Slot Machine

Final Project Report
Dec. 14, 2002
E155

Jason Quach and Daniel Sutoyo

ABSTRACT:

Over the years, slot machines have evolved from its mechanical roots and now are
completely run by electronic systems. In light of this paradigm shift in operations, the
objective of this project isto design and implement a slot machine that is run by the
FPGA and HC11. The project incorporates 3 stepper motors, 3 reels (with eight icons
on each reel), a keypad, two seven segment displays, wooden supports, along with the
FPGA and HC11 in the creation of the slot machine. The main problem associated
with this project is determining where the reels need to spin in each game and how to
get them there with consistency. The result of the project is aworking slot machine
that is very fun to play.

1. INTRODUCTION

1.1. BACKGROUND

Slot machines, unlike traditional table games, require no gambling knowledge. Its
simplicity has brought it unparalleled success as the most popular and profitable game in
casinos worldwide. Although modern versions of slot machines retain the old classic view, it
has steadily evolved over the years and now is run by an electronic system rather than a
mechanical system. Thus, modern slot machines may look like the old ones, but they are run
on an entirely different principle. The outcome of each gameis actually determined by the
central computer inside the machine, not the motion of the reels.

The slot machine created in this project is quite similar to that of a modern slot
machine. The project consists of three stepper motors, three reels (each with eight icons),
wooden supports for the reels, a 4x4 keypad using three buttons (spin, increase bet, and
decrease bet), two dual seven segment displays which show the remaining credits and the
amount of credits being bet, and aLED that lights up when the player hits the jackpot. When
the user presses start, the amount bet is deducted and the reels all begin to spin. Thefirst reel
makes about ten full revolutions before stopping, while the second reel makes about twelve,
and the third makes about fifteen. There are three spinning speeds for the reels. slow (810
rad/s), medium (1014 rad/s), and fast (1206 rad/s). Thereelsinitially start out at medium
speed, increase to fast speed, and finally revert to slow speed as they near their destination. If
two or three icons match, the player is rewarded accordingly.

1.2. MOTIVATION

The motivation for creating a slot machine deals with the shift from mechanical to
electrical systemsin recent years. With modern slot machines being controlled by electrical
systems rather than mechanical systems, it isfeasible and desirable to create such adevice
with the tools at our disposal.

1.3. BLOCK DIAGRAM

The following picture is the block diagram of the slot machine. There are five major
modules that are used in the implementation of the slot machine: the keypad, random number
generator, motor, encoder, and credits module. The keypad module controls the button
presses. The random number generator module does what its name suggests and generates
pseudo random bit sequences using LFSR (linear feedback shift registers). The encoder
modul e takes as inputs the random numbers and encodes it into the corresponding icons that
will be displayed. The motor modul€’ s function is to spin the reels to the correct location.
Finally, the credits module keeps tracks of the remaining credits, bets, and winnings.

Keypad
o o . o, | {debouncar, polling, dacodar included)]

Ramdom Number Generator

I
[SPIN x l ‘
I
i | Random Random Random | :
| | #Gen 1 # Gen 2 #Gen 3 ' 1 :
: |—,{ SPIN Guard |
i [T e | U 1
I
! r—— % | | 1
1 | |
i -|—--| Cred Change 1 1 i
: | | T T |
R e R B alef____/ | '
flkenale = —| CregiBet | |
-4 ¥-f----4y-F-—--= Y r 0 |
= 3 | :i:l il | 4 I
1 lcon lemn leom | 1" L A sclk !
i || Encoder Encoder Encoder | — |
I
¥ 1 2 2 ! 7 seg !
Iy [5] [] ¥ia T L EE) | ; jencode, |
! Moo Niotor [Motor @ Wwa ! Credis prasen |
EVE o Pulse Pulse Pulse : |
i Encoder | Encoder | Encoder | e |
i 1 [i 4 EncndarJ]' [| Il b |
S N Ly e i
SR 5 _11_ 5 5 | o o 2K .
: E E E | .
I o o o o 7 s0g |
1 | |nrcnde,
i E[] E E i | K ehacnckil |
i = . = - B [
! L | L L o i
! 2 (g 2 2 | |
] 8 a] [i
! 3 3 3
| '_.1 Fl n
¥ 3 R
|
i | Motor Mator Motar
|
: —1 m— S—
1
I
I
)

Figure 1: Overall Block Digram

1.4. PARTITIONSOF THE OVERALL SYSTEM

1.41. FPGA

At the heart of any modern slot machine is a random number generator, which ensures
that each game has an equal chance of hitting the jackpot. The FPGA acts as the central
computer of the slot machine and performs three important functions: generating random
numbers, controlling the movement of the reels, and keeping track of the number of credits.
When the user presses the start button, the FPGA automatically deducts the amount of credits
being bet and al so obtains three random numbers which will be used to determine the next set
of symbolsthat will appear on thereel. Using thisinformation, the FPGA sends the
necessary information that will drive the stepper motors to the correct location. After the
reels stop spinning, the FPGA determinesif thereisawin or not and rewards the amount of
credits won; in the case of ajackpot, an LED lights up.

142. HC11

The microcontroller is used to control the spinning speed of the reels. For the
purposes of this project, the microcontroller is used to generate a square wave that exhibits a
different frequency for threeintervals. Thefirst interval of the square wave has a frequency
of 323 Hz, the second has a frequency of 384 Hz, and the final interval has afrequency of
258 Hz. When the start button is pressed, the EVB (polling for this signal) generates a square
wave with 323 Hz for about 1 second, then changes to 384 Hz for about 1.2 second, and
finally adjusts to 258 Hz until all the motors stop spinning. Once this happens, the EVB
reverts to outputting a square wave of 323 Hz until another game is started, which causes the
EVB to repeat the same set of instructions. The square wave signal outputted from the EVB
Is sent to the motor module, which is responsible for generating the pulses which run the
stepper motors.

2. NEW HARDWARE

2.1. STEPPER MOTOR

The Airpax unipolar stepper motor is an inexpensive device ($1.95) that offers great
precision and control. It has high torque, step angles of 7.5 degrees, the ability to spin either
clockwise or counterclockwise, in addition to supporting awide variety of supply voltages.
Also, the rotation speed of a stepper motor is independent of load, provided it has sufficient
torque to overcome slipping.

In this project, stepper motors are used to move the reelsto their correct location. The
team decided to use plastic reels due to its relatively light weight. Thiswould prevent the
motors from slipping from insufficient torque. The team connected circular metal plates with
atiny holein the center to the metal shaft of the stepper motor. The metal plate was super
glued to the shaft and acted as a platform to which the reels could be attached. As can be
seen, slot machines require consistent and accurate positioning of the reels and stepper
motors fulfill both of these requirements nicely.

A unipolar stepper motor is made up of two coilsand has 5, 6, or 8 leads. The stepper
motors that the team worked with had 6 leads, consisting of: ground, power, and the 4 phase
signals that control the two coils of the motors. To drive these motors, the team utilized a
motor driver chip and an H bridge to facilitate its operation. More specificaly, the team used
the EDE1200 chip to trandate a pulse into the 4 phase signals needed to drive the motor and
the L293D to amplify the current of these 4 phase signals.

2.2. EDE1200 MOTOR DRIVER CHIP

The EDE1200 unipolar stepper motor driver chipisab volt 18 pin device that
provides control over 5/6 leads stepper motors. Its two main capabilities are driving motorsin
stand alone “run” mode or external pulse drive “step” mode. In run mode, the stepper motors
freely spin based on the predetermined pin settings. 1n step mode, the stepper motor takes a
step on every falling edge of apulse. Other features in the motor driver chip include half-
stepping, direction, and speed control (only in “run” mode). Inputs to the EDE1200 are
power, ground, oscillator connection, and an external pulse if the chip is set to “step” mode.

The main reason the EDE1200 was chosen is because of the smplicity of outputting
stepper motor phase sequences through the input of asingle pulse. Other reasons included
the variety of stepper motor behavior controls. Instead of creating logic to output aternating
phase sequences to the 4 leads of the stepper motor, one only needs to output a pulse to the
EDE1200. At the falling edge of the pulse, the EDE1200 will generate the phase signals for
each of the 4 leads which will drive the motor.

The FPGA outputs the correct number of EDE1200
digital pulses (which correspondsto the
number of motor steps) to the pin 9 of the
EDE1200 chip. The pin connections for

Phase Three Drive Signal 1 [out3 . out2)18 Phase Two Drive Signal

Phase Four Drive Signal

o

] out4 o1 [J17 Phase One Drive Signal

the EDE1200 are: P3, P4, P6, P7, P8, P10, Connectto <5V DC 3] +5v osct (116 Oscillator Connection
P14 to 5V DC, P5, P11, P12, P13 to Comectlo +5VDC 4[] 8¢ o5tz []% Oscilltor Conmection
grOUﬂd. and P15; P16 to the FPGA master Digital Ground -~ 5] GHD <50 []M Connectlo +5V DC
clock Sgnal (1 M HZ) Thedi glta' pUlSE 0 = Disable Motor Drivers 6 [Frea Spin T 113 Speed Control (MSE)

emitted from the FPGA is sent to P9 of

the EDE1200. Thiswill generate output , ‘
drive Signals Pl, P2, P17, P18 (each of 1= Normal Stepping, 0 = Half-Stepping
which have a40mA maximum rati ng) for Single-Step on Falling Edge in ‘STEP" made
the four coils of a stepper motor. Refer

to the bread board schematic to see how Figure 2: EDE1200 Motor Driver Pin Diagram
the chip is hooked up.

1 = Clockwise, 0 = Counter-Clockwise 7] Direction B 112 Speed Contral

(] HalFStepping A] 11 Speed Control (LSB)

o

=

] Bn [J10 1= 'STEF made, 0 = "RUN' made

In order to ensure that the stepper motor is configured correctly, the team first tested
the stepper motor inits“run” mode (P10 on ground) to make sure that it would freely spin.
Once the team got the motor working in this mode, the team went on to test it in “step” mode.
To test that the motor works in step mode, a square wave signal from the Agilent Wavetek
Generator was applied to P9 of the EDE1200 chip. An observation that was made is that the
EDE1200 speed control pins only apply in RUN mode. In step mode, the frequency of the
square wave applied to P9 and the speed of the stepper motor are directly related.

For references on other key features and specifications of the EDE1200, please refer
to http://www.componentkits.com/dslibrary/EDE1200.pdf (trouble shooting document) or
http://www.elabinc.com/1200 fag.pdf (provides answersto severa frequently asked
questions).

2.3. L293D H-BRIDGE

Because the stepper motors require more current to operate than the EDE1200 can
output, the team utilized the L293D to remedy this problem. The L293D integrated circuit is
avery common motor driver chip that

. o CONNECTION DIAGRAMS
provides up to 600mA, which is more than

DIL-16 (TOP VIEW)

enough current to sufficiently drive the N Package, SP Package
stepper motors. Theinputsto the L293D are N e
power, ground, and the four phase drive e 'E i‘;i :
sgnals' DUTPFUT 1E EOUTFJT 4
END E E END
GHD E El GHD
QUTPUT ."l? |—-|-;}|_|||'._l| a
isFUT 3 [7] [10] INPUT 3
v [a] (2] cHIF mHIET 2

The pin connections for the L293D are: P1, P8, P9, P16 to 5V DC, P4, P5, P12, P13 to
ground, and P2, P7, P10, P15 receiving the corresponding EDE1200 drive signals. Then the
L293D pins P3, P6, P11, P14 will deliver the same EDE1200 output signals but with much
more current. The six lead stepper motor is connected in the following manner: red to 5V
DC, orange to P2, yellow to P7, brown to P11, green to P14, and black unconnected (refer to
figure 4).

3. SCHEMATICS

EDEA200 Unipolar
f Stepper-iotor Lg:

TE Xtz |
0wt Cut1 . i i i
2 s Figure 3: L293D Motor Drive Pin Diagram
o et S ! 4
| o oscz | S
rgatal |
| GHND +5V b ‘
= { Fraa Spin Spaed (MSH) +
Diraction Spaad T
Hall-Stapping Spaad (LEE)
'_'rls pin takes Shap Run A
in i puilses —1
thiat will driree
ths motors
| Chip inhikEn 1 WS
+ gl 1 Input 4 §
1 Dutput 1 Owiput 4
i e —— |
GND GHD 1 T—
i | 1 @EnD GHD
1 ouputz Culput 3 L T
e a1 npaifl 7 inpuit 3 j
ey e e R Chip Inhitie @ ——

Tiwaae & Porys Cusp] [he signals: ihal will run The sleppsn malor

Figure 4: EDE1200 and L 293D Hookup Diagram

FPGA | / O Pins
Input Pins FPGA
P10, P45, PA7-49, P81,
Vdd, ground (not shown)
Output Pins [
P7-9, P13-14, P18, P23- 29, P46, P50-51, P61-62, g g?l‘;
P65-69, P82-83 - 539
Eg AT cAmL a p A paz
EVB1l / OPins ?g ooz —————— AN ——p24
I nput Pins = gr.gg—n,m_ggg
. u
Port C 3: 0] e v pg;
. A
Qut put Pins e —ﬁm-—gzs
Por t B[0] i P 3§ a7 Chins
E (1o] :'_"45
Not e E : p4B
The three blocks with Step, Gsc 1 & 2:;
2, and OQUT 1-4 are the overall block w2 (49
for the EDE1200 and L293D hook up o p50
di agram from figure 4. e p51
L2 [alstis
jaz [3@
g ANAG TR MM
. I Ll o e ——— b Fai T
‘Eg cue AMP—DES
E oz | S
i LY.L} AN A G T
Step Motor PR f— A —(PEE
Step Gigzl aaaID6E
Orange N1 QuTY
Yellow N2 ouT2 pa1
Green N3 ouT3 e £
Brown [IMN4 QuT4 OsC2 =
Red voo ||
pT
pa
s
Stap Molor S N p13
e OUT1 Step |— 4|
2 QuT2
IN3 ouT3 a3 o
Ihid ouT4 i
i OsC2 082
Slap Molor
83
N1 ouT1 Blep EVB [Nt
2 ouT2
I3 ouT3 ge)
It ouUT4 osc2
nln]

Figure5: Bread Board Circuitry

4. FPGA

The FPGA takesin asinputs the EVB generated square wave and the user key
presses. It outputs the credits and bet display, pulses that will be used to run the stepper
motors, and asignal that informs the EVB when to start itsinstruction. The following
descriptions are of the key modules involved in the implementation of the slot machine.

4.1. KEYPAD, CREDITSDISPLAY, AND BET DISPLAY

The keypad decoder module polls a 4x4 matrix keypad for input. The slot machine
uses three input keys: spin, up, and down. The amount bet is controlled by the up and down
buttons, ranges from 1 to 3, and is displayed on adual seven segment display. The credits
remaining are shown on a separate dual seven segment display and isinitially set to 40.
When the spin button is pressed, the credits remaining decreases based on the amount of
credits bet. Once the player reaches zero, the game will not start until it isreset.

In our design, the number of credits available range from 0-99 and is represented in
the verilog code as 8 bits. The 4 most significant bits are used to represent the ten’s place
and the 4 least significant bits are used to represent the one’s place. In the verilog code, the
ten’s place isdesignated as “digl” and the ones place designated as “dig0.” Thisis done
because the seven-segment decoder is limited to decoding single digit values. By splitting up
the credits into two separate numbers, it will be easier to decode and display them. For more
information, refer to appendix A —module 20.

4.2. RANDOM NUMBER GENERATOR

The random number generator used in this slot machine is emulated by the FPGA
through the use of LFSR. Our design constantly generates three random numbers that range
from 0 to 63. Thisisaccomplished by using three different lengths of LFSR (6, 7 and 8 bit).
Three random numbers are acquired directly from the three LFSR when the player presses

spin.

4.3. ICON ENCODER

The encoder takes in, as inputs, each of the three random numbers. It outputs the
current set of symbols and the next set of symbols. When the FPGA isturned on or when it
isreset, the current set of symbolsis defaulted to the watermelon icons. However, the reel
positions will have to be manually reset because the FPGA has no memory of the previous
position of thereels. On therising edge of spin, three random numbers are sent to the
encoder. At this point, the current set of symbols gets the values of the next set of symbols
while the next set of symbols gets new values based on the three random numbers. In effect,
this module acts as an encoder and shift register. The random numbers range from O to 63
and each of these values is mapped to one of the eight slot machine icons. Some icons have
more than one number associated with it. Based on theicon LUT, the random numbers are
encoded into their corresponding icons. Since there are eight different icons, they are
encoded by using three bits. The following is atable of the icon encoding used in this
project.

Table1—1con Encoding Table

Dec. Val. 6-bit Random Sequence Icon encoding Icon

63 111111 111 Jackpot
61— 62 111101 t0 111110 110 Triple Bar
57 -60 111001 to 111100 101 Double Bar
52 - 56 110100 to 111000 100 Bar

47 - 51 101111 to 110011 011 Cherry
37-46 100101 to 101110 010 Apple

27— 36 011011 to 100100 001 Oranges

00 — 26 000000 to 011010 000 Watermelon

4.4. MOTOR PULSE ENCODER

The step motors rotate counterclockwise at 7.5 degree steps on the falling edge of a
pulse. Sincethere are 8iconsontheredl, it will take 45 degrees to move from one icon to
the next. Thus, it will take 6 steps at 7.5 degrees to move from one icon to the next. In order
to determine the number of steps needed to go from one icon to the next, the encoder needs to
take in as inputs the current set of symbols and next set of symbols. Itisnot difficult to
create logic (Appendix A module 12 - 14) that will determine the number of steps that the
current icon is away from the next icon. First, the number of icons between the current and
next icon are found. Multiplying this number by six will yield the number of steps needed to

go from the current icon to the next icon.
Table 2 — Steps Needed by Motor to move from Current) | S
Symbol to Next Symbol [Bexz]
How to read this chart: the current icons are located in column { EI
one and the next icons are located in row one, i.e. to go from
orangeto cherry is 36 steps.
Jackpot Barx3 | Barx?2 W.Melon
Jackpot 0 6 12 18 24 30 36 42
Bar x 3 42 0 6 12 18 24 30 36
Bar x 2 36 42 0 6 12 18 24 30
Bar 30 36 42 0 6 12 18 24
Cherry 24 30 36 42 0 6 12 18
Apple 18 24 30 36 42 0 6 12
Orange 12 18 24 30 36 42 0 6
W.Melon | 6 12 18 24 30 36 42 0

Each of the three reels will complete several revolutions before stopping at their
destination. Thefirst reel spins an extra 10 revolutions, the second reel spins an extra 12
revolutions, and the third reel spins an extra 15 revolutions. Since 48 steps constitute a
complete revolution, 48* 10 will be added to the number of stepsfor the first reel, 48* 12
steps will be added to the second, and 48* 15 steps will be added to the third.

The number of steps needed to move from the current icon to the next icon is then
used to create a series of pulses that will drive the step motors. As previously mentioned,

9

stepper motors only respond on the falling edge of a pulse. Thus, setting the pulse signal
equal to the least significant bit of a counter that counts up to 2 times the number of steps
needed will accomplish thisend. When the counter is equal to 2 times the number of steps
needed, then the pulses will stop emitting until the user starts another game.

This module takes in as input the square wave generated by the EVB, which hasa
direct effect on the speed of thereels. By decreasing/increasing the frequency of the square
wave that drives the series of pulses, the pulses themselves will occur at alower/higher
frequency which will in turn cause the step motor angular velocity to increase/decrease
accordingly. Thus, thereelsinitially spin at medium speed, change to high, and then change
to slow asthey near their destination. This achieves the desired effect of gradually slowing
down the spinning as the reel approaches its destination.

4.5. WINNING CREDITS

There are two ways to win when playing the slot machine. A player can either match
two icons or match all threeicons. This encoder takes in the next set of symbols and
determinesif thereisawin. If thereisawin, it will output the corresponding prize money.
Else, it will output zero as the prize money. The prize money will not be added until the reels
are finished spinning. The team created a signal named cred_change which informs the
FPGA when to subtract/add credits. (refer to appendix A —module 19 for more information
on this). In addition, if the user wins the jackpot, the LED will light up.

Table 3 Probabilities and Payoff
Table shown is credit bet = 1, for other payoffs refer to appendix A- module 18

3 Matching

Prob. Of
Winning

Prob. of
Winning

Credits
Won

Numerical
Value

Credits
Won

Numerical
Value

2 Matching

Icons Icons

Seq.

Seq.

Jackpot (1/64)"3 .0000038 LEDIlight |J| Jackpot (1/64)"2 .0002441 10
Triple Bar (2/164)"3 .0000305 50 Triple Bar (2/164)"2 .0009765 7
Double Bar | (4/64)"3 .0002441 30 Double Bar | (4/64)"2 .0002441 6
Bar (5/64)"3 .0004768 10 Bar (5/64)"2 .0039063 5
Cherry (5/64)"3 .0004768 10 Cherry (5/64)"2 .0061035 4
Apple (10/64)"3 | .0038146 5 Apple (10/64)"2 | .0244146 2
Oranges (10/64)*3 | .0038146 5 Oranges (10/64)"2 | .0244146 2
W. melon (27/64)"3 | .0750846 2 W. melon (27/64)"2 | 177978 0

5. MICROCONTROLLER DESIGN

5.1. OVERVIEW

The microcontroller design functions as a multiple frequency square wave generator.
Its purpose is to provide a frequency varying square wave to the verilog module driveMotors
and thereby accomplishing varying rotation speeds for the motors. A one-bit signal spinning
isthe only input PORTCJ[0] to the microcontroller design, and indicates when the instruction
should be started. Spinning isasignal that goes high once the start button is pressed, and

goes low once the motors are all finished rotating. The following finite state machine

diagram explains the process of outputting the modulated square wave signal. Actual values

calculated and used will be described in the next subsection

10

Spinning = 0

Spinning = 1 Spinning = 1

& after looping

Frequency 2
index = 1200

Frequency 1
index = 1000

Spinning = 0 After looping

Spinning =0

USpinning =1

Figure 6: FSM of HC11 Varying Frequency Square Wave Gener ator

The actual output is not shown in this state diagram, but it should be noted that the output bit
Port B[0] istoggled on and off every time the HC11 loops to the same state. On reset, the
HC11 pollsto detect when the spin button is pressed. Once an initial input is provided, the
HC11 goesto the Frequency 1 state. Every time the HC11 loops to the same state the index
is decremented by 1 aslong as spinning is high. Thus, the higher the index, the longer the
interval of that particular square wave frequency. When the index is reduced to zero in the
Frequency 1 state, the HC11 jumps to the Frequency 2 state and repeats the process. Once
the HC11 reaches the third state, it stays there until al the motors are finishing spinning (in
other words, when spinning = 0), at which point it will return to the first state and await for
another game to begin (spinning = 1).

5.2. DESIGN

Designing a varying square wave generator can be accomplished by two general time
delays. Thefirst isanindex looping that can dictate the time period spent in each frequency
state. The second is the output compare function with the timer counter, which can
accurately determine when the output bit istoggled (half of the square wave period). Index
looping isafairly trivial concept. For example, if it takesthe HC11 .01 seconds to execute all
the commands within aloop, then looping a hundred times will now result in the HC11
taking an entire second to execute the instructions. The index values are selected by first
calculating the total number of cycles within the loop and then dividing by the HC11
operating speed of 2.46 MHz to find the time period to complete one loop. Multiplying by the
index value will determine the time period in each state. With some further experimentation,
the index values 1000 and 1200 were found to produce the desired results for the project.

Output compare time delays determine the half period of the square wave. A 10 ms
delay program using the output compare can be found in Software and Hardware
Engineering by Fredrick M. Cady Pg 194. Using the example as the basic algorithm and

11

changing the offsets to correspond to the right frequency, the remaining task isto output the
square wave. The output should alternate high low to achieve a square wave signal. Therefore
each output compare also includes an output check to toggle the output on / off. Thisis
accomplished by simply loading 1 (toggles on) or clearing the register (toggles off).

In Appendix B, the offsets chosen are 20490, 20492, and 20495 which yields
respective frequencies of 258, 323, and 385 Hz. Typically, taking the offset and dividing by
the clock frequency will give the time delay. Cal culations were done on offset values 20000
and 10000 which yielded the expected results of 121 and 242 Hz for a 2.4567 MHz
oscillation. However, similar calculations were unsuccessful for other desired frequencies.
This could possibly be due to the timer flag overflow during the other commands such as the
output toggle. The team chose the simple solution of trial and error and obtained the desired
frequency by verifying the results with the logic analyzer.

6. RESULTS

The slot machine has three reels each with eight icons. The player begins with 40
available credits and has the ability to increase the credit bet to a maximum of three. The
credit bet is deducted from the credits available at the beginning of each play. The reels spin
at three speeds, starting with medium, changing to high, and ending with slow as they
approach their destination. The amount won is added to the credits available after the last reel
is done spinning. The user can reach a maximum of 99 credits and will not be able to play if
the remaining credits available are insufficient. In the case of ajackpot, an LED will light up.
A prominent feature in the final results that were not in the initial proposal was a safe guard
against a player continually pressing or holding down the start button while the reels are
spinning. Without this safeguard, these actions can potentially disrupt the system and cause
the reels to spin to the wrong position.

The most difficult part of this design was ensuring that the motors would spin to the
correct location. The electrical aspect of this design was not too difficult, while the
mechanical aspect proved quite problematic. First, the team had to determine the logic that
would give the number of steps going from one motor to the next. Getting the motorsto spin
at the correct speeds and verifying that the motors would spin to the correct location
consistently took many hours of testing or debugging. There were three main reasons why
the motors would not spin to the correct location. First, the L293D chip wasinitially not set
up properly. Second, the electrical wiring was not secure, which resulted in the motor
vibrating rather than stepping. The final reason was the connection between the reel and the
stepper motor. The team realized that when the icons did not display correctly, it was not
because of the bugsin the program or the electrical wiring. It was because the reels were not
securely attached to the stepper motors, which would cause the stepper motor and reel to not
spin in synchronization. Once the connection between the stepper motor and reel were
secure, the icons displayed correctly

Some improvements that could be made in this project would be to rely more on the
HC11 to ease the burden of using too many CLBs on the FPGA. Also, since the random
number generator is such an integral part of the modern slot machine, the project would be
well served if a genuine random number generator could be implemented as opposed to the
pseudo bit sequences of the LFSR.

12

1. REFERENCES

[1] Fredrick M. Cady, Software and Hardware Engineering, Oxford University Press, 1997.
[2] EDE1200 Spec Sheet http://www.componentkits.com/dslibrary/EDE1200.pdf
[3] EDE1200 FAQ http://www.elabinc.com/1200_faqg.pdf

8. PARTSLIST

Part Sour ce Vendor Part # Price

EDE1200 Jameco 141532 3 x8.95 =26.85

L293 Digikey 296-9518-5-ND 3 x270 =8.10

Stepper Motor Jameco 164056 3 x1.95 =585
Total = $40.80

13

APPENDIX A: VERILOG MODULES

1. nodule top_level (clk,reset,evbdk, rows, col s, | ed, scl k, scl k2,
segnent s, segnent s2, pul sel, pul se2, pul se3,
start, spins);

i nput clk, evbd k;

i nput reset;

i nput [3:0] rows, cols;

output start, sclk, sclk2;

out put | ed, pul sel, pul se2, pul se3;
output [6:0] segnents, segnents2;
out put spi ns;

wire en;

wire start2;

wire [1:0] bet;

wire [3:0] press;

wire [3:0] dig0,digl
wire [7:0] prizeMoney;

//this nmodul e used to create a slower clock signa

/[Iwhich will be used in the dual seven seg display, keypad,
/'l and debouncer

del aycl k del aycl k(cl k, reset, scl k, scl k2);
//these two nodul es are used to control the keypad

keypad keypad(scl k, reset, rows, col s, press);
debouncer debouncer (scl k, reset, press, en);

/lstart only goes high if enough credits avail abl e.

/1 This ensures that the player

/I cannot go under zero credits.

assign start = ~press[3] && ~((dig0 < bet)&& (digl==0));

/1this nodul e nakes sure that the gane only starts at the

[l appropiate tines. in other words, it guards against the
/I player holding on to the start button and pressing it rapidly
spi nni ng spi nni ng(cl k, reset, add, start, spi ns);

/1this nodule allows the user to change their bet
credit Bet creditBet(clk, reset, en, ~press[2], ~press[1], bet);

//this nodul e creates the random nunbers used in the slot machine
//1n addition, it determnes if the player has won and it also
/lcreates the pulses that will run the stepper notors
randomNunGen_Encode randomNunten_Encode(cl k, evbd k, reset, start, bet,
pul sel, pulse2, pulse3, prizeMney, add);

//this nmodul e keeps track of when the credits need to be change
/1it tells the win_credits nodul e when to add and subtract credits
credi t change creditchange(cl k, reset, spi ns, add, cred_change) ;

//this nodul e adds and subtracts the credits when necessary

wins credits wi ns_credits(clk,reset, bet, pri zeMoney,
cred_change, di g0, di g1, | ed);

/1this nodul e displays the credits renuaining

di sp di sp(scl k, reset, di g1, di g0, segnents) ;

/1this nodul e di splays the nunber of credits being bet
sevenseg sevenseg({2' b00, bet}, segnents2);

14

endnodul e

2. nmodul e del aycl k(cl k, reset, scl k, scl k2);
i nput clk;
i nput reset;
out put scl k;
out put scl k2;
/* this nmodule will be used to control the
mux for the dual segnent display. it generates
a clock that is nmuch slower, which is used
to alternately power the two transistors
that control the dual segment display */

reg [10: 0] count;

al ways @ posedge cl k or posedge reset)
if (reset) count <= 0;

el se count <= count + 1;

assign sclk = count[10];
assign scl k2 = ~count[10];

endnodul e

3. modul e keypad(clk, reset, rows, col s, press);
i nput clk;
i nput reset;
i nput [3:0] rows;
output [3:0] cols;
out put [3:0] press;
/1 this nodul e deternines when one of the three keys are pressed

reg state;
reg [3:0] cols;
reg [3:0] keys;
reg [3:0] press;

al ways @ posedge cl k or posedge reset)
if (reset) begin
state <= 0;
cols <= 4'Db1110;
press <= 4'bl1111;
end else if (& ows) begin //if &ows =1, then no button being pressed
state <= 0; /'l otherw se, a button being pressed
press <= 4'bl1111;
cols <= {cols[0],cols[3:1]};
/lpolling the colums, since no button is being pressed
end else if (~state) begin
state <= 1;
press <= keys;// one of the buttons being pressed

end

al ways @ (rows or cols) /I determi nes which button is being pressed
case ({rows, col s})
/Iwe are only concerned with three buttons
8' b0111_1110: keys <= 4'b011l1
8'b1011_1110: keys <= 4'bl01l1
8'b1101_1110: keys <= 4'b1101
default: keys <= 4'bl1111;
endcase
endnodul e

15

4. nodul e debouncer(cl k, reset, din, en);

i nput clk;

i nput reset;

i nput [3:0] din; /1 row input frommtrix keypad

Wi re press; /'l press signal, is any row shorted?
out put en; /1 if an input is debounced it will

/'l be a signal when we want to shift inputs
reg [1: 0] state, nextstate;

assign press = ~& din; /1 NAND of rows, which nmeans true when there
/1l is a 0 since we know a button is pushed
/1l when a rowis shorted (having a 0 in 4
/'l bit)

/'l STATE REQ STER

al ways @ (posedge cl k or posedge reset)
if (reset) state <= 2'bO0;
el se state <= nextstate,;

/'l NEXT STATE LOG C

al ways @ (state) /1l This code basically is 4 states, and will
. /'l generate through until it hits the
4'(
/] state

case (state)

2'b0: if(press) nextstate <= 2'b01
el se nextstate <= 2'b0;

2'b01: if(press) nextstate <= 2'bl0;
el se nextstate <= 2'b0;

2'b10: if(press) nextstate <= 2'bll
el se nextstate <= 2'b0;

2'b11: if(press) nextstate <= 2'bll
el se nextstate <= 2'b0;

default: nextstate <= 2'b0;

endcase

assign en = (state == 2'bl1); // Sinply whenever it hits final state,
/1l the inputs need to be shifted since the
/1 signal is debounced
endnodul e

5. modul e spi nni ng(cl k, reset, add, spi n, spi nni ng) ;

i nput cl k, reset, add, spi n;
out put spi nni ng;

reg state, nextstate;
/1 Thi s nodul e nakes sure that while the notors are spinning,
/I anot her game cannot be started.

al ways @ (posedge cl k or posedge reset)
if (reset) state <= 0;
el se state <= nextstate;

/*
The tine between posedge spin and posedge add is the tine

16

wherein we want to guard agai nst the player pushing and hol ding the spin
button. On posedge of spin, we want to nmake sure fromthat point

that any instances where the player presses start will not restart the
game. Thus, on posedge spin, we set state =1 if add = 0. Once add
becones high, we set state = 0.

*/
al ways @ (spin or add)
i f(spin)
i f(add) next state <=0;
el se nextstate <=1,
el se if(add)

nextstate <= 0;
el se nextstate <= state;

assign spinning = state;
endnodul e
6. nodul e creditBet(clk,reset, en, up,down, val);

/* this nodule controls the betting nmechanismin the slot nachine.
there is an increase and decrease button. the betting range is
1to 3. if youtry to go higher than 3 it recycles to 1. if you try
to go lower than 1, it goes to 3.

*/

i nput cl k, reset, up, down, en;

out put [1:0] val;

paraneter ONE = 2' b01;
paraneter TWO = 2' b10;
paranmeter THREE = 2' bl1;

reg [1: 0] state;
reg [1: 0] nextstate;

/'l STATE REG STER

al ways @ (posedge cl k or posedge reset)
if (reset) state <= ONE;
el se state <= nextstate;

/lenable is acquired through the debouncer nodul e
al ways @ (posedge en or posedge reset)

if (reset) next state <= ONE;

el se

case (state)
ONE: begin
/[1if you press up, bet goes to two
i f(up) nextstate <= TWO,
/[1if you press down, bet goes to one
el se if (down) nextstate <= THREE;
el se nextstate <= ONE

end
TWO. begin
i f(up) nextstate <= THREE;
else if (down) nextstate <= ONE;
el se nextstate <= TWO
end
THREE: begi n

17

i f(up) nextstate <= ONE
else if (down) nextstate <= TWO,
el se nextstate <= THREE
end
defaul t: nextstate <= ONE

endcase
/1 OUTPUT LOG C
assign val = state; //val is the amount of the bet
endnodul e

7. nodul e randonNuntzen_Encode(cl k, evbd k, reset, start, bet,
pul sel, pulse2, pul se3,
pri zeMoney, add);

i nput cl k, evbC k, reset,start;

i nput [1:0] bet;

wire [5:0] randNumd, randNun®, r andNun8;

wire [2:0] currentlconl, currentlcon2, currentlcon3;
wire [2: 0] nextlconl, nextlcon2, nextlcon3;

wire [10: 0] notorDatal, notorData2, notorData3;

wire revol ve

output [7:0] prizeNoney;

out put add;

out put pul sel, pul se2, pul se3;

/] These three nodul es are the 6,7,8 bit LSFRs.

randontenl randontenl(cl k, reset, randNunt);
r andonten?2 randonten2(cl k, reset, randNun?);
randonten3 randonten3(cl k, reset, randNunB);

/1 Thi's nodul e encodes the random nunbers into the corresponding icons
/lupon the posedge of start.
i conEncodi ng

i conEncodi ngl(reset, start,randNuml, currentlconl, nextlconl);

i conEncodi ng
i conEncodi ng2(reset, start, randNuml, currentlcon2, nextlcon2);

i conEncodi ng
i conEncodi ng3(reset, start, randNuml, currentl con3, nextlcon3);

/'l These nodul es encodes the current and next icons into the

/'l corresponding nmotor information. The alternator nodule is used to
/1 facilitate the encoding of notor information

al t er nat or alternator(reset, start, alternate,revolve);

not or Encodi ng
not or Encodi ng(currentlconl, nextlconl, al ternate, revol ve, not or Dat al) ;

not or Encodi ng2
not or Encodi ng2(current | con2, nextl con2, al ternate, revol ve, not or Dat a2) ;

not or Encodi ng3
not or Encodi ng3(currentl con3, nextl con3, al ternate, revol ve, not or Dat a3) ;

18

/*

Thi s nodul e encodes the nmotor information into the pul ses that drive the
stepper notors. The third driveMtor nodul e outputs a signal add, which
tells you when the credits won shoul d be added. This add signal goes
high after the final nmotor has stopped spinning.

*/

driveMotors driveMdtor1l(evbd k,reset, notorDatal ,pul sel);
driveMotors driveMotor2(evbC k,reset, notorData2 ,pul se2);

dri veMot or sAdd driveMot or3(evbC k, reset, notorData3 , pul se3, add);

/'l This nodul e encodes the next icons to determine if there is a win and
/1 it also outputs the noney won.

Wi nsequence?2 wi nsequence2(bet, nextlconl, nextlcon2, nextlcon3, pri zeNbney);

endnodul e

8.

nmodul e randontGenl(cl k, reset, randNunt) ;
i nput clk;

i nput reset;

out put [5:0] randNunt;

//this nmodule is an 6 bit LFSR
reg [5:0] rand;
al ways @ posedge cl k or posedge reset)

i f(reset)
rand <= 6' b111111;

el se
begi n
/Ipolynomial for 6 bit LFSR 1 + x"5 + x"6
rand[0] <= rand[4] *rand[5];
rand[5: 1] <= rand[4:0];
end

assign randNuml = rand[5:0]; //outputs the random 6 bit sequence

endnodul e

9.

nmodul e randontGen2(cl k, reset, randNun?) ;
i nput clk;

i nput reset;

out put [5:0] randNun®;

//this nodule is a 7 bit LFSR
reg [6:0] rand2;

al ways @ posedge cl k or posedge reset)

i f(reset)
rand2 <= 7'b1111111;
el se
begi n
[Ipolynomial for 7-bit LFSRis: 1 + x"6 + x"7
rand2[0] <= rand2[5] *rand?[6];

19

rand2[6: 1] <= rand2[5:0];
end
assign randNun? = rand2[5:0]; //outputs the random 6 bit sequence
endnodul e

10. nodul e randontzen3(cl k, reset, randNunsB) ;
i nput clk;
i nput reset;
out put [5:0] randNunB;
//this nmodule is an 8 bit LFSR

reg [7:0] rand3;
al ways @ posedge cl k or posedge reset)

i f(reset)
rand3 <= 8'b11111111;

el se
begi n
/lpolynomial for 8 bit LFSRis: 1 + x + x"6 + x*7 + x"8
rand3[0] <= rand3[1] *rand3[5] *rand3[6] *rand3[7] ;
rand3[7: 1] <= rand3[6:0];
end
assign randNun8 = rand3[5:0]; /loutputs the random 6 bit sequence
endnodul e

11. nodul e i conEncodi ng(reset, start, randNum currentl con, nextlcon);
i nput reset,start;
i nput[5:0] randNum
output [2:0] currentlcon, nextlcon

/1this nodul e takes in random nunber and outputs the corresponding icon

//randNum wi | | be between 0 and 63
par anet er waternel on = 3' b000O;
par anet er orange = 3' b001
par aneter appl e = 3' b010;
paraneter cherry = 3'b011
par anet er bar = 3' b100;
par anet er bar?2 = 3'bl01
par anet er bar3 = 3'bl10
par anet er jackpot = 3'bl11

reg[2:0] currentlcon, nextlcon

al ways @ posedge start or posedge reset)
/[Iwill encode the random numnber
/lonce user lets go of start button

if (reset)
begi n
next |l con <= waternel on
currentlcon <= waternel on
end
el se

20

endnodul e

begi n

end

i f(randNum <= 6' b011010)

nextlcon <= jackpot;

else if (randNum > 6' b011010

el se

el se

el se

el se

el se

el se

next | con <= orange;

f (randNum > 6' b100100
next |l con <= appl e;

f (randNum > 6' b101110
nextlcon <= cherry;

f (randNum > 6' b110011
next |l con <= bar;

f (randNum > 6' b111000
nextl con <= bar?2

f (randNum > 6' b111100
next |l con <= bar3;

next |l con <= wat er nel on;

currentlcon <= nextlcon

randNum <=

randNum <=

randNum <=

randNum <=

randNum <=

randNum <=

12. nodul e alternator(reset,start,alternate,revolve);

i nput

/*the purpose of this nmodule is to facilitate the interaction between
not or Encodi ng and dri vedata nodul e.
back and fromto 1 and 0O everytinme slot machine is played.
that the nmotor coming into DriveData will
previous entry, meaning that the data will

is played. Revolve is used so that upon reset,

reset, s
out put al ternate,

tart;

not spin when reset

*/

reg alternate,
al ways@ posedge start or posedge reset)

revol ve;

s i npl enent ed.

revol ve;

if (reset) begin

el se

endnodul e

13. nodul e not or Encodi ng(currentlcon, nextlcon, alternate, revol ve, stepDat a) ;

i nput alternate,

end
begin

end

alternate <= 0;
revol ve <= 0;

alternate <= alternate + 1;

revol ve <= 1;

revol ve;

i nput [2:0] currentlcon, nextlcon
out put [10: 0] stepData;

21

6' b100100)

6' b101110)

6' b110011)

6' b111000)

6' b111100)

6' b111110)

Al'ternate is one bit and swi thes
Thi s means
al ways be different than the
change everytine a new gane
the stepper nmotors do

//this nodule takes in the current state and the next state of icons
/land outputs the nunber of steps it will take to go from
//the current icon to the next icon

paranmet er wat ernel on = 3' b000;
par anet er orange = 3' b001
par aneter appl e = 3' b010;
paraneter cherry = 3'b011
par anet er bar = 3'bl100
par anet er bar?2 = 3'bl01
par anet er bar3 = 3'bl10
par anet er jackpot = 3'b111;

reg [2: 0] notorDat a;

al ways @ (nextlcon or currentlcon)
//motorData is the nunber of icons that the current icon is away
//fromthe next icon. the following is the algorithmfor solving
[1this nunber

if(currentlcon > nextlcon)

notorData <= 8 + nextlcon - currentlcon
el se

not orData <= nextlcon - currentlcon;

assign stepbData = 6*{4' b0, notorData}+ 480*revol ve + 48*al ternate;

/*

The first termis the nunber of actual steps to next icon. Each step
is 7.5 degrees and each icon covers 45 degrees on the reel so you
need 6 steps to go fromone icon to the next.

The second termis the nunber of extra revolutions we want the ree
to spin. Since one full revolution is 48 steps,

then the nunber of extra revolutions in this case is

10. The revolve variable is zero on reset and one after start has
been pressed

The third termis used so that each set of stepbData will always be
di fferent on each successive play. Since the nodule that codes for
the notor pul se depends on stepData being different everytine, the
sl ot machine would work incorrectly if stepData was the sane on two
consecutive plays. This case would happen if a player were to

get the same icon on the sane reel on two consecutive plays.

*/
endnodul e
14. nodul e ot or Encodi ng2(currentlcon, nextlcon, al ternate, revol ve, st epDat a) ;
i nput alternate, revol ve
input [2:0] currentlcon, nextlcon
out put [10: 0] stepData;
/1this nodule takes in the current state and the next state of icons
/land outputs the nunber of steps it will take to go from
//the current icon to the next icon

par anmet er wat ernel on = 3' b000;

22

par anet er orange 3' b001;

par aneter appl e = 3' b010;
paraneter cherry = 3'b011
par anet er bar = 3' b100;
par anet er bar?2 = 3'bl01
par anet er bar3 = 3'bl10
par anet er jackpot = 3'bl11

reg [2: 0] notorData;

al ways @ (nextlcon or currentlcon)
//motorData is the nunber of icons that the current icon is away
//fromthe next icon. the following is the algorithmfor solving
/1this nunber

i f(currentlcon > nextlcon)

notorData <= 8 + nextlcon - currentlcon
el se

notorData <= nextlcon - currentlcon;

assign stepbData = 6*{4' b0, notorData}+ 576*revol ve + 48*alternate;

/*
The first termis the nunber of actual steps to next icon.
Each step is 7.5 degrees and each icon covers 45 degrees on the reel
so you need 6 steps to go fromone icon to the next.

The second termis the nunber of extra revolutions we want the ree
to spin. Since one full revolution is 48 steps,

then the nunber of extra revolutions in this case is

12. The revolve variable is zero on reset and one after start has
been pressed

The third termis used so that each set of stepbData will always be
di fferent on each successive play. Since the nodule that codes for
the notor pul se depends on stepData being different everytine, the
sl ot machine would work incorrectly if stepData was the sane on two
consecutive plays. This case would happen if a player were to
get the same icon on the sane reel on two consecutive plays.

*/

endnodul e
15. nodul e not or Encodi ng3(currentl con, nextlcon, al ternate, revol ve, st epDat a) ;
i nput alternate, revol ve
i nput [2:0] currentlcon, nextlcon
out put [10: 0] stepData;
//this nodule takes in the current state and the next state of icons

/land outputs the nunber of steps it will take to go from
//the current icon to the next icon

par anet er waternel on = 3' b000O;
par anet er orange = 3' b001
par aneter appl e = 3' b010;
paraneter cherry = 3'b011
par anet er bar = 3' b100;
par anet er bar?2 = 3'bl01

23

par anet er bar3
par anet er jackpot

3' b110;
3' bl111;

reg [2: 0] notorData;

al ways @ (nextlcon or currentlcon)
//motorData is the nunber of icons that the current icon is away
//fromthe next icon. the following is the algorithmfor solving
[1this nunber

i f(currentlcon > nextlcon)

notorData <= 8 + nextlcon - currentlcon
el se

notorData <= nextlcon - currentlcon;

assign stepbata = 6*{4' b0, notorData}+ 720*revol ve + 48*alternate;

/*
The first termis the nunber of actual steps to next icon.
Each step is 7.5 degrees and each icon covers 45 degrees on the reel
so you need 6 steps to go fromone icon to the next.

The second termis the nunber of extra revolutions we want the ree
to spin. Since one full revolution is 48 steps,

then the nunber of extra revolutions in this case is

15. The revolve variable is zero on reset and one after start has
been pressed

The third termis used so that each set of stepbData will always be
di fferent on each successive play. Since the nodule that codes for
the notor pul se depends on stepData being different everytine, the
sl ot machine would work incorrectly if stepData was the sanme on two
consecutive plays. This case would happen if a player were to
get the same icon on the sane reel on two consecutive plays.

*/

endnodul e
16. nodul e driveMtors(clk,reset, notorDat a, pul se);

i nput clk, reset;
i nput [10: 0] notorData;
out put pul se;

/InmotorData is the nunber of steps needed to get to next icon

reg [10: 0] currentData, nextData;
reg [10: 0] state, next State,;

/1l the following is the state machine that creates the pul ses
/1 that will drive the step notor

al ways @ posedge cl k or posedge reset)

if (reset) begin
state <= 0;
next Data <= O0;
currentbData <= O;
end
el se begi n
state <= next St at e;

24

current Dat a <= next Dat a;
next Dat a <= not or Dat a;
end
/'l he step notor spins on the falling edge the pulse. thus,
/'l the newbData and currentData are used to tell when a new set of
// notorData arrives, so that state will be reset to zero

al ways @state or notorData or nextData or currentData)

/*we need to count to 2 * notorData to get the appropiate amount
of falling edges needed to run the notor*/

if (state == notorData<<1)
next State <= state;

/[* if (state == 2* notorData), we don't want to create any nore pul ses.
we want to reset state to zero only when we get a new notorData
input. And if (state < 2*nptorData), we want to add 1 to state*/

else if (nmotorData > currentData)
if (state == currentDat a<<l)
next State <= 0;
el se
next State <= state + 1;

else if (nmotorData < currentData)
if (state == current Data<<1)
next State <= 0;
el se nextState <= state + 1;
el se next State <= state+l;
assign pul se = state[0];
/1the pulse is generated fromthe | east significant bit of state
endnodul e
17. nodul e driveMtorsAdd(clk, reset, not or Dat a, pul se, add) ;
i nput clk, reset;
i nput [11: 0] notorData;
out put pul se, add;

/1 notorData is the nunber of steps needed to get to next icon

/1 add is a signal that will go high once the pulse is done being
/1l emtted. It will be used to determine when the credits should be
/1 added.

reg [11: 0] currentData, nextData;

reg [11: 0] state, next State,;

reg add, next Add, spi ke, next Spi ke;

/1 the following is the state machine that creates the pul ses
/1 that will drive the step notor

al ways @ posedge cl k or posedge reset)

25

if (reset) begin
state <= 0;
next Data <= O0;
currentData <= O;

add <=1;

spi ke <=0;

/'l spike is used so that add will behave like a 'spike',
/1 nmeaning that add will go high only for one clock cycle

end

el se begin
state <= next St at e;
current Dat a <= next Dat a;
next Dat a <= not or Dat a;
add <=next Add;
spi ke <= next Spi ke;

end

/'l the step motor spins on the falling edge the pul se. thus,
/1 the newData and currentData are used to tell when a new set
/] of notorData arrives, so that state will be reset to zero

al ways @state or notorData or nextData or currentData
or add or spike)

/*we need to count to 2 * notorData to get the appropiate
anount of falling edges needed to run the notor*/

/[* if (state == 2* notorData), we don't want to create any nore
pul ses. W want to reset state to zero only when we get a new
motorData input. If (state < 2*notorData), we want to add 1 to

state*/
if (state == notorDat a<<1)
i f(spike == 1)
begi n
next St at e <=st at e;
next Add <= 0;
/' add goes | ow again, renaining high for only one
next Spi ke <= spi ke; /'/clock cycle
end
el se
begin

next State <= state;
next Add <= 1;
/I here add goes high. This happens only when
next Spi ke <= 1;
/'l spi ke=0 and state =2*not or Dat a.
end

/1 at this point, add will remain | ow because state is still
/'l increasing.

else if (nmotorData > currentData)
begi n

26

else if (nmotorData < currentData)

el se

assign

/1the pulse is generated fromthe | east significant

endnodul e

18. nodul e wi nsequence2(bet,iconl,icon2,icon3, prizehbney);

i nput [1:
i nput [2:

output [7:0] prizeNoney;

/1l win goes high if al

par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er

par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er

if (state

el se

next Add <= 0;
next Spi ke <= 0;

end

begi n

if (state

el se

next Add <= 0;
next Spi ke <=

current Dat a<<1)
next State <= 0;

next State <= state + 1;

current Dat a<<1)
next State <= 0;
next State <= state + 1;

0;

st at e+1;

end

begi n
next State <=
next Add <= 0;
next Spi ke <= 0;

end

pul se = state[0];

0] bet;

0] iconl,icon2,icong3;

wat er mel on2
or ange?2
appl e2
cherry?2
bar 2

bar 22

bar 32

j ackpot 2

wat er mel on3
or ange3
appl e3
cherry3
bar 3

bar 23

bar 33

j ackpot 3

three icons are the sane

4' b0000;
4' b0001;
4' b0010;
4' b0011;
4' b0100;
4' b0101;
4' b0110;
4' b0111;

4' b1000;
4' b1001;
4' b1010;
4' b1011;
4' b1100;
4' b1101;
4' b1110;
4' b1111;

27

bit of state

reg [3:0]

| ooki con;

reg [7: 0] wi nnings;

al ways @iconl or icon2 or icon3)
/1 goes through here anytime any of the icons change

| | Checks

here if any two icons match

if ((iconl == icon2) || (iconl == icon3) |

// Checks to see if all three icons natch
if ((iconl==icon2) && (icon2 == icon3))
| ooki con <= iconl + 4'b1000;

(icon2 == icon3))

/1 Following "else if" statements check for which two icons match
el se if (iconl==icon2)
| ooki con <= iconl
el se if (icon2==icon3)
| ooki con <= icon2
el se if (iconl==icon3)
| ooki con <= icon3;

el se

| ooki con <= 4' b0000;

//1f no two icons match,

el se

| ooki con <= 4' b0000;

al ways @ | ooki con or bet)

if (bet==2'b01) //if bet =1

begi n

end

case(| ooki con)

then there is a | ost.

/'l prizeMoney: 4 nost significant bits represent 10's

/'l place 4 least significant bits represent

wat er mel on2: Wi nni ngs <=
or ange2: Wi nni ngs <=
appl e2: Wi nni ngs <=
cherry2: Wi nni ngs <=
bar 2: Wi nni ngs <=
bar 22: Wi nni ngs <=
bar 32: Wi nni ngs <=
j ackpot 2: Wi nni ngs <=

/1w nnings for two icons matching

wat er mel on3: Wi nni ngs <=
or ange3: Wi nni ngs <=
appl e3: Wi nni ngs <=
cherry3: Wi nni ngs <=
bar 3: Wi nni ngs <=
bar 23: Wi nni ngs <=
bar 33: Wi nni ngs <=
j ackpot 3: Wi nni ngs <=

/1w nnings for three icons matching

defaul t: Wi nni ngs <=
endcase

8' b0000_0000;
8' b0000_0010;
8' b0000_0010;
8' b0000_0100;
8' b0000_0101;
8' b0000_0110;
8' b0000_0111;
8' b0001_0000;

8' b0000_0010;
8' b0000_0101;
8' b0000_0101;
8' b0001_0000;
8' b0001_0000;
8' b0011_0000;
8' b0101_0000;
8' b1111 1111;

8' b0000_0000;

else if (bet==2"b10) //if bet = 2, winnings are doubl ed

28

1's place

begi n

end

el se
begi n

end

assign prizeMoney = w nni ngs;

endnodul e

case(| ooki con)

wat er mel on2:
or ange2:
appl e2:
cherry2:

bar 2:

bar 22:

bar 32:

j ackpot 2:

wat er mel on3:
or ange3:
appl e3:
cherry3:

bar 3:

bar 23:

bar 33:

j ackpot 3:

def aul t:
endcase

I1if bet = 3,

case(| ooki con)

wat er mel on2:
or ange2:
appl e2:
cherry2:

bar 2:

bar 22:

bar 32:

j ackpot 2:

wat er mel on3:
or ange3:
appl e3:
cherry3:

bar 3:

bar 23:

bar 33:

j ackpot 3:

def aul t:
endcase

then w nni

nni
nni
nni
nni
nni
nni
nni
nni

£ sz szs:2s

nni
nni
nni
nni
nni
nni
nni
nni

£ sz szs:2s

nni

g

ngs
ngs
ngs
ngs
ngs
ngs
ngs
ngs

ngs
ngs
ngs
ngs
ngs
ngs
ngs
ngs

ngs

<=
<=
<=

<=
<=
<=
<=

8' b0000_0000;
8' b0000_0100;
8' b0000_0100;
8' b0000_1000;
8' b0001_0000;
8' b0001_0010;
8' b0001_0100;
8' b0010_0000;

8' b0000_0100;
8' b0001_0000;
8' b0001_0000;
8' b0010_0000;
8' b0010_0000;
8' b0110_0000;
8' b1010_0000;
8' b1111 1111;

8' b0000_0000;

ngs are tripled

nni
nni
nni
nni
nni
nni
nni
nni

£ sz szs:2s

nni
nni
nni
nni
nni
nni
nni
nni

£ sz szs:2s

nni

g

ngs
ngs
ngs
ngs
ngs
ngs
ngs
ngs

ngs
ngs
ngs
ngs
ngs
ngs
ngs
ngs

ngs

8' b0000_0000;
8' b0000_0110;
8' b0000_0110;
8' b0001_0010;
8' b0001_0101;
8' b0001_1000;
8' b0010_0001;
8' b0011_0100;

8' b0000_0101;
8' b0001_0101;
8' b0001_0101;
8' b0011_0000;
8' b0011_0000;
8' b1001_0000;
8' b1010_0000;
8' b1111 1111;

8' b0000_0000;

19. nodul e creditchange(clk, reset, spi nni ng, add, out) ;

i nput cl k, reset, spi nni ng, add;

29

out put out;
reg change, nextchange, en, nexten

This nmodul e gives the signal determ ning when to add/ subtract credits
In each play, there should be two pulses that will indicate credit
change

1) Spin Keypress should deduct the credit bet fromcredit avail able
2) After all nmotors are done spinning, credit won adds to credit
avai |l abl e

change is the pul se that determ nes when to subtract
en is a signal that assists to create the change

al ways @ (posedge cl k or posedge reset)

if (reset)
begin
change <= 0;
en <= 1;
end
el se
begi n
change <= next change;
en <= nexten;
end

Next state Logic
only interested in creating a short pul se when we see posedge
spi nni ng

al ways @ (change or en or spinning)

if (change == 0 && en == 1)
/1 change goes high when it initially sees posedge spinning
i f(spinning)
begi n
next change <= 1;
nexten <= 0;

end
el se
/1 change goes | ow while notors are spinning
begi n
next change <= 0;
nexten <= 1;
end
el se
i f(spinning)
/1 change goes | ow while notors are spinning
begin
next change <= 0;
nexten <= 0;
end
el se
/1 spinning is low, go back to state that detects spinning
begi n
next change <= 0;
nexten <= 1;
end

/1 change determ nes when to subtract

30

/1 oring with add we can have a signa
/1 that determ nes when to change the display of credits

assign out = change || add;
endnodul e

20. nodul e wins_credits(clk,reset, bet, pri zeMoney, cred_change,

di g0, digl,1ed);
i nput clk, reset;
i nput [1:0] bet; //this input is the anbunt of noney that was bet
i nput cred_change; /1this input tells when credits need to be

/ | added/ subt r act ed
input [7:0] prizeMoney; //this input is the anmount of nobney won
output [3:0] dig0,digl; //digl stands for the 10's place

/1dig0 stands for the 1's place

out put | ed;

reg [3:0] nextdigO, nextdigl, di g0, digl
reg enabl e, nextEnabl e, |ed;

al ways @ (posedge cred_change or posedge reset)
if (reset)
begi n
digl <= 4'Db0100; //user gets 40 credits to start off with
di g0 <= 4' b0000;
enabl e <= 0;

end

el se

begi n
di g1 <= nextdigl;
di g0 <= nextdi g0;
enabl e <= next Enabl €;

end

al ways @ (digl or dig0O or enable or prizeMoney or bet)

/*

The followi ng is our "adding" algorithim Since we represent

the ten's digit with the 4 nobst significant bits and the one's digit
with the 4 |east significant bits, we cannot add the nunbers

directly.

*/
i f(enabl e)
begi n

|l ed <= 0;
[11f credits + prizeMoney > 99, then stay at 99
if ((digl + prizeMoney[7:4]) > 9)
begin
nextdi gl <= 9;
next di g0 <= 9;
end

el se
/1 If there is a carry fromthe ones place then
if (dig0 + prizeMoney[3:0] > 9)

31

[IFirst, check if that will push you over 99
/[11f so, stay at 99.
if ((digl + 1 + prizeMney[7:4]) > 9)
begi n
nextdi gl <= 9;
next di g0 <= 9;

end
/[11f not, then performa carry operation
el se
begi n
nextdigl <= digl + 1 + prizeMoney[7:4];
next di g0 <= dig0 + prizeMney[3:0] -
10;
end
/11f there is no carry operation, then add accordingly.
el se
begin
nextdi gl <= digl + prizeMoney[7:4];
next di g0 <= di g0 + prizeMney[3:0];
end

/I next Enabl e goes | ow once adding credits is conplete.
next Enabl e <=0;

end
el se
begi n
| ed <= &pri zeMoney;
/1 This is when there is carry.
if (bet > dig0)
begin
nextdigl <= digl - 1;
nextdi g0 <= dig0 - bet + 10;
end
/1 This is when there is no carry.
el se
begi n
nextdi gl <= digl
next di g0 <= dig0 - bet;
end
/ I next Enabl e goes high once subtracting credits is conplete.
next Enabl e <=1;
end
endnodul e

21.

nmodul e di sp(sl owcl k, reset, di g0, di g1, segs);
i nput sl owcl k;

i nput reset;

i nput [3:0] dig0;

i nput [3:0] digl;

out put [6:0] segs;

wire [3:0] data;
/1 when slowclk is high, then dig0 will be shown. otherw se, digl is

/'l shown
assign data = slowlk ? dig0 : digl

32

/1 displays digl or

di g2

sevenseg sevenseg(data, segs);

endnodul e
22.
i nput
out put

reg

[3:0]

[6:0] segments

[6:0] segments

dat a;

nmodul e sevenseg(dat a, segnent s) ;

/'l Taken from Veril og Handout Pg 27

/'l Segnent
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er
par anet er

#
BLANK
ZERO

NI NE

al ways @ (dat a)

case (data)

de

CONQURWONRO

segnment s
segnment s
segnment s
segnment s
segnment s
segnment s
segnment s
segnment s
segnment s
segnment s
aul t:

endcase

endnodul e

ZERO
ONE;
TWO
THREE;
FOUR;
FI VE;
SI X;
SEVEN;
El GHT;
<= NI NE

abc_defg
7'bl11 1111;
7' b000_0001;
7' b100_1111;
7' b001_0010;
7' b000_0110;
7' b100_1100;
7' b010_0100;
7' b010_0000;
7' b000_1111;
7' b000_0000;
7' b000_0100;

segnent s <= BLANK;

33

APPENDIX B: HC11ASSEMBLY CODE

Source File: Variable Frequency O ock CGenerator

Aut hor: Jason Quach and Dani el Sutoyo

The basic structure of the code is taken fromMller's
handbook exanple 10ns ti ner.

* Ok * X

Takes the SPINS signal from FPGA as an input and outputs

a square wave that changes its frequency three tines.

The SPINS signal is a signal that goes high when

the user presses start on the keypad, and goes |low only after
the last notor is done spinning, regardl ess of any other
attenpts by the player to press start again. Thus,

the user nust wait before the | ast notor stops spinning
before they can play again.

* % kX k kX X

* TABLE OF CONSTANT OFFSET FOR DESI RED FREQUENCY

EIE IR I R R I R I R R R I R O

TEN_MS EQU #20492 *323Hz
TEN_MS2 EQU #20490 *385HZ
TEN_MS3 EQU #20495 *258Hz

* |/ O Regi ster Equates
REGS EQU $1000
TCNT EQU $OE

TFLGL EQU $23

TOC1 EQU $16

OCl1F EQU 940000000
PORTB EQU $1004
PORTC EQU $1003
DDRC EQU $1007

* Menory Map Equates

EIE I I I b I I I b b I b I b b b I I b I b I I I I I I
PROG EQU $C000

DATA EQU $D000

STACK EQU $DFFF

* Main Program

EIE IR I R I R I R I R I O I R O

ORG PROG

| ds #STACK

| dx #REGS

CLR PORTB

LDAA #9%11110000
STAA DDRC

POLL LDAA PORTC * The Pol | ing Mechani sm det erm nes
CVPA #990000001 * if there is a spin keypress.
BHS START * Once SPIN goes high, it wll
JWP PCLL * run through the renmi nder of the code

* Time Loops

EIE IR R I R I R I R R R I R O

* The EVB generates a square wave in port B[O].

34

and

* % % %

START
TI ME

BIT1
FLAG

spi n

TI ME2

Bl T2
FLAG

spi n2

TI ME3

Bl T3
FLAG3

spi n3

si gnal

The Tine Loops are divided into three sections

all three produce the correspondi ng frequency

LDY
| dd
addd
std
| dab
CvPB
BEQ
CLR
JMP
| dab
st ab
| daa

| dab
st ab
| daa
st aa
brclr

BNE

#1000
TCNT, X
TEN_MS
TOCL, X
PORTB
#00

BI T1
PORTB *
FLAG

#01 *
PORTB

#OCLF

TFLGL, X

TFLGL, X OCLF spin
PORTC

#990000001

TI VE

* % % %

L R

TI ME

#1200
TCNT, X

TEN_MS2

TOCL, X

PORTB

#00

Bl T2

PORTB

FLAG2

#01

PORTB

#OCLF

TFLGL, X

TFLGL, X OCLF spi n2

L

TI ME2

TCNT, X
TEN_MS3

TOCL, X

PORTB

#00

BI T3

PORTB

FLAG3

#01

PORTB

#OCLF

TFLGL, X

TFLGL, X OCLF spi n3

L

PORTC *
#%690000001
TI ME3

with the above constant offsets.
The code utilizes the tiner with output conpares
to determ ne when to set the signal high or |ow

Retrive tinmer counter val ue

Add const ant of fset

Store as output conpare

Port B is the output

If outputting O, want to force bit to 1

If outputting 1, want to force bit to O

Forcing PortB[0] to 1

PortCJ0] is the SPINS input

If SPINS is low, continue to |oop
Until the SPINS is detected

Once SPINS is detected, |oop through
Wth the index y

The second section of tine |oop

I's constructed in a sinilar fashion
W thout the SPINS input check

It Ioops through with the specified
Y i ndex anount

The third timer | oop continues

to loop until the notors are done spinning
Afterwards it junps back to START

Thi s mechani sm can be acconpli shed

bel ow

Check if SPINS is still high

* if high (which nmeans notors are
* still spinning) continue to output

35

JMWP START * the last frequency clock signal

36

APPENDIX C: PSEUDO RANDOM NUMBER ANALYSIS

The team had to consider the issue of whether the three different lengths of LFSR
would properly generate all triple combinations of 6 bit random sequences. In any length
LFSR, the repeating sequence length is 2*N-1. Thus, in the 6 bit LFSR, the repeating
sequenceislength 63. Inthe 7 bit LFSR, the repeating sequenceis 127. And in the 8 bit
LFSR, the repeating sequence length is 255. Since all of these lengths are relatively prime to
each other, it isindeed possible to generate all possible combinations of three random 6 bit
sequences (except that the 6 bit LFSR cannot generate 6 consecutive zeros).

Another issue that must be considered is the odds of winning. In any length LFSR, the
maximum number of zeros that occur consecutively isN-1. Thus, ina6 bit LFSR, itis
impossible to obtain a6 bit sequence of 000000. Thisis significant becauseit greatly
increases the chances of winning the jackpot. Ina7 bit LFSR, a6 bit sequence of 000000 is
possible, but there are two possible 6 bit sequences of 111111. Inan 8 bit LFSE, two 6 bit
sequences of 000000 are possible, but now there are four possible 6 bit sequencesof 111111.
Because the icon encoding for the jackpot symbol is 111111, the odds of winning the jackpot
are not exactly as stated in the table of probabilities and payoff.

The actual odds of winning the jackpot are: (1/63) * (2/127) * (4/255) = 3.921*10"-
6, Compared with the listed odds of winning ajackpot (1/64)"3=3.815* 10"-6. Thus, the
difference between these two odds is winning the jackpot one extratime in 10 million plays.
It should be noted that the odds of winning for the seven other icons are not exactly as shown
in the project proposal, but remain close enough for the purposes of this project. If we
assume that the three LFSR act as a true random number generator, then the table of
probabilities become more intuitive

37

APPENDIX D: FINAL PROJECT

Figure 7: Slot machinereel display

38

Figure 8: Slot machine hooked up to FPGA and HC11

39

