
RC Controller Final Report

G. Lee & E. Lee-Su E155

1

RC Controller

Final Project Report

December 12, 2002

E155

Gene Lee & Elizabeth Lee-Su

Abstract

Often times one might want to resurrect RC toys with broken or lost transmitters, or to enhance
their functionality. The goal of this project is to control a RC toy by creating a wireless RC
controller. This can be done by utilizing wireless transmitter/receiver modules and sending the
appropriate signals to drive the motors inside the toy. This project will control a RC Nissan
XTerra toy car, while enhancing its steering by using a servo motor instead of the built in dc
motor to drive its steering mechanism. Digital logic and the electronic parts of this project are
emphasized, while the mechanical parts are present only to implement the project design.

RC Controller Final Report

G. Lee & E. Lee-Su E155

2

1. Introduction

This final project is aimed to create a RC controller that can control any given RC toy.

For the purposes of the project, a RC Nissan XTerra toy car was bought. The user will input a

command which will then be transmitted to the car. The car will receive the command, and then

the motors inside will respond accordingly. This project seeks to enhance the steering of the car

by replacing the dc motor in the steering mechanism with a servo motor. As a result, not only

will the car be remotely controlled, but its performance will be improved as well.

2. New Hardware

2. 1 Servo Motor

 The Futuba FP-S148 servo motor is used for the steering in this prototype. Servo motors

are controlled via a pulse-width-modulation (PWM) signal. The S148 takes in 3 inputs: power,

ground, and a control signal. An example of a PWM signal is shown in Figure 1. The high time

of the PWM signal determines the direction that the motor will turn.

 Figure 1: PWM Signal Figure 2: Block Diagram for HC11 Program

 In order to determine the high times of PWM signals that correspond to motor

movements, a program (see Appendix A) was written for the Motorola M68HC11

microcontroller using interrupts to pulse-width-modulate port A bit 4 using output compare OC4.

The period of the PWM output is 30 ms long, which works well with the S148 and is typical of

most servo motors. An analog voltage is read at PE7 which then goes through an analog to

digital converter in which the result (between 0 and 256) will be the high time of the PWM

signal. The user can then send PWM signals to the S148 and see how it reacts. A block diagram

of the HC11 program is shown on Figure 2. By sending the servo a variety of PWM signals, the

A/D Converter
Use Interrupts

to Create

PWM Signal

Using OC4

Analog

Signal PWM

Signal

RC Controller Final Report

G. Lee & E. Lee-Su E155

3

user can see which signals stimulate specific movements. The test results for the S148 are shown

in Table 1. Although the S148 can be driven to other positions, for the purposes of this project,

only the positions below will be considered.

Table 1: High Times Corresponding to Servo Positions

2.2. DC Motor

 The DC motor that came with the car will be used to control forward and backward

movements. The DC motor takes as input two signals: power and ground. If power and ground

are reversed, the motor will turn CCW, otherwise, the motor will turn CW. In order to have the

motor turn in reversible directions, a reversible drive circuit is needed.

The H-bridge is a simple, reversible drive circuit (see Figure 3) that will be used in this

project to drive the DC motor forward and backwards. A basic H-Bridge has 4 switches,

transistors, or other means of completing a circuit to drive a motor. In the above diagram, the

switches are labeled A1, A2, B1 and B2. Since each of the four switches can be either open or

closed, there are 24 = 16 combinations of switch settings. The combinations of switch settings

relevant to this project are shown in Figure 4.

 Figure 3: Connection Diagram for L293D Motor Driver Table 2: Table for H-bridge Switches

H-bridges are so common and useful that a number of commercially available integrated

circuits (ICs) are made that combine all of the discrete components together. The IC that will be

used for this project is the L293D (see Figures 5 and 6) from SGS-Thomson Microelectronics.

RC Controller Final Report

G. Lee & E. Lee-Su E155

4

The L293 is a four channel motor driver IC that can be used for simultaneous, bi-directional

control of two small motors. This IC can be used as 2 H-bridges, but for this project only one DC

motor will be controlled, so pins 10-15 will be left empty (they are able to float). The L293 is

limited to an output of 600 mA per channel and comes in a standard 16-pin, dual-in line

integrated circuit package.

 Figure 5: Diagram and Pin Placement for L293D Figure 6: Schematics of L293D

2.3 Transmitter/Receiver Module

Any hope of salvaging the wireless transmitter and receiver that came with the car to use

for control purposes, was lost when their circuitry could not be followed. Both transmitter and

receiver were extremely compact and consisted of numerous capacitors, resistors, transistors, and

an encoding/decoding “SuperChip” IC. Signals were observed from both the transmitter and

receiver on an oscilloscope when controlling the car, but sense could not be made out of the

waveforms. For this reason, wireless transmitters and receivers were purchased and the FPGA

was used for encoding/decoding signals.

Research and budget constraints led to the purchase of the TXM-433-LC radio frequency

(RF) transmitter and the RXM-433-LC-S RF receiver (Figure 7), which operate at 434 MHz and

feature a transmission range in excess of 300 feet. A digital signal sent to the transmitter is

modulated to be transmitted at the carrier frequency of 434 MHz. This signal is received by the

receiver and then demodulated to the original signal. Below are schematics (Figure 11) of the

transmitter and receiver with power supply noise filter circuits connected to Vcc. Eight digital

signals with varying high times were encoded to correspond to eight different motor directions

RC Controller Final Report

G. Lee & E. Lee-Su E155

5

that the user could input via keypad. A transmitter FPGA would create the encoded signal

depending on what key was inputted, and then output the signal to the transmitter. A receiver

FPGA mounted on the car would receive the signal, and then decode it and send the motors the

respective signals. The transmitter/receiver modules were tested, and it was discovered that as

the transmitter and receiver were further apart, the high times transmitted were shorter. The

cause of this is probably due to noise encountered during transmitting. That problem was

accounted for by having a range of high times that corresponded to each command instead one

specific value. For example, if a signal with a high time of 200 µS was sent, then the receiver

would recognize a signal with a high time of 100-250 µS as 200 µS. With the new ranges of high

times (see Table 3), signals can be transmitted to the car within the micro processor’s lab and

even out in the hallway, but as previously mentioned, the clarity of the signals are lost as the

transmitter and receiver are further apart. Since this is a prototype, an economical

transmitter/receiver module is used instead of a higher quality one that will not catch as much

noise. For the purposes of this project, this pair of transmitter and receiver modules operated

with reasonable errors that were able to be accounted within the receiver FPGA.

+5 V

TXM-433-LC

DATA

10 OHM

430 OHM

RXM-433-LC-S

DATA

+5 V

10 OHM

200 OHM

10 uF

10 uF

GND VCCVADJDATA DATAPDN VCC GND

Figure 7: Schematics of Transmitter and Receiver

RC Controller Final Report

G. Lee & E. Lee-Su E155

6

 Table 3: Keypad Number Corresponding with DC/Servo Motor Controls and High Times

3. Electrical Elements

3.1 Encoding Module

The car is remotely controlled using a matrix keypad, taking into account budget

constraints and simplicity in the decision making process. The matrix keypad is a four by four

matrix of crossed wires, representing 16 different keys. For the duration of a key press, an

electrical connection is created between the row and column wires that intersect underneath the

key. To detect key presses, a Verilog module (Appendix B) is written that scans the keypad (see

Figure 8 for the Finite State Machine) by sending one column wire at a time to a low logic state,

while the others are held high. The idle states represent which column is being scanned for key

presses.

Figure 8: Finite State Machine of the Scanner

The row wires are pulled up with 47 kO resistors, so they will be in a high logic state if

undisturbed. When a key is pressed, the corresponding row wire will be pulled low only when

the corresponding column is sent low by the scanning circuitry, which will then freeze until the

key is released. The combination of low row and column wires uniquely identifies which key has

been pressed, which can then be encoded as an output. There are 8 different outputs because 8

Key Pressed
Direction 1
(DC Motor)

Direction 2
(Servo Motor)

High Time
sent (µS)

High Time
Received (µS)

4 Forward Left 45o 200 100-250
5 Forward Middle 0o 400 300-450
6 Forward Right 45o 600 500-650
7 Forward Left 90o 800 700-850
8 Forward Right 90o 1000 900-1050
A Backward Left45o 1200 1100-1250
0 Backward Middle 0o 1400 1300-1450
B Backward Right 45o 1600 1500-1650

IDLE2

IDLE0

IDLE1

Cols = 1111

Cols = 1111 Cols = 1111

RC Controller Final Report

G. Lee & E. Lee-Su E155

7

keys on the keypad control the car. See Table 3 above for output signals corresponding with each

key press. Figures 8 and 9 below are the block diagrams and schematics of this module.

Figure 8: Block Diagram of Encoding Module

 R0

R1

R2

R3

C1

C2

C3

C0

47 kOHM

+5V

P14

P84

P83

P82

P81

P25

P24

P23

P20
KEYPAD

FPGA

P7TRANSMITTER
DATA

Figure 9: Schematic of Encoding Module on Breadboard

RC Controller Final Report

G. Lee & E. Lee-Su E155

8

3.2 Decoding Module

From the encoding module, a signal (out of 8 possible signals) will be transmitted to the

receiver and go through a decoding module that will drive the motors. Another Verilog module

(Appendix C) was written that takes in the signal outputted by the encoding module and outputs

corresponding signals to drive the dc and servo motors. The decoder module decodes the signal

sent to it and recognizes which key has been pressed by the user. Within the decoder module,

there are five other Verilog modules (Appendix C) that code for five pulse-width-modulated

signals that control the Futaba FP-S148 servo motor to turn left or right 45°, left or right 90°, or

to center itself. For the eight signals that outputs were assigned to, the decoder module will send

low or high signals to the two leads on the DC motor and a specific PWM signal to the servo

motor. A block diagram of this module can be seen below at Figure 10.

Figure 10: Block Diagram of the Decoding Module

Schematics of the decoding module can be seen on Figure 11. The signals (2) outputted to the dc

motor will first go through an H-bridge because the dc motor needs a bidirectional circuit to

drive it.

RC Controller Final Report

G. Lee & E. Lee-Su E155

9

P1

P2

P3

P4

P5

P6

P7

P8

P16

P15

P14

P13

P12

P11

P10

P9

L293

+5 V

P47

P51

P7

FPGA

DC MOTOR

FUTABA FP-S148
SERVO MOTOR

P80
RECEIVER

Figure 11: Schematics of Decoding Module

3.3 Power Supply

 Three voltage regulators are used to supply 5V of DC voltage to the electrical

components of the project which includes the FPGA, H-bridge, transmitter, and receiver. Voltage

regulators are used because constant 5V DC voltages are needed to drive the electrical

components. Two of the voltage regulators are placed on the breadboard on the car and the other

one is placed on the breadboard on the control panel. The voltage regulator used was the 7805s

(see Figure 12). The input is 7.2V or greater of DC voltage, the common is grounded, and the

output voltage is 5V of DC voltage with 1.5A of current. Six 1.5V batteries were used to supply

the voltage needed for the input. Wires and electrical tape are used to connect the

batteries/battery packs together to make three portable power supplies (one for the transmitter

FPGA and 2 for the receiver FPGA and DC motor) to input to the voltage regulators.

Figure 12: Diagram of 7805 Voltage Regulator

RC Controller Final Report

G. Lee & E. Lee-Su E155

10

 The problem that was encountered with the power supply was that it did not supply

enough current to be able to drive the dc motor, which is driven by approximately 150mA.

Basically two power supplies are used on the breadboard of the decoding module. One of the

power supplies is used to power up the FPGA and servo motor and another power supply is used

to drive the DC motor through the H-bridge. Since the FPGA can only output 12mA, not having

a lot of current from the batteries is not a problem. However, the L293 H-bridge can out put up

to 1.2A of current, not having enough current became a problem. The motor did not have enough

current to drive it that the forward/backward motion is very slow and eventually dies. If the

project went on longer, different batteries would be used that output more current.

4. Mechanical Elements

 Since the project focus is on the electrical elements of RC cars, the only mechanical

element looked at was the steering mechanism for the car. Originally the car was driven with a

DC motor steering mechanism. Because a more precise control of the steering is desired, steering

of the car is controlled with a servo motor. The existing steering mechanism in the car was

modified to accommodate the FP-S148. Figure 12 shows a diagram of the steering mechanism of

the servo motor, which consists of two Lego gears. The forward/backward movement

mechanism, driven by a DC motor, was able to be incorporated in the final design without

modification.

Servo MotorGear

Gear

Right WheelLeft Wheel

Figure 12: Diagram of Steering Mechanism for Servo Motor

RC Controller Final Report

G. Lee & E. Lee-Su E155

11

 5. Results

 At the end of this project, a RC controller was built that controlled the Nissan XTerra toy

car. The car can be controlled to go forwards, backwards, both straight and with different degrees

of left and right steering. Everything worked as planned except that the battery packs made were

very unreliable and the batteries that were used did not output enough current. The lessons

learned from this project is that the testing process is just as important as the design and research,

therefore enough time should be allotted for both.

6. References

[1] Futuba Corporation (California), (949) 455-9888

[2] Mouser Electronics, http://www.mouser.com

[3] Reynolds Electronics, http://www.reynoldselectronics.com

[4] Tower Hobbies, http://www.towerhobbies.com

7. Parts List

Part Source Price*

1.5V AA Batteries (10) Walmart 5

7805 Voltage Regulator (2) Jameco Electronics 0.7

Futuba S148 Servo Motor Tower Hobbies 15

Gears for S148 Tower Hobbies 5

L293D H-Bridge Mouser Electronics 2

RC Toy Car Toys 'R Us 50

TXM/RXM-443-LC Transmitter/Receiver Module Reynolds Electronics 35

*Prices do not included shipping/handling Total: 112.7

RC Controller Final Report

G. Lee & E. Lee-Su E155

12

APPENDIX A: Code to generate PWM signals

0001 **this program creates a PWM output
0002 **proportional to the analog voltage
0003 **on PE7 using output compare OC4 and
0004 **interrupts
0005 ***
0006
0007 *Port Addresses
0008 1000 REG EQU $1000 *base address of registers
0009 1000 PORTA EQU $1000
0010 1004 PORTB EQU $1004
0011 100a PORTE EQU $100A
0012 101c TOC4 EQU $101C
0013 1020 TCTL1 EQU $1020
0014 1022 TMSK1 EQU $1022
0015 1023 TFLG1 EQU $1023
0016 1030 ADCTL EQU $1030
0017 1039 OPTION EQU $1039
0018 1031 ADR1 EQU $1031
0019
0020 *Masks
0021 0010 OC4F EQU %00010000
0022 0004 BIT2 EQU %00000100
0023
0024 *Local variables
0025 0020 ORG $20
0026 0020 08 00 PWMLO FDB $0800 *low time for pulse width modulation
0027 0022 08 00 PWMHI FDB $0800 *high time for pulse width modulation
0028
0029 *Interrupt vector
0030 00d6 ORG $00D6 *output compare 4 interrupt service routine
0031 00d6 7e c1 30 JMP OC4ISR *hardwired to $00D6, where we put jump to
our routine
0032
0033 *Main program
0034 c100 ORG $C100
0035
0036 *Initialize
0037 c100 86 80 LDAA #%10000000 *start a/d charge jump
0038 c102 b7 10 39 STAA OPTION
0039 c105 86 08 LDAA #%00001000 *set OC2 to set output pin low
0040 c107 b7 10 20 STAA TCTL1
0041 c10a 86 10 LDAA #%00010000 *enable OC4 interrupt
0042 c10c b7 10 22 STAA TMSK1
0043 c10f 0e CLI *turn on interrupts
0044
0045 *Sample A/D converter and adjust high/low times while waiting
0046 c110 86 aa LDAA #$AA
0047 c112 b7 10 31 STAA ADR1
0048 c115 bd c1 54 LOOP JSR CONVERT *sample output
0049 c118 0f SEI *disable interrupts while modifying the low
and high times
0050 c119 f6 10 31 LDAB ADR1 *read result of a/d conversion
0051 c11c f7 10 04 STAB PORTB
0052 c11f 4f CLRA *set high bits of double accumulator
to 0
0053 c120 05 ASLD *multiply delay by 16
0054 c121 05 ASLD
0055 c122 05 ASLD
0056 c123 05 ASLD
0057 c124 dd 22 STD PWMHI
0058 c126 cc ea 60 LDD #$EA60 *compute low time = 1000-high time
0059 c129 93 22 SUBD PWMHI *we want the period to be 30 ms
0060 c12b dd 20 STD PWMLO
0061 c12d 0e CLI *reenable interrupts
0062 c12e 20 e5 BRA LOOP

RC Controller Final Report

G. Lee & E. Lee-Su E155

13

0063
0064 *Interrupt service routine for OC4
0065 c130 ce 10 00 OC4ISR LDX #REG
0066 c133 1f 23 10 1c BRCLR TFLG1-REG,X OC4F RTOC4 *ignore other interrupts
0067 c137 86 10 LDAA #OC4F *store 1 to clear flag
0068 c139 a7 23 STAA TFLG1-REG,X *zeros do nothing
0069 c13b 1e 20 04 0b BRSET TCTL1-REG,X BIT2 LASTHI
0070 c13f 1c 20 04 BSET TCTL1-REG,X BIT2
0071 c142 ec 1c LDD TOC4-REG,X *increment output compare time
0072 c144 d3 20 ADDD PWMLO
0073 c146 ed 1c STD TOC4-REG,X
0074 c148 20 09 BRA RTOC4
0075
0076 c14a 1d 20 04 LASTHI BCLR TCTL1-REG,X BIT2 *set OC4 to set pin low
0077 c14d ec 1c LDD TOC4-REG,X *set wait time
0078 c14f d3 22 ADDD PWMHI
0079 c151 ed 1c STD TOC4-REG,X
0080
0081 c153 3b RTOC4 RTI *return from the interrupt
0082
0083 *a/d converter subroutine
0084 *reads analog voltage on PE7
0085 *leaves result in ADR1 register
0086 *trashes accumulator
0087
0088 c154 86 07 CONVERT LDAA #$07 *scan, mult = 0; select challen PE7
0089 c156 b7 10 30 STAA ADCTL *begin conversion of channel PE7
0090
0091 c159 b6 10 30 CLOP LDAA ADCTL *wait for conversion to complete
0092 c15c 84 80 ANDA #%10000000 *look at conversion complete flag
0093 c15e 27 f9 BEQ CLOP *wait until done
0094 c160 39 RTS
0095
0096
0097

RC Controller Final Report

G. Lee & E. Lee-Su E155

14

Appendix B: Code for Keyboard Encoding Module
module rc(clk,reset,rows,cols,signal);

 input clk;

 input reset;

 input [3:0] rows;

 output [3:0] cols;

 output signal; //one of 8 signals outputted to represent the key pressed

 wire [3:0] k;

 scanner scanner1(clk,reset,rows,cols,k); // scans keypad for key press

 decoder decoder1(clk,reset,k,signal); // encodes key press and outputs to transmitter

endmodule

module scanner(clk,reset,rows,cols,k);
 input clk;
 input reset;
 input [3:0] rows;
 output [3:0] cols;
 output [3:0] k;

 reg [3:0] cols;
 reg [3:0] nextcols;
 reg [3:0] k;

parameter IDLE2 = 4'b1011; //3rd column
parameter IDLE1 = 4'b1101; //2nd column
parameter IDLE0 = 4'b1110; //1st column
parameter L2 = 4'b1110; //1st column
parameter R2 = 4'b1011; //3rd column
parameter LL = 4'b1110; //1st column
parameter RR = 4'b1011; //3rd column
parameter L0 = 4'b1110; //1st column
parameter R0 = 4'b1011; //3rd column
parameter U = 4'b1101; //2nd column
parameter D = 4'b1101; //2nd column

always @(posedge clk or posedge reset)
 if (reset) cols <= IDLE2;
 else cols <= nextcols;

always @(cols or rows) //scans the columns
 case (cols)
 IDLE2: if (&rows) nextcols <= IDLE1;
 else nextcols <= IDLE2;

 IDLE1: if (&rows) nextcols <= IDLE0;
 else nextcols <= IDLE1;

 IDLE0: if (&rows) nextcols <= IDLE2;
 else nextcols <= IDLE0;

 L2: if (&rows) nextcols <= IDLE2;
 else nextcols <= IDLE0;

 R2: if (&rows) nextcols <= IDLE1;

RC Controller Final Report

G. Lee & E. Lee-Su E155

15

 else nextcols <= IDLE2;

 LL: if (&rows) nextcols <= IDLE2;
 else nextcols <= IDLE0;

 RR: if (&rows) nextcols <= IDLE1;
 else nextcols <= IDLE2;

 L0: if (&rows) nextcols <= IDLE2;
 else nextcols <= IDLE0;

 R0: if (&rows) nextcols <= IDLE1;
 else nextcols <= IDLE2;

 U: if (&rows) nextcols <= IDLE0;
 else nextcols <= IDLE1;

 D: if (&rows) nextcols <= IDLE0;
 else nextcols <= IDLE1;

 default: nextcols <= IDLE2;

endcase

always @(cols or rows)
 case({cols, rows})
 8'b10111011: k <= 'h1; // UR
 8'b10111110: k <= 'h2; // DR
 8'b11101011: k <= 'h3; // UL
 8'b11101110: k <= 'h4; // DL
 8'b10111101: k <= 'h5; // RR
 8'b11101101: k <= 'h6; // LL
 8'b11011011: k <= 'h7; // U
 8'b11011110: k <= 'h8; // D

 default: k <= 'h0; // IDLE
endcase

endmodule

module decoder(clk,reset,k,signal);
 input clk;
 input reset;
 input [3:0] k; //key pressed
 output signal; //signal that represent the key pressed

parameter UL = 'h1; // up left
parameter DL = 'h2; // down left
parameter UR = 'h3; // up right
parameter DR = 'h4; // down right
parameter LL = 'h5; // hard left
parameter RR = 'h6; // hard right
parameter U = 'h7; // up
parameter D = 'h8; // down

reg ul45f;
reg uf;
reg ur45f;
reg ul90f;
reg ur90f;
reg dl45f;
reg df;
reg dr45f;
//calls functions for each of the 8 signals
left45 left45(clk,reset,ul45);
dleft45 dleft45(clk,reset,dl45);
left90 left90(clk,reset,ul90);
up up(clk,reset,u);
down down(clk,reset,d);
right45 right45(clk,reset,ur45);

RC Controller Final Report

G. Lee & E. Lee-Su E155

16

dright45 dright45(clk,reset,dr45);
right90 right90(clk,reset,ur90);

always @(k) // depending on key press, one output signal is to be sent
 case (k)
 UL: begin
 ul45f <= 1;
 uf <= 0;
 ur45f <= 0;
 ul90f <= 0;
 ur90f <= 0;
 dl45f <= 0;
 df <= 0;
 dr45f <= 0;
 end
 UR: begin
 ul45f <= 0;
 uf <= 0;
 ur45f <= 1;
 ul90f <= 0;
 ur90f <= 0;
 dl45f <= 0;
 df <= 0;
 dr45f <= 0;
 end
 DL: begin
 ul45f <= 0;
 uf <= 0;
 ur45f <= 0;
 ul90f <= 0;
 ur90f <= 0;
 dl45f <= 1;
 df <= 0;
 dr45f <= 0;
 end
 DR: begin
 ul45f <= 0;
 uf <= 0;
 ur45f <= 0;
 ul90f <= 0;
 ur90f <= 0;
 dl45f <= 0;
 df <= 0;
 dr45f <= 1;
 end
 LL: begin
 ul45f <= 0;
 uf <= 0;
 ur45f <= 0;
 ul90f <= 1;
 ur90f <= 0;
 dl45f <= 0;
 df <= 0;
 dr45f <= 0;
 end
 RR: begin
 ul45f <= 0;
 uf <= 0;
 ur45f <= 0;
 ul90f <= 0;
 ur90f <= 1;
 dl45f <= 0;
 df <= 0;
 dr45f <= 0;
 end
 U: begin
 ul45f <= 0;
 uf <= 1;
 ur45f <= 0;
 ul90f <= 0;

RC Controller Final Report

G. Lee & E. Lee-Su E155

17

 ur90f <= 0;
 dl45f <= 0;
 df <= 0;
 dr45f <= 0;
 end

 D: begin
 ul45f <= 0;
 uf <= 0;
 ur45f <= 0;
 ul90f <= 0;
 ur90f <= 0;
 dl45f <= 0;
 df <= 1;
 dr45f <= 0;
 end
 default: begin
 ul45f <= 0;
 uf <= 0;
 ur45f <= 0;
 ul90f <= 0;
 ur90f <= 0;
 dl45f <= 0;
 df <= 0;
 dr45f <= 0;
 end
 endcase
//mux to determine which signal to send
assign signal = ul45f ? ul45 : (uf ? u : (ur45f ? ur45 : (ul90f ? ul90 : (ur90f ? ur90 : (dl45f ?
dl45 : (df ? d : (dr45f ? dr45 : 0)))))));

endmodule

module dleft45(clk,reset,dl45);//signal creator
 input clk;
 input reset;
 output dl45;

 parameter stopping = 1200; //1.2 ms high time
 parameter stopping2 = 30000; //30 ms period

 reg [14:0] count; //15 bit counter
 reg dl45;

always @(posedge clk or posedge reset)
begin

 if (reset)
 begin
 dl45 <= 0;
 count <= 0;
 end
 else if (count <= stopping)
 begin
 dl45 <= 1;
 count <= count + 1;

 end
 else if (count >= stopping2)
 begin
 dl45 <= 0;
 count <= 0;

 end
 else
 begin
 dl45 <= 0;
 count <= count + 1;

RC Controller Final Report

G. Lee & E. Lee-Su E155

18

 end
end
endmodule

module down(clk,reset,d);
 input clk;
 input reset;
 output d;
 parameter stopping = 1400; //1.4 ms high time
 parameter stopping2 = 30000; //30 ms period
 reg [14:0] count; //15 bit counter
 reg d;
always @(posedge clk or posedge reset)
begin
 if (reset)
 begin
 d <= 0;
 count <= 0;
 end
 else if (count <= stopping)
 begin
 d <= 1;
 count <= count + 1;
 end
 else if (count >= stopping2)
 begin
 d <= 0;
 count <= 0;
 end
 else
 begin
 d <= 0;
 count <= count + 1;
 end
end

endmodule
module dright45(clk,reset,dr45);
 input clk;
 input reset;
 output dr45;

 parameter stopping = 1600; //1.6mS high time
 parameter stopping2 = 30000; //30mS period

 reg [14:0] count; //15 bit counter
 reg dr45;

always @(posedge clk or posedge reset)
begin
 if (reset)
 begin
 dr45 <= 0;
 count <= 0;
 end
 else if (count <= stopping)
 begin
 dr45 <= 1;
 count <= count + 1;
 end
 else if (count >= stopping2)
 begin
 dr45 <= 0;
 count <= 0;
 end
 else
 begin
 dr45 <= 0;
 count <= count + 1;
 end

RC Controller Final Report

G. Lee & E. Lee-Su E155

19

end

endmodule

module left45(clk,reset,ul45);
 input clk;
 input reset;
 output ul45;

 parameter stopping = 200; //.2 ms high time
 parameter stopping2 = 30000; //30 ms period

 reg [14:0] count; //15 bit counter
 reg ul45;

always @(posedge clk or posedge reset)
begin

 if (reset)
 begin
 ul45 <= 0;
 count <= 0;

 end
 else if (count <= stopping)
 begin
 ul45 <= 1;
 count <= count + 1;

 end
 else if (count >= stopping2)
 begin
 ul45 <= 0;
 count <= 0;

 end
 else
 begin
 ul45 <= 0;
 count <= count + 1;
 end
end

endmodule

RC Controller Final Report

G. Lee & E. Lee-Su E155

20

module left90(clk,reset,ul90);
 input clk;
 input reset;
 output ul90;

 parameter stopping = 800; //.8 ms high time
 parameter stopping2 = 30000; //30 ms period

 reg [14:0] count; //15 bit counter
 reg ul90;

always @(posedge clk or posedge reset)
begin
 if (reset)
 begin
 ul90 <= 0;
 count <= 0;
 end
 else if (count <= stopping)
 begin
 ul90 <= 1;
 count <= count + 1;
 end
 else if (count >= stopping2)
 begin
 ul90 <= 0;
 count <= 0;
 end
 else
 begin
 ul90 <= 0;
 count <= count + 1;
 end
end

endmodule

module right45(clk,reset,ur45);
 input clk;
 input reset;
 output ur45;

 parameter stopping = 600; //.6 ms high time
 parameter stopping2 = 30000; //30ms period

 reg [14:0] count; //15 bit counter
 reg ur45;

always @(posedge clk or posedge reset)
begin
 if (reset)
 begin
 ur45 <= 0;
 count <= 0;
 end
 else if (count <= stopping)
 begin
 ur45 <= 1;
 count <= count + 1;
 end
 else if (count >= stopping2)
 begin
 ur45 <= 0;
 count <= 0;
 end
 else
 begin
 ur45 <= 0;
 count <= count + 1;
 end

RC Controller Final Report

G. Lee & E. Lee-Su E155

21

end

endmodule

module right90(clk,reset,ur90);
 input clk;
 input reset;
 output ur90;

 parameter stopping = 1000; //1.0 ms high time
 parameter stopping2 = 30000; //30 ms period
 reg [14:0] count; //15 bit counter
 reg ur90;

always @(posedge clk or posedge reset)
 if (reset)
 begin
 ur90 <= 0;
 count <= 0;
 end
 else if (count <= stopping)
 begin
 ur90 <= 1;
 count <= count + 1;
 end
 else if (count >= stopping2)
 begin
 ur90 <= 0;
 count <= 0;
 end
 else
 begin
 ur90 <= 0;
 count <= count + 1;
 end

endmodule

module up(clk,reset,u);
 input clk;
 input reset;
 output u;

 parameter stopping = 400; //.4 ms high time
 parameter stopping2 = 30000; //30 ms period

 reg [14:0] count; //15 bit counter
 reg u;

always @(posedge clk or posedge reset)
begin
 if (reset)
 begin
 u <= 0;
 count <= 0;
 end
 else if (count <= stopping)
 begin
 u <= 1;
 count <= count + 1;
 end
 else if (count >= stopping2)
 begin
 u <= 0;
 count <= 0;
 end
 else
 begin
 u <= 0;
 count <= count + 1;

RC Controller Final Report

G. Lee & E. Lee-Su E155

22

 end
end

RC Controller Final Report

G. Lee & E. Lee-Su E155

23

Appendix C: Code for Signal Decoding Module

module receive(clk,reset,sig,servo,dc1,dc2);
 input clk;
 input reset;
 input sig;
 output servo; //servo signal
 output dc1; //dc signal
 output dc2; //dc signal

 wire [3:0] pressed;

 decode decode(clk, reset, sig, pressed); // decodes signal received by receiver
 transmit transmit(clk, reset, pressed, servo, dc1, dc2); // signals to be sent to motors

endmodule

module decode(clk,reset,sig, pressed);
 input clk;
 input reset;
 input sig; //signal received
 output [3:0] pressed; //key pressed

 reg [14:0] clk_count; //counts clk cycles
 reg [14:0] sig_count; //counts high times
 reg [14:0] out; //final high time
 reg [3:0] pressed; //key pressed

 parameter stopp = 30000; // 30 ms period
 // range of high times to determine which signal is being sent
 parameter ULupper = 650;//500-650 range encodes for up left 45 signals
 parameter ULlower = 500;
 parameter DLupper = 1650;//1500-1650 down left 45
 parameter DLlower = 1500;
 parameter URupper = 250;//100-250 up right 45
 parameter URlower = 100;
 parameter DRupper = 1250;//1100-1250 down right 45
 parameter DRlower = 1100;
 parameter LLupper = 1050;//900-1050 up left 90
 parameter LLlower = 900;
 parameter RRupper = 850;//700-850 up right 90
 parameter RRlower = 700;
 parameter Uupper = 450;//300-450 up
 parameter Ulower = 300;
 parameter Dupper = 1450;//1300-1450 down
 parameter Dlower = 1300;

 always @(posedge clk or posedge reset) //counts number of high times in 30 ms period
 begin
 if (reset)
 begin
 clk_count <= 0;
 sig_count <= 0;
 out <= 0;
 end

 else if (sig & (clk_count < stopp))
 begin
 clk_count <= clk_count + 1;
 sig_count <= sig_count + 1;
 end

 else if (clk_count == stopp)
 begin
 clk_count <= clk_count + 1;
 out <= sig_count;
 end

RC Controller Final Report

G. Lee & E. Lee-Su E155

24

 else if(sig & (clk_count > stopp))
 begin
 clk_count <= 1;
 sig_count <= 1;
 end

 else if(clk_count > stopp)
 begin
 clk_count <= 1;
 sig_count <= 0;
 end

 else
 clk_count <= clk_count + 1;
 end

always @(out) // decodes received signal into what key has been pressed
 if (out >= URlower & out < URupper) pressed <= 'h3;
 else if (out >= Ulower & out <= Uupper) pressed <= 'h7;
 else if (out >= ULlower & out <= ULupper) pressed <= 'h1;
 else if (out >= RRlower & out <= RRupper) pressed <= 'h6;
 else if (out >= LLlower & out <= LLupper) pressed <= 'h5;
 else if (out >= DRlower & out <= DRupper) pressed <= 'h4;
 else if (out >= Dlower & out <= Dupper) pressed <= 'h8;
 else if (out >= DLlower & out <= DLupper) pressed <= 'h2;
 else pressed <= 'h0;
endmodule

module transmit(clk,reset,pressed,servo,dc1,dc2); // decodes key press into motor actions
 input clk;
 input reset;
 input [3:0] pressed;

 output servo;
 output dc1;
 output dc2;

parameter UL = 'h1; // UL up left 45
parameter DL = 'h2; // DL
parameter UR = 'h3; // UR
parameter DR = 'h4; // DR
parameter LL = 'h5; // LL up left 90
parameter RR = 'h6; // RR
parameter U = 'h7; // U
parameter D = 'h8; // D

reg lsig;
reg rsig;
reg llsig;
reg rrsig;
reg dc1;
reg dc2;
//calls signals for servo
left45 left45(clk,reset,l45);
left90 left90(clk,reset,l90);
middle middle(clk,reset,mid);
right45 right45(clk,reset,r45);
right90 right90(clk,reset,r90);
//determines which signals are to be sent to motors
always @(pressed)
 case (pressed)
 UL: begin
 lsig <= 1;
 rsig <= 0;
 llsig <= 0;
 rrsig <= 0;
 dc1 <= 1;
 dc2 <= 0;
 end

RC Controller Final Report

G. Lee & E. Lee-Su E155

25

 UR: begin
 lsig <= 0;
 rsig <= 1;
 llsig <= 0;
 rrsig <= 0;
 dc1 <= 1;
 dc2 <= 0;
 end
 DL: begin
 lsig <= 1;
 rsig <= 0;
 llsig <= 0;
 rrsig <= 0;
 dc1 <= 0;
 dc2 <= 1;
 end
 DR: begin
 lsig <= 0;
 rsig <= 1;
 llsig <= 0;
 rrsig <= 0;
 dc1 <= 0;
 dc2 <= 1;
 end
 LL: begin
 lsig <= 1;
 rsig <= 0;
 llsig <= 1;
 rrsig <= 0;
 dc1 <= 1;
 dc2 <= 0;
 end
 RR: begin
 lsig <= 0;
 rsig <= 1;
 llsig <= 0;
 rrsig <= 1;
 dc1 <= 1;
 dc2 <= 0;
 end
 U: begin
 lsig <= 0;
 rsig <= 0;
 llsig <= 0;
 rrsig <= 0;
 dc1 <= 1;
 dc2 <= 0;
 end

 D: begin
 lsig <= 0;
 rsig <= 0;
 llsig <= 0;
 rrsig <= 0;
 dc1 <= 0;
 dc2 <= 1;
 end
 default: begin
 lsig <= 0;
 rsig <= 0;
 llsig <= 0;
 rrsig <= 0;
 dc1 <= 0;
 dc2 <= 0;
 end
 endcase
//mux to determine which servo signal to send
assign servo = lsig ? (llsig ? l90 : l45) : (rsig ? (rrsig ? r90 : r45) : mid);

endmodule

RC Controller Final Report

G. Lee & E. Lee-Su E155

26

module left45(clk,reset,l45); // create servo signal
 input clk;
 input reset;
 output l45;

 parameter stopping = 650; //.65 ms high time
 parameter stopping2 = 30000; //30 ms period

 reg [14:0] count; //15 bit counter
 reg l45;

always @(posedge clk or posedge reset)
begin
 if (reset)
 begin
 l45 <= 0;
 count <= 0;
 end
else if (count <= stopping)
 begin
 l45 <= 1;
 count <= count + 1;
 end
 else if (count >= stopping2)
 begin
 l45 <= 0;
 count <= 0;
 end
 else
 begin
 l45 <= 0;
 count <= count + 1;
 end
end

endmodule

module left90(clk,reset,l90);
 input clk;
 input reset;
 output l90;

 parameter stopping = 100; //.1 ms high time
 parameter stopping2 = 30000; //30 ms period

 reg [14:0] count; //15 bit counter
 reg l90;

always @(posedge clk or posedge reset)
begin
 if (reset)
 begin
 l90 <= 0;
 count <= 0;
 end
 else if (count <= stopping)
 begin
 l90 <= 1;
 count <= count + 1;
 end
 else if (count >= stopping2)
 begin
 l90 <= 0;
 count <= 0;
 end
 else
 begin
 l90 <= 0;

RC Controller Final Report

G. Lee & E. Lee-Su E155

27

 count <= count + 1;
 end
end

endmodule

module middle(clk,reset,mid);
 input clk;
 input reset;
 output mid;

 parameter stopping = 1200; //1.2 ms high time
 parameter stopping2 = 30000; //30 ms period

 reg [14:0] count; //15 bit counter
 reg mid;

always @(posedge clk or posedge reset)
begin
 if (reset)
 begin
 mid <= 0;
 count <= 0;
 end
 else if (count <= stopping)
 begin
 mid <= 1;
 count <= count + 1;
 end
 else if (count >= stopping2)
 begin
 mid <= 0;
 count <= 0;
 end
 else
 begin
 mid <= 0;
 count <= count + 1;
 end
end

endmodule

module right45(clk,reset,r45);
 input clk;
 input reset;
 output r45;

 parameter stopping = 1750; //1.75ms high time
 parameter stopping2 = 30000; //30ms period

 reg [14:0] count; //15 bit counter
 reg r45;

always @(posedge clk or posedge reset)
begin
 if (reset)
 begin
 r45 <= 0;
 count <= 0;
 end
 else if (count <= stopping)
 begin
 r45 <= 1;
 count <= count + 1;
 end
 else if (count >= stopping2)
 begin
 r45 <= 0;
 count <= 0;

RC Controller Final Report

G. Lee & E. Lee-Su E155

28

 end
 else
 begin
 r45 <= 0;
 count <= count + 1;
 end
end

endmodule

module right90(clk,reset,r90);
 input clk;
 input reset;
 output r90;

 parameter stopping = 2300; //2.3 ms high time
 parameter stopping2 = 30000; //30 ms period
 reg [14:0] count; //15 bit counter
 reg r90;

always @(posedge clk or posedge reset)
 if (reset)
 begin
 r90 <= 0;
 count <= 0;
 end
 else if (count <= stopping)
 begin
 r90 <= 1;
 count <= count + 1;
 end
 else if (count >= stopping2)
 begin
 r90 <= 0;
 count <= 0;
 end
 else
 begin
 r90 <= 0;
 count <= count + 1;
 end

endmodule

