2 = 4'b0010;
parameter cherry2 = 4'b0011;
parameter bar2 = 4'b0100;
parameter bar22 = 4'b0101;
parameter bar32 = 4'b0110;
parameter jackpot2 = 4'b0111;

parameter watermelon3 = 4'b1000;
parameter orange3 = 4'b1001;
parameter apple3 = 4'b1010;
parameter cherry3 = 4'b1011;
parameter bar3 = 4'b1100;
parameter bar23 = 4'b1101;
parameter bar33 = 4'b1110;
parameter jackpot3 = 4'b1111;

 28

reg [3:0] lookicon;
reg [7:0] winnings;

always @(icon1 or icon2 or icon3)
//goes through here anytime any of the icons change

//Checks here if any two icons match.
if ((icon1 == icon2) || (icon1 == icon3) || (icon2 == icon3))

 //Checks to see if all three icons match.
 if ((icon1==icon2) && (icon2 == icon3))
 lookicon <= icon1 + 4'b1000;

 //Following "else if" statements check for which two icons match.
 else if (icon1==icon2)
 lookicon <= icon1;
 else if (icon2==icon3)
 lookicon <= icon2;
 else if (icon1==icon3)
 lookicon <= icon3;
 else
 lookicon <= 4'b0000;

//If no two icons match, then there is a lost.
else
 lookicon <= 4'b0000;

always @(lookicon or bet)

 if (bet==2'b01) //if bet = 1
 begin
 case(lookicon)

 // prizeMoney: 4 most significant bits represent 10's
 // place 4 least significant bits represent 1's place

 watermelon2: winnings <= 8'b0000_0000;
 orange2: winnings <= 8'b0000_0010;
 apple2: winnings <= 8'b0000_0010;
 cherry2: winnings <= 8'b0000_0100;
 bar2: winnings <= 8'b0000_0101;
 bar22: winnings <= 8'b0000_0110;
 bar32: winnings <= 8'b0000_0111;
 jackpot2: winnings <= 8'b0001_0000;
 //winnings for two icons matching

 watermelon3: winnings <= 8'b0000_0010;
 orange3: winnings <= 8'b0000_0101;
 apple3: winnings <= 8'b0000_0101;
 cherry3: winnings <= 8'b0001_0000;
 bar3: winnings <= 8'b0001_0000;
 bar23: winnings <= 8'b0011_0000;
 bar33: winnings <= 8'b0101_0000;
 jackpot3: winnings <= 8'b1111_1111;
 //winnings for three icons matching

 default: winnings <= 8'b0000_0000;
 endcase
 end

 else if (bet==2'b10) //if bet = 2, winnings are doubled

 29

 begin
 case(lookicon)

 watermelon2: winnings <= 8'b0000_0000;
 orange2: winnings <= 8'b0000_0100;
 apple2: winnings <= 8'b0000_0100;
 cherry2: winnings <= 8'b0000_1000;
 bar2: winnings <= 8'b0001_0000;
 bar22: winnings <= 8'b0001_0010;
 bar32: winnings <= 8'b0001_0100;
 jackpot2: winnings <= 8'b0010_0000;

 watermelon3: winnings <= 8'b0000_0100;
 orange3: winnings <= 8'b0001_0000;
 apple3: winnings <= 8'b0001_0000;
 cherry3: winnings <= 8'b0010_0000;
 bar3: winnings <= 8'b0010_0000;
 bar23: winnings <= 8'b0110_0000;
 bar33: winnings <= 8'b1010_0000;
 jackpot3: winnings <= 8'b1111_1111;

 default: winnings <= 8'b0000_0000;
 endcase
 end

 else //if bet = 3, then winnings are tripled
 begin
 case(lookicon)

 watermelon2: winnings <= 8'b0000_0000;
 orange2: winnings <= 8'b0000_0110;
 apple2: winnings <= 8'b0000_0110;
 cherry2: winnings <= 8'b0001_0010;
 bar2: winnings <= 8'b0001_0101;
 bar22: winnings <= 8'b0001_1000;
 bar32: winnings <= 8'b0010_0001;
 jackpot2: winnings <= 8'b0011_0100;

 watermelon3: winnings <= 8'b0000_0101;
 orange3: winnings <= 8'b0001_0101;
 apple3: winnings <= 8'b0001_0101;
 cherry3: winnings <= 8'b0011_0000;
 bar3: winnings <= 8'b0011_0000;
 bar23: winnings <= 8'b1001_0000;
 bar33: winnings <= 8'b1010_0000;
 jackpot3: winnings <= 8'b1111_1111;

 default: winnings <= 8'b0000_0000;
 endcase
 end

assign prizeMoney = winnings;

endmodule

19. module creditchange(clk,reset,spinning,add,out);

input clk,reset,spinning,add;

 30

output out;
reg change, nextchange,en,nexten;

// This module gives the signal determining when to add/subtract credits
// In each play, there should be two pulses that will indicate credit
// change
// 1) Spin Keypress should deduct the credit bet from credit available
// 2) After all motors are done spinning, credit won adds to credit
// available

// change is the pulse that determines when to subtract
// en is a signal that assists to create the change

always @ (posedge clk or posedge reset)
 if (reset)
 begin
 change <= 0;
 en <= 1;
 end
 else
 begin
 change <= nextchange;
 en <= nexten;
 end

// Nextstate Logic
// only interested in creating a short pulse when we see posedge
// spinning

always @ (change or en or spinning)
 if (change == 0 && en == 1)
 // change goes high when it initially sees posedge spinning
 if(spinning)
 begin
 nextchange <= 1;
 nexten <= 0;
 end
 else
 // change goes low while motors are spinning
 begin
 nextchange <= 0;
 nexten <= 1;
 end
 else
 if(spinning)
 // change goes low while motors are spinning
 begin
 nextchange <= 0;
 nexten <= 0;
 end
 else
 // spinning is low, go back to state that detects spinning
 begin
 nextchange <= 0;
 nexten <= 1;
 end

 // change determines when to subtract

 31

 // oring with add we can have a signal
 // that determines when to change the display of credits

assign out = change || add;

endmodule

20. module wins_credits(clk,reset,bet,prizeMoney,cred_change,
 dig0,dig1,led);

input clk,reset;
input [1:0] bet; //this input is the amount of money that was bet
input cred_change; //this input tells when credits need to be
 //added/subtracted
input [7:0] prizeMoney; //this input is the amount of money won
output [3:0] dig0,dig1; //dig1 stands for the 10's place
 //dig0 stands for the 1's place
output led;

reg [3:0] nextdig0,nextdig1,dig0,dig1;
reg enable, nextEnable, led;

always @ (posedge cred_change or posedge reset)
 if (reset)
 begin
 dig1 <= 4'b0100; //user gets 40 credits to start off with
 dig0 <= 4'b0000;
 enable <= 0;
 end
 else
 begin
 dig1 <= nextdig1;
 dig0 <= nextdig0;
 enable <= nextEnable;
 end

always @ (dig1 or dig0 or enable or prizeMoney or bet)

/*
The following is our "adding" algorithim. Since we represent
the ten's digit with the 4 most significant bits and the one's digit
with the 4 least significant bits, we cannot add the numbers
directly.
*/

 if(enable)
 begin
 led <= 0;
 //If credits + prizeMoney > 99, then stay at 99.
 if ((dig1 + prizeMoney[7:4]) > 9)
 begin
 nextdig1 <= 9;
 nextdig0 <= 9;
 end

 else
 // If there is a carry from the ones place then:
 if (dig0 + prizeMoney[3:0] > 9)

 32

 //First, check if that will push you over 99.
 //If so, stay at 99.
 if ((dig1 + 1 + prizeMoney[7:4]) > 9)
 begin
 nextdig1 <= 9;
 nextdig0 <= 9;
 end
 //If not, then perform a carry operation.
 else
 begin
 nextdig1 <= dig1 + 1 + prizeMoney[7:4];

nextdig0 <= dig0 + prizeMoney[3:0] –
 10;

 end
 //If there is no carry operation, then add accordingly.
 else
 begin
 nextdig1 <= dig1 + prizeMoney[7:4];
 nextdig0 <= dig0 + prizeMoney[3:0];
 end

 //next Enable goes low once adding credits is complete.
 nextEnable <=0;
 end

 else
 begin
 led <= &prizeMoney;
 //This is when there is carry.
 if (bet > dig0)
 begin
 nextdig1 <= dig1 - 1;
 nextdig0 <= dig0 - bet + 10;
 end

 //This is when there is no carry.
 else
 begin
 nextdig1 <= dig1;
 nextdig0 <= dig0 - bet;
 end

 //nextEnable goes high once subtracting credits is complete.
 nextEnable <=1;
 end

endmodule

21. module disp(slowclk,reset,dig0,dig1,segs);
 input slowclk;
 input reset;
 input [3:0] dig0;
 input [3:0] dig1;
 output [6:0] segs;

 wire [3:0] data;

 // when slowclk is high, then dig0 will be shown. otherwise, dig1 is
 // shown
 assign data = slowclk ? dig0 : dig1;

 33

 //displays dig1 or dig2
 sevenseg sevenseg(data,segs);

endmodule

22. module sevenseg(data,segments);
 input [3:0] data;
 output [6:0] segments;

 reg [6:0] segments;

// Taken from Verilog Handout Pg 27
// Segment # abc_defg
parameter BLANK = 7'b111_1111;
parameter ZERO = 7'b000_0001;
parameter ONE = 7'b100_1111;
parameter TWO = 7'b001_0010;
parameter THREE = 7'b000_0110;
parameter FOUR = 7'b100_1100;
parameter FIVE = 7'b010_0100;
parameter SIX = 7'b010_0000;
parameter SEVEN = 7'b000_1111;
parameter EIGHT = 7'b000_0000;
parameter NINE = 7'b000_0100;

always @ (data)
 case (data)

 0: segments <= ZERO;
 1: segments <= ONE;
 2: segments <= TWO;
 3: segments <= THREE;
 4: segments <= FOUR;
 5: segments <= FIVE;
 6: segments <= SIX;
 7: segments <= SEVEN;
 8: segments <= EIGHT;
 9: segments <= NINE;
 default: segments <= BLANK;
 endcase

endmodule

 34

APPENDIX B: HC11 ASSEMBLY CODE

* Source File: Variable Frequency Clock Generator
* Author: Jason Quach and Daniel Sutoyo
* The basic structure of the code is taken from Miller's
* handbook example 10ms timer.

* Takes the SPINS signal from FPGA as an input and outputs
* a square wave that changes its frequency three times.
* The SPINS signal is a signal that goes high when
* the user presses start on the keypad,and goes low only after
* the last motor is done spinning, regardless of any other
* attempts by the player to press start again. Thus,
* the user must wait before the last motor stops spinning
* before they can play again.

* TABLE OF CONSTANT OFFSET FOR DESIRED FREQUENCY

TEN_MS EQU #20492 *323HZ
TEN_MS2 EQU #20490 *385HZ
TEN_MS3 EQU #20495 *258Hz

* I/O Register Equates

REGS EQU $1000
TCNT EQU $0E
TFLG1 EQU $23
TOC1 EQU $16
OC1F EQU %10000000
PORTB EQU $1004
PORTC EQU $1003
DDRC EQU $1007

* Memory Map Equates

PROG EQU $C000
DATA EQU $D000
STACK EQU $DFFF

* Main Program

 ORG PROG
 lds #STACK
 ldx #REGS
 CLR PORTB
 LDAA #%11110000
 STAA DDRC

POLL LDAA PORTC * The Polling Mechanism determines
 CMPA #%00000001 * if there is a spin keypress.
 BHS START * Once SPIN goes high, it will
 JMP POLL * run through the remainder of the code

* Time Loops

* The EVB generates a square wave in port B[0].

 35

* The Time Loops are divided into three sections
* and all three produce the corresponding frequency
* signal with the above constant offsets.
* The code utilizes the timer with output compares
* to determine when to set the signal high or low

START LDY #1000
TIME ldd TCNT,X * Retrive timer counter value
 addd TEN_MS * Add constant offset
 std TOC1,X * Store as output compare
 ldab PORTB * Port B is the output
 CMPB #00 * If outputting 0, want to force bit to 1
 BEQ BIT1
 CLR PORTB * If outputting 1, want to force bit to 0
 JMP FLAG
BIT1 ldab #01 * Forcing PortB[0] to 1
 stab PORTB
FLAG ldaa #OC1F
 staa TFLG1,X
spin brclr TFLG1,X OC1F spin
 LDAA PORTC * PortC[0] is the SPINS input
 CMPA #%00000001 * If SPINS is low, continue to loop
 BLO TIME * Until the SPINS is detected
 DEY * Once SPINS is detected, loop through
 BNE TIME * With the index y

 LDY #1200 * The second section of time loop
TIME2 ldd TCNT,X * Is constructed in a similar fashion
 addd TEN_MS2 * Without the SPINS input check
 std TOC1,X * It loops through with the specified
 ldab PORTB * Y index amount
 CMPB #00
 BEQ BIT2
 CLR PORTB
 JMP FLAG2
BIT2 ldab #01
 stab PORTB
FLAG2 ldaa #OC1F
 staa TFLG1,X
spin2 brclr TFLG1,X OC1F spin2
 DEY
 BNE TIME2

TIME3 ldd TCNT,X * The third timer loop continues
 addd TEN_MS3 * to loop until the motors are done spinning
 std TOC1,X * Afterwards it jumps back to START
 ldab PORTB * This mechanism can be accomplished
 CMPB #00 * below
 BEQ BIT3
 CLR PORTB
 JMP FLAG3
BIT3 ldab #01
 stab PORTB
FLAG3 ldaa #OC1F
 staa TFLG1,X
spin3 brclr TFLG1,X OC1F spin3

 LDAA PORTC * Check if SPINS is still high
 CMPA #%00000001 * if high (which means motors are
 BHS TIME3 * still spinning) continue to output

 36

 JMP START * the last frequency clock signal

 37

APPENDIX C: PSEUDO RANDOM NUMBER ANALYSIS

The team had to consider the issue of whether the three different lengths of LFSR
would properly generate all triple combinations of 6 bit random sequences. In any length
LFSR, the repeating sequence length is 2^N-1. Thus, in the 6 bit LFSR, the repeating
sequence is length 63. In the 7 bit LFSR, the repeating sequence is 127. And in the 8 bit
LFSR, the repeating sequence length is 255. Since all of these lengths are relatively prime to
each other, it is indeed possible to generate all possible combinations of three random 6 bit
sequences (except that the 6 bit LFSR cannot generate 6 consecutive zeros).

Another issue that must be considered is the odds of winning. In any length LFSR, the
maximum number of zeros that occur consecutively is N-1. Thus, in a 6 bit LFSR, it is
impossible to obtain a 6 bit sequence of 000000. This is significant because it greatly
increases the chances of winning the jackpot. In a 7 bit LFSR, a 6 bit sequence of 000000 is
possible, but there are two possible 6 bit sequences of 111111. In an 8 bit LFSE, two 6 bit
sequences of 000000 are possible, but now there are four possible 6 bit sequences of 111111.
Because the icon encoding for the jackpot symbol is 111111, the odds of winning the jackpot
are not exactly as stated in the table of probabilities and payoff.

The actual odds of winning the jackpot are: (1/63) * (2/127) * (4/255) = 3.921*10^-
6, Compared with the listed odds of winning a jackpot (1/64)^3=3.815*10^-6. Thus, the
difference between these two odds is winning the jackpot one extra time in 10 million plays.
It should be noted that the odds of winning for the seven other icons are not exactly as shown
in the project proposal, but remain close enough for the purposes of this project. If we
assume that the three LFSR act as a true random number generator, then the table of
probabilities become more intuitive

 38

APPENDIX D: FINAL PROJECT

Figure 7: Slot machine reel display

 39

Figure 8: Slot machine hooked up to FPGA and HC11

