

Laser Simon

Final Project Report
December 12, 2002

E155

Genevieve Breed and Nick Hertl

Abstract:

“Laser Simon” is much like the popular children’s memory building game of “Simon.”
In the classic version, the user is given four uniquely colored buttons that light up in
progressively more difficult sequences. Each button has a unique sound associated with
it. After each sequence, the user is expected to push the buttons in the same order as they
previously lit up. If they correctly perform this task, the system presents them with a
more difficult sequence. If a wrong button is pressed, the system indicates failure and
starts over. “Laser Simon” implements photo sensors instead of buttons and a laser
pointer to activate them. The microcontroller creates a pseudo-random pattern for each
game with a maximum of 256 different sequences that are stored in its internal SRAM.
The HC11 also controls the LEDs displaying the sequence and outputs sound to the
speaker system. The FPGA keeps track of the score and receives input from the photo
diodes.

Introduction

 It has been said that the average human brain can store 7-9 pieces of random

information in its “cache.” We wanted to design a game that could test this study on a

variety of people. We also wanted to design a game that would implement lasers and

photo diodes since this type of hardware was new and exciting to both team members.

Figure 1: User Interface

Laser Simon plays a pseudo random sequence that the user tries to emulate. The system

shows one light and plays one sound. If the player correctly repeats this pattern by

shining the laser pointed onto the target that just lit up, he will be reward with the noise

associated with that target and the sequence will increment by one. This continues until

the player guesses wrong in which case a wrong (low frequency) sound will emit from

the speaker. The game board for Laser Simon can be seen above in Figure 1.

 The system breaks down into five main sections: sound hardware, laser sensing

hardware, scoring, LEDs, and game play (when each of these systems operates). The

HC11 handles game play because we need to store light states in memory and cycle

through what would be a large number of states if implemented in hardware. The HC11

creates the light and sound emitting signals, while telling the FPGA when to increment

the score. The FPGA controls the display for the score and relays the laser sensors data

into the HC11. The sound hardware takes a square wave input and produces amplified

sound of the appropriate frequency with smooth edges. The laser sensor hardware

outputs four bits representing whether or not the sensors are active at any given time.

The overall block diagram in Figure 2 shows all system communication channels.

Figure 2: Overall Block Diagram

New Hardware
We used Optek’s OP950 (Figure 3) photodiodes as our laser sensors. The OP950

provides a 50 percent relative response at 650 nm, which is the wavelength of the laser

pointers (shown in Figure 4). The datasheet on these diodes can be found at

http://www.optekinc.com/pdf/OP950.pdf.

 Figure 3: Photodiode Figure 4: Relative Response of OP950 vs. Wavelength

Photodiodes output a small amount of current that is proportional to the amount of

light entering the sensor. This current can be changed to a voltage using an op amp as

shown in the bottom left portion of Figure 5. We used a 741 op amp in a common

current-to-voltage converter circuit. The inverting input is a virtual ground since the

diode can only generate a few tenths of a volt. The rest of the circuit will be explained

later in the schematics section.

Figure 5: Target Sensing Circuitry

Schematics

 We used the circuit in Figure 4 to sense when the target had been hit and respond

with a TTL high level. We originally obtained the circuitry from Zehao Chang and Ben

Schmidel’s final E155 project entitled “The Laser Target Game” from 2000.

(http://odin.ac.hmc.edu/~harris/class/e155/projects00/lasertargetgame.pdf) They

included the reference detector to sense ambient light and hold its output at a higher

voltage. This signal could then be sent to a comparator along with the signal from a

target sensor which would output a TTL high if the target sensor had been hit and would

output a TTL low in ambient light. A comparator is simply a high gain differential

amplifier that goes into positive or negative saturation depending on the relationship of

the inputs. The added 3 M Ohm resister was chosen to raise the output level of the

reference circuitry to about 3 V. Since the target circuitry produces 2 V when there laser

is not pointed on it and about 4 V when the laser is touching it, the 3 V produced by the

reference circuitry will be low enough to trigger the target when 4 V is sent to the

comparator yet high enough to output a TTL low from the comparator when it receives 2

V.

 In the original circuitry from Chang and Schmidel, the output of the comparator

(pin 7) had a resistor tied to ground. When we tested the circuitry we found that this did

not work. This is because the 311 is an open collector. The manufacturers pull the

output low but leave the output floating high so that multiple comparators wired together

will produce a wired OR. This means that if any of the comparators are set high, the

output of them wired together will also output a high. We also tied the balance pins (5

and 6) of the comparator together.

 Each target is surrounded by four LEDs tied in parallel as shown in Figure 6.

Figure 6: LED multiplexing

Microcontroller Design

On the highest level, the HC11 logic is very simple. It simply needs to seed a

table in memory with a sequence of pseudo-random numbers, and then loop through

increasingly large numbers of them, first demonstrating what to do by sending values out

Port B on the lowest four bits, and then waiting for input on the lowest four bits of Port E

and responding accordingly on bits 4 through 6 of Port B. Each time values go out to the

lowest four bits of Port B to illuminate an LED, it also outputs a square wave of a given

on the fourth Output Compare (OC4). Each of these sections however is fairly

complicated.

The pseudo-random sequence comes from a fairly standard formula. Given a

seed value, the next value is determined by: Rn+1 = (a*Rn+c) mod m. In our case this is

fairly simple since first of all, the “mod m” is taken care of automatically in the 8-bit

memory of the HC11; m is 256 in this case. According to “The Art of Computer

Programming” by Knuth, the values of a and c determine the length of the pseudo-

random sequence you get out of such a formula. We chose values for a and c according

to his recommendations to get a sequence of longest length before repetition begins. We

used 17 and 57. Without going into details, these numbers need to be relatively prime,

and the first needs to be one larger than a multiple of 4.

Timing in a real-time computing environment such as this is of highest

importance. Sometimes in our code, we would like to wait for specified periods of time.

For example, when we turn on a light and play a sound for the user, they probably want

to see and hear if for more than a few microseconds. For this, we have simply borrowed

some of our previous code from the traffic light control lab.

We keep all light signals in memory one-hot encoded to ease comparisons and

loops, but it turns out that to generate a more random sequence of lights, we needed to

look at each two-bit pair in each random byte rather than simply chopping them down to

two bits and using the lowest order bits each time. The latter method generates sequences

of length four instead of 256. This produces the need for another function to take a

packed representation of the bits and produce a one-hot representation to actually store in

memory. This function is fairly trivial, but since it is used many times, it gets its own

space.

Whenever a light turns on, for demonstration purposes, or in response to user

input, a corresponding sound will also play. These sounds come from the HC11

producing a frequency-modulated signal sent to a sound system. The sound system

consists of an inverting op-amp amplifier to make the sound louder and a capacitor tied to

ground on the output to turn the square wave into a smoother triangle wave making the

sound less harsh to the ear. We tied the output of these to a small speaker to actually

produce the sound. The code to produce this input wave is pretty much taken right out of

the solution for lab 7 but modified for our purposes where the high and low times are

identical and those lengths are hard-coded to correspond with which light is also on rather

than adjusting based on input voltage.

The most interesting part of the HC11 code is where it actually demonstrates the

sequence of lights and waits for input. For the demonstration, it loops though the known

number of bytes and outputs sound and light for each one for a set period of time. Once

the demonstration is over, it starts the loop over again and waits for input on Port E. If

the input is all zeros, it knows that the user just has not input anything yet. It also checks

to see if the input is the same as the last input to prevent the possibility of a double hit.

As soon as it is something other than zero or the last value, it checks if the input matches

what it was expecting and sends output accordingly. If it was not correct, it simply sends

an ACK without correct or increment. If it was correct but it is not done with the current

loop yet, it will send an ACK with correct high. If it is not only correct, but the user has

completed a full sequence of correct inputs and it is about to demo the next one, it also

sends back the increment signal telling the FPGA to increase the users score.

To abstract this logic of which signals to send from the looping logic, we have

created a sendFPGA function that looks at input from the FPGA and expected input and

creates the appropriate signals to output: ACK, correct, and increment. The correct

and/or increment signals must be sent before the ACK signal to prevent a setup time

violation on the flip-flops that read this data. If signals are sent simultaneously, the result

out of the flip-flops remains low regardless of the values of correct and increment.

Function Name Function Purpose
main General program flow
random Create table of randomness
demo Demonstrate light sequence
wait Wait for input
sendFPGA Send results to the FPGA
sound Play one of about 5 sounds
delay Wait for some period of time
onehot Turn packed bits into one hot bits

FPGA Design

The main reason we originally thought we would need this piece of hardware is to

control the input from the photodiodes since the HC11 is not able to constantly monitor

it’s input ports. The FPGA takes the photodiodes as input and sends those as output to

the HC11. It also has three inputs collecting data from the HC11. In addition to these

internal communication channels, the FPGA keeps score and sends that as output to the

seven-segment display unit along with a clocked signal to control the seven-segment

display (newclk). These top-level communication channels are expressed more clearly in

graphics in the Appendix.

After some testing, it became apparent that complicated control of the laser sensor

input is not necessary. In the end, all the FPGA does with the input signals from the

lasers is send them right back out the other side. The meat of the FPGA now consists of

listening to the HC11’s signals and incrementing the score or stopping when asked to.

The three signals are ACK, correct, and increment. ACK acts almost like a clock signal

indicating to the FPGA that it should read the input. When that happens, if correct is

high, the user was correct, and if increment was high, it was also the end of a sequence

and the user gets another point. In hindsight, we really only needed one of these signals:

increment. The other two remain from when the design was more complicated. In a

simpler design, the flip-flops would be triggered by the increment signal and the score

would be incremented every time it happened. This would also simplify the sendFPGA

function in the HC11.

Results
The final product works quite well. The speed of the lights greatly contributes to

the enjoyment of the game. Slow lights (one second) make it boring, and fast lights (less

then half a second) make it more exciting. Initial user testing prompted us to speed

things up to this faster speed. Of all the problems however, this was trivial. We ran into

a few tough situations in the process of creating this game.

The most recent problems have arisen from loose wiring issues. Sometimes if

you handle the game board too roughly, things readjust themselves and the game behaves

strangely. This sort of problem actually prevented us from presenting on the final day

until the very end when everybody was about to leave. Physical protection and securing

of complicated wiring could prevent this type of issue, but this is not the focus of the

project.

Another difficult problem was sending two signals simultaneously from the HC11

to the FPGA causing setup time violations on the flip-flops. If one signal is the clock and

the other is the data for the same flip-flop, you need to send the data shortly before the

clock to ensure the propagation of the new value. This caused scoring to not work for a

while at full speed while manually setting signal values worked fine. This sort of timing

issue can be difficult to debug sometimes.

Two main systems of our design require analog electronics: the sound system, and

the laser sensing system. These required exploration of concepts not covered in this

course. Genevieve did the laser sensors and Nick did the sound system. Genevieve had

problems because the schematics she used did not work as advertised and required some

adjusting. Nick had trouble with the sound system because even though sound came

through without any additional hardware, more power was needed to make it louder. The

original amplifier circuits he built amplified voltage instead of current, which did not

really help. Noah Philips helped with the final sound system design, which can be found

in the appendix.

The main thing different between the proposal and final project is the flow of

laser sensor data. Originally, we thought the HC11 would be too slow to pick up on

quickly changing input. For this reason, the FPGA would need to relay the info until the

HC11 sent an acknowledgement. It turns out this is not needed, but the signals still pass

through the FPGA to remain within specifications from the proposal. Additionally, the

FPGA/HC11 communication regarding correct answers has some wasted bits. These

were originally needed to convey more information that we ended up actually needing.

Without straying from within specifications, we could have removed nine wires from

between the play board and the FPGA, four each way for sensor data and one extra from

the three communication bits.

References

311 Datasheet: <http://www.national.com/ds/LM/LM111.pdf>.

741 Datasheet: <http://www.national.com/ds/LM/LM741.pdf>.

Horowitz & Hill. The Art of Electronics. Cambridge UP, Cambridge 2001.

Knuth, Donald. Art of Computer Programming, Volume 1: Fundamental Algorithms (3rd
Edition)

Laser Target Game:

<http://odin.ac.hmc.edu/~harris/class/e155/projects00/lasertargetgame.pdf>.

Photodiode Datasheet: <http://www.optekinc.com/pdf/OP950.pdf>.

Professor Harris Lab 7 Solutions

Parts List

Part Source Vendor Part # Price
Photodiode Arrow Electronics OP950 $27.08
PC Predrilled Proto
Board

Mar Vac ODY9400T $34.97

Low Current LEDs Mar Vac LIN B4300H5LC $5.16
Speaker Electronics Lab
741 Op Amp Electronics Lab
311 Comparator Electronics Lab
Laser Pointer Genevieve’s Room

Appendix: Code and Graphics

/* laserSimon.v
*
* November-Decenber 2002
*
* Nicolas_Hertl@hmc.edu
* Genevieve_Breed@hmc.edu
*
* This is the top level layout of Laser Simon game, our Final Project for E155
* It controls a seven-segment display with the score and collects the data for
* what to display from a secondary module (simon)
*/

module laserSimon(clk,reset,sensorsIN,ACK,correct,increment,sensorsOUT,seg,newclk);
 input clk;
 input reset;
 input [3:0] sensorsIN;
 input ACK;
 input correct;
 input increment;
 output [3:0] sensorsOUT;
 output [6:0] seg;
 output newclk;

 wire [3:0] displaysig;
 wire [3:0] rightsig;
 wire [3:0] leftsig;

 counter mycounter(clk,reset,newclk);
 // Slow down the clock

 // module to take in sensorsIN, ACK, correct, and output sensorsOUT, leftsig, rightsig
 simon mysimon(reset,sensorsIN,ACK,correct,increment,sensorsOUT,leftsig,rightsig);

 mux2 mymux2(leftsig,rightsig,newclk,displaysig);
 // Select which input signal to use

 sevenseg mysevenseg(displaysig,seg);
 // Drive the sevensegment display with selected
signal

endmodule

/*
* November-Decenber 2002
*
* Nicolas_Hertl@hmc.edu
* Genevieve_Breed@hmc.edu
*
* This is the heart of the FPGA code for the Laser Simon game. It keeps track of the score and increments
it
* whenever the HC11 tells it to. The sensorsOUT was going to be controled more closely but it turns out
that's
* not needed. sensorsOUT equals sensorsIN. Debouncing isn't needed here.
*
* This could have been done much better...
*
* always @(posedge increment)
* if(gameOver)
* score = '00'
* else
* score++
*
* The additional signals remain from a time when we thought it would need to be more complicated.
*/

module simon(reset,sensorsIN,ACK,correct,increment,sensorsOUT,leftsig,rightsig);
 input reset;
 input [3:0] sensorsIN;
 input ACK;
 input correct;
 input increment;
 output [3:0] sensorsOUT;
 output [3:0] leftsig;
 output [3:0] rightsig;

 parameter s_DOING = 2'b1;
 parameter s_DONE = 2'b0;

 reg state;
 reg nextstate;

 reg [3:0] leftsig;
 reg [3:0] nextleftsig;

 reg [3:0] rightsig;
 reg [3:0] nextrightsig;

 parameter ZERO = 4'b0000;
 parameter NINE = 4'b1001;

 assign sensorsOUT = sensorsIN;

 // use ACK as the clock here since that's when I want to change state

 always @(posedge ACK or posedge reset)
 if(reset)
 begin
 state <= s_DOING;

 leftsig <= ZERO;
 rightsig <= ZERO;
 end
 else
 begin
 state <= nextstate;
 leftsig <= nextleftsig;
 rightsig <= nextrightsig;
 end

 always @(state or correct or increment or rightsig or leftsig or ACK)
 if(state == s_DONE) // you've already lost
 begin
 nextstate <= state;
 nextleftsig <= leftsig;
 nextrightsig <= rightsig;
 end
 else if(ACK & ~correct) // you were wrong
 begin
 nextstate <= s_DONE;
 nextleftsig <= leftsig;
 nextrightsig <= rightsig;
 end
 else if(ACK & correct) // you were right
 begin
 nextstate <= state;
 if(increment) // you get a point
 if(rightsig != NINE)
 begin
 nextrightsig <= rightsig + 1;
 nextleftsig <= leftsig;
 end
 else
 begin
 nextrightsig <= ZERO;
 nextleftsig <= leftsig + 1;
 end
 else // you were right, but no
point yet
 begin
 nextleftsig <= leftsig;
 nextrightsig <= rightsig;
 end
 end
 else
 begin
 nextstate <= state;
 nextleftsig <= leftsig;
 nextrightsig <= rightsig;
 end
endmodule

/*
* Fall 2002 - E155
*
* Nicolas_Hertl@hmc.edu
*
* From Lab 3, but used for Final Project. "Laser Simon"
*/

module counter(clk,reset,newclk);
 input clk;
 input reset;
 output newclk;

 /*
 The purpose here is to just count to a big number in binary.
 Then assign the highest ordered bit to the newclk output.
 This makes it so newclk is high for a while and then low for a while,
 but just takes way longer to toggle back and forth. Lower frequency.
 */

 reg [9:0] count;

 always @(posedge clk or posedge reset)
 if(reset) count <= 0;
 else count <= count + 1;

 assign newclk = count[9];

endmodule

/*
* Fall 2002 - E155
*
* Nicolas_Hertl@hmc.edu
*
* From Lab 3, but used for Final Project. "Laser Simon"
*
* Taken right out of the lab notebook
*/

module mux2(s1,s2,select,out);
 input [3:0] s1;
 input [3:0] s2;
 input select;
 output [3:0] out;

 tristate t1(s1,select,out);
 tristate t2(s2,~select,out);

endmodule

/*
* Fall 2002 - E155
*
* Nicolas_Hertl@hmc.edu
*
* From Lab 3, but used for Final Project. "Laser Simon"
*
* Taken right out of the lab notebook
*/

module tristate(a,en,y);
 input [3:0] a;
 input en;
 output [3:0] y;

 assign y = en ? a : 4'bz;

endmodule

/*
* Fall 2002 - E155
*
* Nicolas_Hertl@hmc.edu
*
* From Lab 2, but used for Final Project. "Laser Simon"
*
*/

module sevenseg(s,seg);
 input [3:0] s;
 output [6:0] seg;

 // I saw a much better way to do this in class, but I'm just using the one from lab 2 for consistancy.

 assign seg[0] = ~(s[1]&~s[0] | s[1]&~s[3] | s[1]&s[2] | ~s[0]&~s[2] | s[0]&s[2]&~s[3] |
~s[0]&~s[1]&s[3] | ~s[1]&s[3]&~s[2]);
 assign seg[1] = s[2]&s[1]&~s[0] | s[3]&s[1]&s[0] | ~s[3]&s[2]&~s[1]&s[0] |
s[3]&s[2]&~s[1]&~s[0];
 assign seg[2] = ~(s[3]&~s[2] | ~s[1]&s[0] | ~s[3]&s[2] | ~s[1]&~s[3] | s[0]&~s[3]);
 assign seg[3] = s[2]&s[0]&s[1] | ~s[0]&~s[1]&s[2]&~s[3] | s[0]&~s[1]&~s[2]&~s[3] |
~s[0]&s[1]&~s[2]&s[3];
 assign seg[4] = ~(s[1]&~s[0] | s[3]&s[2] | s[3]&s[1] | ~s[0]&~s[2]);
 assign seg[5] = s[0]&~s[2]&~s[3] | s[1]&~s[2]&~s[3] | s[1]&~s[2]&~s[3] | ~s[3]&s[0]&s[1] |
s[3]&s[2]&~s[1]&s[0];
 assign seg[6] = ~(s[1]&~s[0] | s[1]&~s[2] | s[1]&s[3] | s[0]&s[3] | ~s[1]&~s[3]&s[2] |
s[3]&~s[2]);

endmodule

* final.asm
*
* November-Decenber 2002
*
* Nicolas_Hertl@hmc.edu
* Genevieve_Breed@hmc.edu
*
* This program controls "Laser Simon" game, our final project in E155
* It produces a pseudo random sequence, flashes the LEDs in the correct
* pattern and whenever one is hit, checks to see if the hit sensor is the
* correct sensor and tells the FPGA when the hit is correct and when
* the score should be incremented. Finally it produces the sounds for
* our speaker system
* It starts the game and ends the game.

* Port Addresses
REG EQU $1000 * base address of registers
PORTA EQU $1000 * square wave output on A[4]
PORTB EQU $1004 * LEDs and FPGA signals out
PORTE EQU $100A * FPGA input for Lazer Sensors

* Timer Addresses
TCNTH EQU $100E * not used actually...
TCNTL EQU $100F * random seed.

* Constants for interrupt stuff for sound
TOC4 EQU $101C
TCTL1 EQU $1020
TMSK1 EQU $1022
TFLG1 EQU $1023

* Constants for color encoding
* pCOLOR is the packed encoding
* hCOLOR is the one Hot encoding
pRED EQU %00000000
pYELLOW EQU %00000001
pGREEN EQU %00000010
pBLUE EQU %00000011
hRED EQU %00001000
hYELLOW EQU %00000100
hGREEN EQU %00000010
hBLUE EQU %00000001
hWRONG EQU %00000000

* Constants for I/O
ACK EQU %01000000 * ACK bit
Cbits EQU %00100000 * Correct bits
Ibits EQU %00110000 * Increment bits

* User variables
STOP EQU $0025 * Which byte of lights to stop on when looping
LASTL EQU $0027 * The last Lazer input. Ignore duplicates.

START EQU $D200 * Table starts at this address

LENGTH EQU $0064 * Table is this long
TABLE EQU $0000 * This isn't really the start of the table... but since table is in high memory, it
needs to be like this.
LASTT EQU $0001 * One past the current entry in the TABLE

* Masks
OC4F EQU %00010000
BIT2 EQU %00000100
TWOMASK EQU %00000011
FOURMASK EQU %00001111

* Local variables
 ORG $20
PWMLO FDB $0080 * Low time for pulse width modulation
PWMHI FDB $0080 * High time for pulse width modulation

* Interrupt vector
 ORG $00D6 * Output compare 4 Interrupt service routine
 JMP OC4ISR * hardwired to $00D6, where we put jump to our routine

**

*
* Main()
*
* STOP = 0
* LASTL = 0
* random();
* for(i=0;i!=100;i++)
* demo(i)
* wait(i)
* delay()
*
* First zero out some memory storage locations, then fill the random table.
* The actual program is to loop through the 100 random light values, first demoing, and then waiting
* for input from the user up to that point i, getting progressively harder. Between each wait period
* and the next demo, it waits about a second to more clearly indicate the start of a new demo cycle.
*
**

* Main Program
 ORG $D000

* Initialize
 LDAA #$00 * load zero
 STAA STOP * preload bits with zero so things work from the start
 STAA LASTL

 BSR random

 LDX #$D200 * loop through all states in memory starting at i = 0
byte: BSR demo * demonstrate what to do
 BSR wait * wait for some input from the FPGA
 BSR Fdelay * give it a short rest so user can see some blank time before next sequence
 INX * i++

 CPX #$D264
 BNE byte * i==100?keeplooping:fallthrough

 SWI * done :-)

**

* This subroutine just creates the table of randomness
*
* random(0) = TCNTL
* random(n+1) = (random(n)*17 + 57) % 256
*
* for(i=100;i!=0;i--)
* TABLE[100-i] = random(100-i)
*
* 17 because it's one greater than a multiple of 4 and that's
* needed because 256 (memory width) is also a multiple of 4
* Furthermore, 17 and 256 are relatively prime. This is good.
* 57 is kinda just pulled outa thin air, but it's prime, and
* seems to work.
**

random: PSHA
 PSHB
 PSHX
 PSHY
 LDX #START+#LENGTH * start counting from the end of the table
 LDAA #$00
 STAA LASTT,X * zero out the spot for comparisons to keep first value more
random
 LDAA TCNTL * lower 8 bits of Timer to seed randomness

 LDY #$0004 * use Y to count which set of bits to use

load: DEX * coming in here, we expect A has the last random value
retry: LDAB #$11 * multiplier for randomness ($11 = 17)
 DEY * change which bits to look at
 BNE skip
 LDY #$0004 * only reload if Y==0
skip: MUL * multiply random(i)*17 and lead result in register D
 ADDB #$37 * additive constant for randomness
 TBA * remember last random value for next calculation

* since we're generating 8 bit randomness, we need to pull from all 8 bits rather than always the low two.
* using the low two each time would produce very poor randomness equivalent to two bit randomness.

 CMPY #$0001
 BEQ one
 CMPY #$0002
 BEQ two
 CMPY #$0003
 BEQ three
 CMPY #$0004
 BEQ out * don't rotate at all

one: RORB * rotate one set of two bits
 RORB
 BRA out
two: RORB * rotate two sets
 RORB
 RORB
 RORB
 BRA out
three: RORB * rotate three sets
 RORB
 RORB
 RORB
 RORB
 RORB
out: ANDB #TWOMASK * only look at the lowest 2 bits
 BSR onehot * one hot encode the randomness
 CMPB LASTT,X * See if it's the same as the last one
 BEQ retry * Don't load it. It was the same... retry
 STAB TABLE,X * store randomness
 CPX #START * keep going as long as you haven't hit the botom yet
 BNE load
 PULY
 PULX
 PULB
 PULA
 RTS

**

* HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK
HACK HACK HACK HACK HACK HACK HACK
*
* the code is so long that branches are out of range. This allows for two BSRs so it will work.
**

demo: BSR Rdemo
 RTS
Fdelay: BSR OFdelay
 RTS

**

* wait(byte) takes argument in register X, and handles I/O for that one.
*
* for(int i=0; i!=howfar; i++)
* waitforFPGA(i)
* sendFPGA(input)
* sound(input)
*
* For each of the light values up until X, wait for input from the FPGA and send back results to the FPGA
* as well as playing a sound for long enough that the user hears it and knows they hit the sensor.
*
**

wait: PSHA

 PSHB
 PSHY

 LDY #START-1 * start counter at beginning of table - i=0
 STX STOP * remember where to stop
wloop: INY * i++
 LDAB TABLE,Y * get what value we are expecting

loadE: LDAA PORTE * get input from FPGA
 ANDA #FOURMASK * only look at the lowest four bits (the lazer inputs)
 BEQ loadE * keep waiting if it was zero
 CMPA LASTL * Is this new signal the same as the last one we got?
 BEQ loadE * if so, keep waiting

 STAA PORTB * light up what the shot
 STAA LASTL * remember this as the last Laser input

 CBA * did we get the correct input?
 BEQ good * yes, they were right.
 LDAA #$00 * no, they were wrong... play "wrong" sound

good: BSR sendFPGA * send info to FPGA, A is the data,

 BSR Fsound * play the sound

 CMPA #$00 * were they wrong?
 BNE wgo * no... skip this part and go on
 LDAA #%00001111 * yes, wrong, turn on all lights
 STAA PORTB * Light them up cause game is over
 SWI * GAME OVER

wgo: CPY STOP * i==howfar?
 BNE wloop * no?... keep looping. - yes?... exit
 PULY
 PULB
 PULA
 RTS

**

*
* onehot(packedColor&)
*
* this takes a bit-packed representation of color and one-hots it for output - pass by reference
*
* This function doesn't save the original value of B, it overwrites with new value.
*
**

onehot: CMPB #pRED * Determine which packed color it is and branch accordingly
 BEQ oRed
 CMPB #pYELLOW
 BEQ oYellow
 CMPB #pGREEN

 BEQ oGreen
 CMPB #pBLUE
 BEQ oBlue

oRed: LDAB #%00001000 * Load the correct onehot value and exit
 BRA oDone
oYellow: LDAB #%00000100
 BRA oDone
oGreen: LDAB #%00000010
 BRA oDone
oBlue: LDAB #%00000001
 BRA oDone
oDone: RTS

**

* HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK
HACK HACK HACK HACK HACK HACK HACK
*
* the code is so long that branches are out of range. This allows for two BSRs so it will work.
**

OFdelay: BSR delay
 RTS
Fsound: BSR sound
 RTS

**

* demo(byte) takes argument in register X, and demonstrates what the user should do that far
*
* for(i=0;i!=X;i++)
* lightup(TABLE[i])
* sound(TABLE[i])
*
**

Rdemo: PSHA
 PSHY

 LDY #START-1 * start counter at beginning of table - (i=0)
 STX STOP * this is how far we're demoing - remember X for comparison
dloop: INY * i++
 LDAA TABLE,Y * get the thing to demo (TABLE[i])
 STAA PORTB * Show the light (lightup(TABLE[i]))
 BSR sound * play the sound (sound(TABLE[i]))
 CPY STOP * are we done yet? (i==X?)
 BNE dloop * if not, keep looping - if so, exit
 PULY
 PULA
 RTS

**

*
* sendFPGA(signal,i,END)
*
* if(signal==WRONG)
* Send(WRONG-ACK)
* else if(i==END)
* Send(Increment-ACK)
* LAST_LASER_INPUT = 0
* else
* Send(Correct-ACK)
*
* Send(WHICH_ACK)
* tmp = ACK
* tmp = tmp | current_light_values
* PORTB = tmp
* tmp = tmp | WHICH_ACK
* PORTB = tmp
*
*
* This takes input in Register A, either 0000, 0001, 0010, 0100, or 1000,
* which table element we're on in Register Y,
* as well as in memory STOP value as to where the END of this cycle is
*
* depending on whether you were right or wrong and if we're done with that sequence or not, it needs to
* write different signals to the FPGA.
*
* Note: The above C code and the below assemble differ in one major detail. The C code simple sends
* out the appropriate ACK directly, but the assembly does it in two steps. It first sets up the right
* type of ACK bits as to whether it's correct or increment, and then outputs the ACK signal as well.
* The reason for this was a setup time violation for the flip flops. If the flip flops trigger at the
* exact same time as the values change, they will miss and every signal looks like a WRONG ACK.
Setting
* up the signals before sending off the ACK trigger allows the FPGA to operate correctly.
*
**

sendFPGA: PSHB

 CMPA #hWRONG * are you wrong?
 BNE right * if not... skip this part
 LDAB #ACK * send Wrong ACK to FPGA
 STAB PORTB * send info to FPGA. Lights don't matter... they lost anyway
 BRA sfEnd * get outa here
right: CPY STOP * are we on the last byte yet?
 BNE correct * ok, not last byte... send correct, no increment
 LDAB #$00
 STAB LASTL * zero out the last lazer thing since we're done with a cycle
 LDAB #Ibits * load increment ACK bits
 BRA FPGAend * get outa here
correct: LDAB #Cbits * load correct ACK bits

FPGAend: ORAB PORTB * remember the lights
 STAB PORTB * output the new signals
 ORAB #ACK * add on the ACK signal

 STAB PORTB * re-output with ACK to trigger the read
 ANDB #FOURMASK * block out the ACK bits
 STAB PORTB * keep the lights on
sfEnd: PULB
 RTS

**

**

*
* Stuff to do the pulse width modulation
*
**

**

**

*
* delay() is a function that delays for just less than a second using busy waiting
*
* void delayonesecond()
* for(int j=##; j!=0; j--)
* for(int k=#$7F; k!=0; i--)
*
**

delay: PSHA * remember A
 PSHX * remember X
 LDX #$0BED * put magic one second delay number into A (j)
dOuter: DEX * j--
 CPX #$0000 * j==0?
 BEQ dDone * j==0
 LDAA #$7F * k=#$7F if it's 3F, it's more like a half second
dInner: DECA * k--
 BNE dInner * k!=0
 BRA dOuter * k==0
dDone: PULX * restore X
 PULA * restore A
 RTS * return from subroutine

**

* sound(A)
*
* This function sends a square wave off to the speaker system based upon which signal it gets in reg A
*
**

sound: PSHA
 PSHB

 PSHX
 PSHY

*compare value to red
 CMPA #hRED
 BEQ red
*compare value to yellow
 CMPA #hYELLOW
 BEQ yellow
*compare value to green
 CMPA #hGREEN
 BEQ green
*compare value to blue
 CMPA #hBLUE
 BEQ blue
*compare value to "wrong"
 CMPA #hWRONG
 BEQ wrong

* test samples to determine reasonable frequency values.
* $0080 -> 7810 Hz (very piercing and annoying)
* $0800 -> 500 Hz (sound good)
* $8000 -> 30 Hz (scratchy, below the good-sounding range of our speaker)
*

red: LDD #$0800
 STD PWMHI
 STD PWMLO
 BRA sEnd
yellow: LDD #$0B00
 STD PWMHI
 STD PWMLO
 BRA sEnd
green: LDD #$0900
 STD PWMHI
 STD PWMLO
 BRA sEnd
blue: LDD #$0A00
 STD PWMHI
 STD PWMLO
 BRA sEnd
wrong: LDD #$1800
 STD PWMHI
 STD PWMLO

sEnd:
* Initialize interrupts
 LDAA #%00001000 * Set OC2 to set output pin low
 STAA TCTL1
 LDAA #%00010000 * Enable OC4 interrupt
 STAA TMSK1

 CLI * turn on intrerrupts
 BSR delay * wait for one second for the sound to play.
 SEI * turn off interrupts before we leave the sound function

* De-Initialize interrupts to prevent funny noises
* If interrupt ends with OC2 set high, we get really bad noise through speaker
* For this reason, we force it low after each sound period

 LDAA #$FF * Set OC# to set output pins all low
 STAA TCTL1

 CLR PORTB * Turn lights off after sound is done
 PULY
 PULX
 PULB
 PULA
 RTS

**

* Interrupt service routine for OC4
*
* Taken directly from Lab 7 solutions written by Professor David Harris
*
**

OC4ISR LDX #REG
 BRCLR TFLG1-REG,X OC4F RTOC4 * Ignore other interrupts
 LDAA #OC4F * Store 1 to clear flag
 STAA TFLG1-REG,X * Zeros do nothing
 BRSET TCTL1-REG,X BIT2 LASTHI
 BSET TCTL1-REG,X BIT2 * set OC4 to set pin high
 LDD TOC4-REG,X * Increment output compare time
 ADDD PWMLO
 STD TOC4-REG,X
 BRA RTOC4

LASTHI BCLR TCTL1-REG,X BIT2 * set OC4 to set pin low
 LDD TOC4-REG,X * Set wait time
 ADDD PWMHI
 STD TOC4-REG,X

RTOC4 RTI * Return from the interrupt

