PONG GAME

FINAL PROJECT REPORT
DECEMBER 12, 2002
E155

Reneé Logan & Philip Vegdahl

Abstract:

Among the earliest computer games ever to hit the American household was pong. It is
a fairly simple game based on hitting a ball back and forth between two players. The
goal of each player is to hit the ball in such a way that it will move past the other
player's paddle without them being able to deflect it back. When this happens, that
player scores a point. For our remake of this classic we used an LCD to display the
game, an analog knob to control each paddle, and a dual seven segment display to
show the scores. Our final product performs entirely to the specifications we set out,

except for the start up sequence which may be related to a bug in the microcontroller.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Introduction

This project is an adaptation of the classic video game, Pong. It is a contest between

two players to see who can use their paddle to knock a bouncing ball past the other

player’s paddle. Whenever a player achieves this, they score a point. After a score, the

ball reappears moving straight down the centre of the screen, away from the side where

it just scored. The first player to reach seven points wins.

E[1]

Player 1's knob

E[0] («—— Player 2’s knob

HC11
C[7:0] B[5:0] B[7] B[6] D[5]
Player 1 Scores
6// g
Data LCD|Control Start Game
8 Player 2 Scores
P
P[7]
—P
FPGA
P
Scores
w w
DB[7:0] R,CS1,CS2,R/W,D/I,E
Pins 4-11 Pins 12-17 v
Seven segment display
LCD
Pin 1: Vbp 5V
Pin 2: GND
Pin3: Display Constrast 4.5V

When a player has won the game stops until the FPGA is reset. The reset button on the

FPGA will zero the scores and start the game over. If the reset button is pressed at any

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

other time then the score will simply be reset. The score is displayed on a dual seven
segment display. The game itself appears on a LCD with a resolution of 128x64 pixels.
Each player controls their paddle with a separate analogue knob. These knobs wiill
provide a DC voltage between 0 and 5 volts depending on the angular position of the
knob. These values are then interpreted by the HC11 A/D converter to create paddle
positions on the short sides of the display.

All of the controlling logic for the game is done in the FPGA and the HC11. The HC11
calculates the physics of the game and controls the LCD. The FPGA keeps track of the

score and outputs it to the dual seven segment display.

Starting the Game

To run this game, first power up the hcll and load the file main.s19 in. The FPGA can now
be powered up. Type ‘g d000’ at the command prompt which should start the game
with some flaws (see results section). Reset the HC11 and reload the file. Type ‘g d000’
again. This time the game should start correctly. It is unknown why this is necessary, or

even helps.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Microcontroller Design

The HC11 provided the control for most of the game. The entire body of code
can be found in the appendix. All of the code was written using its standard assembly
language. The code can be divided up into 6 basic sections that will be explained in
more detail later. There is the run once, initialization code. This code turns on the LCD and
sets the HC11 to a few initial states. There is the idling control code. This code is usually
doing nothing except polling for specific port values. The remaining four sections are all
called in the following order once ever eight miliseconds as part of the real time
interrupt. One section uses the A/D converter to get paddle positions. There are two
sections that control ball movement, one for each direction of motion. The last section

updates the LCD based on the ball and paddle positions stored in memory.

Start up Sequence

During the start up sequence the A/D converter and LCD are turned on and port D is
configured for output on its lowest two bits. These are the bits that are used for player
score signals. They are both stored with an initial value of 1 to be consistent with the initial
state of the FPGA finite state machine. Interrupts in general are also enabled at this time,

although no specific interrupts are yet active.

Idling Control

This section of code will simply run an unproductive loop while the game is in progress.
While the game is running all of the game’s data will be handled by the real time
interrupt. Whenever a score signal goes high, this code will disable the real time interrupt
until the FPGA sends its start signal. At that point the code will set all of the values for the

game to start again, the interrupt will be re-enabled, and then it will return to the loop.

A/D Converter Code

This code configures and runs the A/D converter to grab the values from pins EO and E1.
It shifts down the top 6 bits to create a number in the range [0:63]. It then edits them into
the range [5:58] so that that the paddle will always remain entirely on the screen. To edit
the numbers into this range it simply takes the bits outside of this range and moves them

to the closest value inside the range.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Horizontal Method of Ball Movement

This method controls the horizontal movement of the ball by changing its position
periodically based on its speed. It also checks to see when the ball collides with a wall

and changes the direction of the ball’s velocity, while keeping the same magnitude.

Vertical Method of Ball Movement

This controls the vertical movement of the ball. It periodically changes the position of the
ball based on its velocity. Whenever the ball reaches one edge of the screen it checks to
see if the paddle position overlaps with the position of the ball. If it does not overlap, then
it will send a signal to the FPGA indicating that a player has scored. If they do overlap,
then it will reverse the direction of the ball’s vertical velocity while maintaining the same
maghnitude. The position of the ball on the paddle determines how much the horizontal
velocity of the ball changes. A dead centre hit will produce no change, while a hit at the
very edge of the paddle will create a large change in the direction of the balll relative to
the centre of the paddle. The velocity of the ball is limited to a magnitude of 64 to
prevent a strange physics engine as the result of overflow errors, and to accommodate a

limitation of the algorithm that controls the movement of the ball.

Movement Algorithm

The same algorithm is used to control the movement of the ball for each direction. The
velocity of the ball is a nhumber in the range [-64:64]. During each cycle of a not yet
determined length, the magnitude of the ball velocity is added to an accumulator.
Whenever this accumulator reaches a number equal or greater than 64, the ball is
moved over one pixel in the appropriate direction and the 64 is subtracted from the

accumulator, which is equivalent to doing a mod 64 on its value.

Display On

In this routine, the LCD’s display is turned on. When the LCD is first powered data is sent to
the LCD display RAM but nothing is actually displayed on the screen. To turn on the LCD
display, the reset signal is set high and all other instructions (CS1, CS2, R/W, D/I, E) are set
low. Then $3F is sent to the data bus where the last bit indicates whether or not the

display is on or off (1 being on, 0 being off).

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

LCD Write

In this routine Port C is firstly set up to take input. The control pattern is then masked so
that only CS1, CS2, and Reset retain the value. Then the R/W is set high which now makes
this pattern the status check pattern. This pattern is written to port B and then after a
micro second (timing issues) the enable bit is set high which executes the pattern on the
LCD. At this point the data on the data bus is read off port c. If the data bus is all zeroes,
this indicates that the LCD isn’t busy, the display is on and reset is low, all of which are
necessary. If the data bus is not all zeroes, the function keeps looping until the data bus is
all zeroes. Port C is now set up to output. The control pattern is put on port b and then the
enable bit is set high after half a micro second. The data or instruction is also written to
port C at this time and then the enable signal is dropped to indicate that the operation is

finished. The idle state is then turned on.

Writing to the LCD / Clearing a Pixel

This function calls the LCD write routine to write a pixel to the screen. Firstly the control
pattern is loaded so that the LCD knows whether to write to CS1 or CS2. This control
pattern also has Reset high, D/I low, R/W low and enable low. The page number is
loaded into the data field and the LCD Write function is called with these values of LCD
control and Data. After this the Y coordinate of the ball is taken and then the 6™ bit
forced high to convert it to a set line instruction and stored into data. LCD write is once
again called with LCD control (which hasn’t changed from the last time LCD write was
called) and the present value of data. Lastly, the 1st bit of the LCD control pattern is set
high to indicate that the next value coming over the Data bus is the data to be written
to the LCD. Then the pattern of Os and 1s for the page earlier specified is loaded into
data and so written to the LCD. A slight variation of this method is the clear pixel method.
Instead of calculating the data to be written to the LCD, the data is automatically set to

#$00 which clears each pixel in the current page.

Clear LCD / Clear Line

The Clear LCD function writes all zeroes to the LCD, effectively clearing the LCD. Basically
the routine starts at line 127 and then for each page writes zeroes to that page. After this
is finished the routine moves on to the next line and repeats the process. The Clear line
subroutine is just a subset of the Clear LCD routine that takes in a line and writes zeroes to

each page on that line.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Paddle

This function writes the 11 pixel wide paddle to the screen given the location of the
centre of the paddle. The reason the ordinary write function can’t be used to in a loop
11 times to write the 11 pixels to the screen is that one page of data has to be addressed
at a time, and so if this was used within one page only one pixel would be written to. |
decided that the paddles shouldn’t be able to come partially off the screen so the
routine first checks if that would normally happen and then sets the value of the centre
of the paddle so that the paddle will stop at the edge of the screen. Even though this is
also done in the A/D converter, | found for a bug free game this had to be repeated in
the LCD engine as well. After this the x coordinate of the paddle is decremented by five
to get the first pixel in the paddle. The page to be written to is found using the setpage
subroutine as it was in the writing to the LCD subroutine. However, obtaining the data is a
lot different. The first time in the loop the number of darkened pixels in that page was the
last 3 bits of the x coordinate of the first pixel of the paddle which would indicate the
page data. After this the number of darkened pixels for each page was found by
loading in the number of pixels that were left to be written to the LCD. The page was
initialized to being all darkened pixels and then shifted right (8 — num of darkened pixels)
times. If this is the first part of the paddle this pattern needs to be flipped so that the first
part of the paddle can connect with the rest of the paddle. As a result the number of
darkened pixels needs to be flipped as well. This is done by subtracting the data and
dark values from #$FF and #$08 respectively. In the case where the total number of

pixels left to be written to the LCD is more than 8 this value if forced to 8.

Idle Pattern

Thanks to Aaron Stratton (who also used this graphical LCD last year), | know that an idle
pattern is a very good idea between instructions so that random garbage doesn’t get
written to / read from the LCD. After every instruction, an idle pattern of $38 is loaded
onto port B which means that reset, CS1 and CS2 are all set high and R/W, D/l and E are
all low to make sure that nothing can get read from or written to the LCD at an

inappropriate time and also as an added timing precaution.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

FPGA Design

HC11 & FPGA Handshake

The score controlling interface between the HC1l and the FPGA is done as a
handshake. When the HC11 physics engine detects a score, it outputs one of two signals
to the FPGA indicating which player scored. The HC11 then pauses the game by
disabling the interrupt used to time the game. When the FPGA receives a score signal it
updates the score and then sends its handshake signal back to the HC11 telling it to start
again. This signal is not sent when the score of one player reaches 7 points (i.e. when a
player has won). The HC11, upon receiving this start signal, lowers all scoring signals and
re-enables the real time interrupt so that play will resume. At this point the FPGA lowers its

start signal and starts waiting for another score to occur.

FPGA

The dual seven segment display driver on the FPGA was taken from lab 3, and was
edited to remove the LED outputs. The score controling logic involves the before
mentioned handshake with the HC11. The FPGA uses the following three state finite state

machine to keep track of which part of the handshake it is in.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Score=1

Reset

State = 00

Score =1 Score = 0 is not
possible from this

state based —————»
on the rest of

the design

allowScore =0
allowStart=1

State = 10

Score =0
allowScore = 1
allowStart=0

State = 01 Score = lJ

allowScore =0
allowStart=0

The input signal “score” is an OR of both players’ score signals, and is therefore true when
either player scores. The output signal “allowScore” tells other logic that it can add the
current scoring signals to the old scores, thus updating the score. The other output,
“allowsStart,” sends a start signal back to the FPGA unless the score of one player is seven.

In the next higher module above this finite state machine the outputs of the FSM are
refined a bit more and executed upon. The allowStart signal is anded with the player
scores both being non-seven and is then outputted to the HC11 as the start signal. Each
cycle the current score is updated by adding to it the players scoring signals anded with
allowScore. Since allowScore is only held high for a single cycle, this insures that the score
is not double added. Even though the scores only require three bits to represent numbers

zero to seven, four bits are used for the convenience of using the already designed four

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

bit seven segment display driver. At this level the two player scoring signals are also ored
to create the single scoring signal for the FSM.

At the top level of the FPGA circuit, the scores for the two players are sent to be
displayed on the seven segment displays. The proper inputs and outputs to the FPGA are

also set as such. All of the Verilog code can be found in the appendix.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Results

Our project resulted in a pong game that functions nearly entirely in the spec that we
set out. The only problem that we have noticed is that the first time we try to start up the
system and run the game the SB6108 chip that drove the part of the LCD furthest from
pin 1 would display pixels on the LCD one pixel more to the right than it should. This
problem was always solved by resetting the HC11 and reloading the file.We are not sure
if this is a strange bug in the HC11s that we have been using, or a bug in the LCD
hardware. In either case, once the game is started and the file reloaded it runs flawlessly.

The biggest challenges in this project involved actually getting the LCD display to
perform correctly. Everything from turning the LCD on, to drawing a single pixel, to
drawing an actual pong screen as a group of pixels proved to be a challenge. This
project also involved interfacing together far more pieces of complex hardware than
had ever been done in class.

The back and forth communication involved in the handshake was not something we
had previously done in class. This aspect of the project, however, actually worked
correctly without any real problems to debug. This is likely the result of careful planning
prior to the actual coding of the hardware.

If given more time to expand upon and improve this project a few changes we would
look into would be fixing the start up conditions so that it starts up correctly on the first try
every time. We would look into using the backlighting built into the LCD to improve the
visibility, and therefore playability, of the game. There is also a slight bug in the physics
engine that potentially allows the ball to move one pixel into a wall and then bouncing
back out under very specific conditions. Since this is only a rare bug, and likely wouldn’t

be noticeable when it did happen, we decided not to fix it for our final project.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

1. CrystalFontz Graphical LCD Products,

References

http://www.crystalfontz.com/products/12864b/CFAG12864BWGHV.pdf

http://www.crystalfontz.com/products/DS_S6B0108_V00.pdf

Parts List
Part Source Vendor Part # Price
LCD Display Crystalfontz.com CFAG12864B-WGH-V 37.03
Knobs Stockroom
Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Appendix
HC11 Code

mai n. asm
Witten by Philip Vegdahl - pvegdahl @nct. edu
Reneé Logan - rlogan@nc. edu

Started on Novenber 23, 2002
Fi ni shed on Decenber 9, 2002

* % F ¥ X kX

*This file codes the novenent of the paddles and ball on the screen and
outputs this information to the LCD.

R R Sk S I Sk R SRR Ik O S S O O

*Const ant s

EIE R I R I R R O I R R R R O O

PORTB EQU $1004 *Port B Register
PORTC EQU $1003 *Port C Register
DDRC EQU $1007 *Port C Data Direction Register

PORTD EQU $1008
DDRD EQU $1009
TVBK2 EQU $1024
TFLGR EQU $1025
PACTL EQU $1026
SCCR2 EQU $102D
ADCTL EQU $1030
ADRL EQU $1031
ADR2 EQU $1032
OPTI ON EQU $1039

EIE R I R R I R I R O I R R I R I R O

. .
Vari abl es
EIR IR IR R I I R I IR I I I I R I R I S I b b S I I b I I I b I b

ORG $0000
LCDCTRL EQU $0001 *Control Pattern for LCD
DATA EQU $0002 *Data to be witten to LCD
PAGENUM EQU $0004 *Max val ue of page nunber
LI NENUM EQU $0005 *Max val ue of |ine nunber
CURLI NE EQU $0006 *Current Line
CURPAGE EQU $0007 *Current Page
KNOB1 EQU $DFFO *Current knob x - coordi nate val ues
KNOB2 EQU $DFF1
HVEL EQU $DFF2 *Horizontal velocity of ball
WEL EQU $DFF3 *Vertical velocity of ball
XCOOR EQU $0008 *Horizontal position of ball
YCOOR EQU $0009 *Vertical position of ball
OLDX EQU $000A *Ad d horizontal position of ball
OLDY EQU $000B *ad vertical position of ball
KNOBX EQU $000C *Horizontal position of centre of paddle
KNOBY EQU $000D *Vertical position of paddle

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

*Nunber of pixels of the paddl e that have been

*Total nunber of paddle pixels to be witten

*Nunber of consecutive tines the pwite | oop
*Nunber of consecutive times the clear loop (in
* counters for noving ball

Program ORG | ocati on
* RT Interrupt ORG | ocation

* RTI Junp vector location

DARK EQU $000E
witten to the screen
TOTAL EQU $000F
TIMES EQU $0010
(in paddl e) has been executed
COUNT EQU $0011
clrline) has been executed
HCOUNT EQU $DFF6
VCOUNT EQU $DFF7
START EQU $D000
RTI EQU $D100

ORG $00EB

JW rStart

ORG START

* This first section of

* HC11 and the LCD displ

Start BSET
LDAA

Del ay DECA
BNE
STAA
STAA

OPTI ON #$80
#$40

Del ay
YCOOR
SCCR2

*LCD initialization

LDAA
STAA

#$38
PORTB

*End LCD initialization

*Turn On LCD

LDAA
LDAB

STAA
NOP
NOP
ORAA
STAA
STAB

LDAA
STAA
LDAB
STAB

Reneé Logan & Philip Vegdahl E155 Final Report

#3$20
#$3F

PORTB

#3$01
PORTB
PORTC

#$38
PORTB
#3$00
PORTC

the code is only run once to initialize the
ay to the correct initial states.

* Turn on AD Converter
* Count down on Ato let A/D warm up

Initialize YCOOR to O

* Needs to be cleared for PortD to work

*|dle Control Pattern

*Wite it to the LCD control |ines

*Cenerate LCD Wite Control Pattern
*Generate Display On instruction

*Wite control to Port B

*Tim ng | ssues

*Set E bit in the Control Pattern High
*so that things can be witten to the LCD
*Wite the Instruction to Port C

*Control Pattern Idle State

*Wite it to the LCD

*Put enpty data on to the LCD control |ines
16/12/2002

*End LCD on

LDAA
ORAA
STAA
LDAA
STAA
STAA
JSR
CLI

L

mAit LDAA
ANDA
CMVPA
BEQ
LDAA
ANDA
STAA
LDAA
ANDA
CVPA
BNE
STAA
LDAA
STAA
LDAA
CVPA
BNE
LDAB
BRA

miop LDAB

neki p STAB
LDAA
STAA
STAA
STAA
LDAA
ORAA
STAA
BRA

ORG

rStart
STAA
JSR
JSR
JSR

Rout i ne

PACTL
#3$01
PACTL
#3$03
DDRD
PORTD
CLRLCD

interrupts unti
signal cones it

PORTD
#$03
#3%00
mAai t
TMBK2
#$BF
TMBK2
PORTD
#3$20
#3$20
mA&i t
PORTD
#3$20
XCOOR
YCOOR
#$00
mrop
#3$10
nski p

#$FO

VVEL
#3$00
HVEL
VCOUNT
HCOUNT
TMBK2
#$40
TMBK2
MA4ai t

RTI

LDAA #$40

TFL&2
aSt art
hSt art
vStart

Choose speed for RTI to be ~8ns

Pins 0 & 1 set as outputs

Reset state for port D
*Clear LCD

Enabl e interrupts

This section of the code essentially idles while the interrupts
are controlling the gane. Wienever a player scores it disables
the FPGA tells it to start again. \Wen that
re-enabl es interrupts and goes back to idling

Mask for point score bits

* Game currently in progress
* set mask bit 6 low to disable RTI

Disable real time interrupts
Mask for ready to start bit

Not ready to start again yet

* Clear score bits

Initialize XCOOR to 32

Ball at top of screen

* WEL will be +16

VWEL will be -16
Initialize VVEL

Initialize HVEL to O
Reset nobvenent counters

set mask bit 6 high to enable RTI

Enable Real time interrupts

* Clear interrupt flag

A/ D subroutine
Hori zontal ball nopbvenent subroutine
Vertical ball novenent subrountine

* %

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

JSR
RTI

UPDATE

* This subroutine grabs the knob values fromthe A/ D ports
It then converts these values to 6 bit paddle
* positions representing the center of the paddles.

* EO and ELl.

asSt art
STAA

LDAB
ANDB
CvPB
BNE
LDAA
LDAB
LSRA
LSRA
LSRB
LSRB
CVPA
BGE
LDAA
BRA
aSki p1

BLE

LDAA
aSki p2

BGE

LDAB

BRA
aSki p3

BLE

LDAB
aSki p4
STAB
RTS

asSpin

* This subroutine handl es al
* the ball.
* changes its velocity on wall

hSt art
CVPA
BEQ
BLT
LDAB
ADDB
CvPB
BLT
SUBB
STAB
LDAA

Reneé Logan & Philip Vegdahl E155 Final Report

LDAA #$10
ADCTL

ADCTL
#$80
#3$80
aSpin
ADR1
ADR2

#$05

asSki pl
#3%05

aSki p2
CMPA #$3A
aSki p2
#$3A

CWPB #$05
aSki p3
#3%05

asSki p4
CVWPB #$3A
aSki p4
#$3A

STAA KNOB1
KNOB2

*

* Configure ADCTL to start

Load ADCTL to check for done

Is the Convertion Conplete flag set?
Not done, keep waiting.

* Shift down to |l owest 6 bits for
* position of the center of the paddle
* (ie a number in the range [0:63])

Hol d paddl e on the screen

Paddl e off on | ow end, bring up

Paddl e of f high end, bring down

Paddl e off on | ow end, bring up

Paddl e of f high end, bring down
* Store paddl e positions

of the horizontal notion of

It changes its position based on velocity and

LDAA HVEL
#3$00
hDone
hNeg
HCOUNT
HVEL
#3540
hWai t
#3$40
HCOUNT
XCOOR

* %k * % *

*

col li sions.

Check horizontal direction of bal
Bal | not noving

Bal I novenent negative

Updat e count

Check count for ready to nove bal
keep waiting

* Mod the count by 64 and save

16/12/2002

I NCA * Move ball right by one
STAA XCOOR

CMPA #$3F * right wall

BGE wall

BRA hDone

hNeg LDAB HCOUNT
SUBB HVEL * Updat e count
CVWPB #$40 * Check count for ready to nove bal
BLT hWait * keep waiting
SUBB #$40
STAB HCOUNT * Mod the count by 64 and save
LDAA XCOOR
DECA * Move ball left by one
STAA XCOCOR
CMPA #$00 * left wall
BLE wall
BRA hDone

wal | LDAB #$00
SUBB HVEL * flip horizontal velocity direction
STAB HVEL
BRA hDone

hWait STAB HCOUNT * save new count and keep waiting

hDone RTS

The subroutine handl es the vertical notion of the ball
Whenever the ball reaches the end of the screen, it
checks to see if there is a paddle collision or a score,
then either changes the ball velocities, or asserts the
appropriate player's scoring signal

* % * kX

vStart LDAA VVEL
CMPA #$00
BLT vNeg * Ball novenent negative
LDAB VCOUNT
ADDB VVEL * Updat e count
CWPB #$40 * Check count for ready to nove bal
BGE j Skipl * Branch out of range, nust use junp
JWP vWai t * keep waiting
j Ski p1 SUBB #$40
STAB VCOUNT * Mod the count by 64 and save
LDAA YCOOR
I NCA * Move ball up by one
STAA YCOOR
CVMPA #$T7F * Check for ball at edge of table
BEQ] Skip2
JMP vDone * Branch out of range, must junp
j Ski p2 LDAA XCOOR * Check for hitting paddle
LDAB KNOB2
ADDB #%$05 * Right side of paddle
CBA

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

BGT
SUBB
CBA
BLT

LDAB
LDAA
SBA
LSLA
LSLA
LDAB
ABA
CVPA
BLE
LDAA
BRA

vSki pl1
BCGE
LDAA
BRA

scorel
STAA
BRA

vNeg LDAB
SUBB
CVPB
BLT
SUBB
STAB
LDAA
DECA
STAA
CMVPA
BNE

LDAA
LDAB
ADDB
CBA
BGT
SUBB
CBA
BLT

LDAB
LDAA
SBA
LSLA
LSLA
LDAB
ABA
CVPA
BLE

scorel
#$0A

scorel

KNOB2
XCOOR

HVEL

#3$40
vSki pl1
#3$40
vSHV

CMPA #3$Q0
vSHV
#$C0
v SHV

LDAA #%$01
PORTD
vDone

VCOUNT
VVEL
#3$40
v\Wai t
#3$40
VCOUNT
YCOOR

YCOOR
#3$00
vDone

XCOOR
KNOB1
#3$05

score2
#$0A

score?

KNOB1
XCOOR

HVEL

#$40
vSki p2

* branch if a point is scored
Left side of paddle

* branch if a point is scored

* Calculate velocity to add to bal
* as distance fromball to center of
* the paddle tines 4

New horizontal ball speed
Max speed 64

Set speed down to max
* Mn speed -64

Set speed up to max

* Set port D bit O high to signa
FPGA that player 1 scored

Updat e count

* Check count for ready to nove bal
* keep waiting

* Mod the count by 64 and save
Move ball down by one

Check for ball at edge of table

Check for hitting paddle
Ri ght side of paddle

* branch if a point is scored
Left side of paddle

* branch if a point is scored

* Calculate velocity to add to bal
* as distance fromball to center of
* the paddle tinmes 4

New horizontal ball speed
Max speed 64

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

LDAA
BRA

vSki p2

LDAA
BRA

score?
STAA
BRA
vVSHV STAA
LDAA
SUBA
STAA
BRA

v\Wait STAB
vDone RTS
UPDATE

LDAA
next | oop
STAA
LDAA
STAA

JSR

LDAA
PSHA

LDAA
STAA
JSR

LDAA
STAA
JSR

PULA
STAA

LDAA
knob

STAA

LDAA

STAA

JSR

LDAA
knob
STAA

Reneé Logan & Philip Vegdahl E155 Final Report

#3%40

* Set speed

down to max

vSHV

CVMPA #$C0 * Mn speed -64

vSHV

#$Q0 * Set speed up to min

vSHV

LDAA #$02 * Set port Dbit 1 high to signa

PORTD * FPGA that player 2 scored

vDone

HVEL * Store horizontal velocity

#3%00

VVEL * flip vertical velocity

VVEL

vDone

VCOUNT * Save count and keep waiting

JSR CLRPI X *Clear old position of bal

XCOOR *Store current positions of ball which on the
OLDX *will be the old positions of the bal

YCOOR

aLby

VWRI TE *Wite the position of the ball to the screen
YCOOR *Preserve the value of y coordinate

#S7F *Knobs are al ways either at 00 or 7f

YCOOR

CLRLI NE *Clear the old position of the paddle
#3%00

YCOOR

CLRLI NE *Clear the old position of the paddle
YCOOR *Restore old value of y coordinate

KNOB1 *X coordi nate value of the centre of the first
KNOBX

#3%00 *Place this paddl e at the bottom of the screen
KNOBY

PADDLE *Wite the paddle to the screen

KNOB2 *X coordi nate value of the centre of the second
KNOBX

16/12/2002

LDAA #$7F *Place this paddle at the top of the screen
STAA KNOBY

JSR PADDLE *Wite the paddle to the screen

RTS

WRI TE JSR SETPAGE *Sets values for the LCD Control and the
dat a
JSR LCDW *Wite these values to the LCD

LDAB YCOOR
ORAB #$40 *Change to set line instruction
STAB DATA
JSR LCDW *Wite these values to the LCD

LDAA LCDCTRL

ORAA #302 *Changing frominstruction to data
STAA LCDCTRL

JSR SETDATA *Sets data val ue

JSR LCDW *Wite actual pixel to the LCD
RTS

CLRPI X LDAA XCOOR *Preserve values of x and y coordinates

PSHA

LDAA YCOOR

PSHA

LDAA OLDX *Load in position that is to be cleared

STAA XCOOR

LDAA OLDY

STAA YCOOR

JSR SETPAGE *Sets values for the LCD Control and the
dat a

JSR LCDW *Wite these values to the LCD

LDAB YCOOR

ORAB #$40 *Change to set line instruction
STAB DATA

JSR LCDW *Wite these values to the LCD

LDAA LCDCTRL

ORAA #302 *Changing frominstruction to data

STAA LCDCTRL

LDAA #$00 *Load in Os which clears the page that being
witten to

STAA DATA *Sets data val ue

JSR LCDW *Wite these values to the LCD

PULA *Restore values of x and y coordinates

STAA YCOOR

PULA

STAA XCOOR

RTS

LCDW LDAA #$00 *Setup Port C to input
STAA DDRC

CHKW LDAA LCDCTRL *CGet LCD Control Pattern

ANDA #$38 *Alter it into the status check pattern
ORAA #3$04

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

STAA
NOP
NOP
ORAA
STAA

LDAB
BNE

LDAA
STAA

LDAA
STAA

LDAB
NOP

ORAA
STAA
STAB

ANDA
STAA

LDAA
STAA
LDAB
STAB
PULA
STAA
RTS

CLRLCD
STAA
LDAA
STAA
LDAA
STAA

QUTER LDAA
STAA

I NNER LDAA
ANDA
BNE

PORTB

#3$01
PORTB

PORTC
CHKW

HSFF
DDRC

LCDCTRL
PORTB

DATA

#$01
PORTB
PORTC

#SFE
PORTB

#$38
PORTB
#3$00
PORTC

TMBK2

LDAA #$80
LI NENUM
#$CO
PAGENUM
#ETF

CURLI NE

#$B8
CURPAGE

CURLI NE
#$40
UPPER

| i nes should be set

LDAA
STAA
BRA

UPPER LDAA
STAA

CONT LDAB

#$28
LCDCTRL
CONT

#3$30
LCDCTRL

CURPAGE

*Wite the pattern
*Wait one micro sec
*Set Ein the contr
*Wite pattern to p

*Read the results
*Check until not bu

*Setup Port Cto ou

*CGet LCD cont
*Wite the pattern
* Cet

I nstruction/ Da

*Set E in the contr
*Wite LCD control

to port B

ond

ol bit high
ort B

Sy anynore
t put

rol pattern

to Port B

ta

ol pattern high

to port B

*Wite the instruction/data to Port C

*Drop the enabl e si
*Wite control to p

*Control pattern id

gnal
ort B

le state

*Wite it to the LCD

*Put enpty data on to the LCD |lines

*Max val ue of

*Max val ue of page

*Current Line

*Current page

*Get the val ue of t

| i ne nunber

nunber + 1

nunber

nunber

he 6th bit

*Branch to upper which indicates that the CS1

*Set the CS2 |ines

*Set the CS1 |ines

*Current Page

Reneé Logan & Philip Vegdahl E155 Final Report

16/12/2002

STAB DATA *Wite the current page to the LCD so that LCD
knows where to wite

JSR LCDW *to when it gets the data

LDAB CURLI NE *Set line that should be witten to
ORAB #$40 *Change to set line data

STAB DATA

JSR LCDW

LDAA LCDCTRL
ORAA #302 *Changing frominstruction to data
STAA LCDCTRL

LDAB #$00 *Wite nothing to every pixel which effectively
clears LCD

STAB DATA

JSR LCDW

INC CURPAGE *] ncrenent the page

LDAA CURPAGE

CVPA PAGENUM *See if the current page is the | ast page that
needs to be witten to

BNE I NNER *Finished with that line

LDAA CURLI NE *Current |ine

CWMPA #$00

BEQ END *Gone through all the lines

DEC CURLI NE *Move the line that is being cleared

JMP QUTER
END RTS
PADDLE LDAA XCOOR *Preserve values of x and y coordinates

PSHA

LDAA YCOOR

PSHA

LDAA #$0B *Paddl e is 11 pixels |ong

STAA TOTAL *Total nunber of pixels left to be witten in
paddl e

LDAA #3$00 *No pixels are dark as yet

STAA DARK *Nunber of paddl e pixels that have been drawn

LDAA KNOBY *Y coordi nate of paddle

STAA YCOOR

SUBA #$05 *X coordinate of first pixel in paddle

STAA XCOOR
PNEXT LDAA #$01 *Start nunber of tinmes throught the routine off
at 1

STAA TI MES *Nunber of consecutive tinmes through the pwite
routine
PWRI TE JSR SETPAGE *Sets values for the LCD Control
and the data

LDAA TI MES *Anmount of times this routine has | ooped

DECA

ADDA DATA *] ncrenent pages according to the nunmber of

times through the routine

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

STAA DATA *so that each tine this loop is executed the
next page over is being witten

JSR LCDW *to which is essential to draw the 11 pixels
which has to stretch over at |east 2 pages

LDAB YCOOR
ORAB #$40 *Change to set line instruction
STAB DATA
JSR LCDW *Wite these values to the LCD

LDAA LCDCTRL
ORAA #302 *Changing frominstruction to data
STAA LCDCTRL

LDAA TOTAL *Wite the pixels that have not yet been
witten
STAA DARK

LDAA TI MES
CWPA #$01 *Check if first time through the I oop
BEQ FTIME

LDAA TOTAL

CMPA #3$08 *See if the whol e page needs to be witten to
BGE TOMBIG

JMWP GETD

FTI ME LDAA XCOOR
ANDA #$07 *Just want page data
STAA DARK

JSR PADDATA *Get data to be witten to the LCD

LDAA #S$FF

SUBA DATA *Invert data so that the paddl e can be
connected in the two pages

STAA DATA

JSR LCDW *Wite these values to the LCD

LDAA #%$08
SUBA DARK
STAA DARK *Data and Dark both need to be inverted

JMP PCONT

TOOBI G LDAA #$08 *Wite to the whol e page
STAA DARK

GETD JSR PADDATA *Sets data val ue
JSR LCDW

PCONT INC TI MES *]I ncrenent the number of tines the | oop has
execut ed

LDAA TOTAL *Update the nunber of pixels left to be witten
by subtracting

SUBA DARK *t he pixels that have just been written

BEQ PDONE *No nmore pixels to be witten

STAA TOTAL

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

JWP PWRITE

PDONE PULA *Restore values of x and y coordinate
STAA YCOOR
PULA
STAA XCOOR
RTS

SETPAGE LDAA YCOOR

ANDA #$40 *Cbtain value of 6th bit

BNE SECOND *Branch to second which indicates that
the CS1 lines should be set

LDAA #%$28 *Set to CS2 |ines
STAA LCDCTRL
JMP NEXT

SECOND LDAA #$30 *Set to CS1 lines
STAA LCDCTRL

NEXT LDAA XCOCR

ANDA #$38 *The first 3 bits of the X coordinate indicate
the page since they're 8 pages per line

LSRA *Shift these 3 bits down to the end so they can
be mani pul at ed

LSRA

LSRA

ANDA #$07 *Only want last 3 bits

ORAA #$B8 *Change it to page pattern

STAA DATA *Wite this data pattern to the LCD

RTS
SETDATA LDAA XCOOR

ANDA #$07 *Just want page data

LDAB #$80 *Darken the pixel to the utnost right of the

current page

*In this |l oop the pixel that we want darkened is found by shifting the
pi xel that is darkened to the left.

*This is done by rightshifting the value in accunul ator val ue which
anounts to doing what's stated above.

*To get the right data within the page then the anmount of shifts will
be the difference of 7 and the | ast

*3 bits of the X - coordinate.

LOOP1 CWPA #3$07

BEQ GOOD *Shift until the accunul ator has gotten to 7
LSRB *Shift the pixel that's darkened to the right
I NCA
BRA LOOP1

GOOD STAB DATA *Store the pattern to be witten to the LCD
RTS

PADDATA LDAA DARK

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

LDAB #$FF *Darken all the pixels in the current page

*In this | oop the pixel that we want darkened is found by shifting the
pi xel that is darkened to the left.

*This is done by rightshifting the value in accunul ator val ue which
anounts to doing what's stated above

*To get the right data within the page then the anmount of shifts will
be the difference of 7 and the | ast

*3 bits of the X - coordinate.

PLOCP1 CMPA #$08

BEQ PGOOD *Shift until the accunul ator has gotten to 8

LSRB *Shift the pixels that are darkened to the
right

I NCA

BRA PLOOP1
PGOOD STAB DATA *Store the pattern to be witten to the LCD

RTS
CLRLI NE LDAA XCOOR *Preserve val ues of x and y coordinates

PSHA

LDAA YCOOR

PSHA

LDAA #$01 *Start the counter at 1

STAA COUNT *Nunber of consecutive tinmes the C ear |oop has
been execut ed

LDAA #3$00 *Set the x coordinate to 0 which sets the page
to be the one to the utnost |eft

STAA XCOCOR
CLEAR JSR SETPACGE *Sets values for the LCD Control and the
dat a

JSR LCDW *Wite these values to the LCD

LDAB YCOOR

ORAB #$40 *Change to set line instruction

STAB DATA

JSR LCDW *Wite these values to the LCD

LDAA LCDCTRL

ORAA #302 *Changing frominstruction to data

STAA LCDCTRL

LDAA #3$00 *Wite Os to that page on the LCD which clears
that page on the LCD

STAA DATA

JSR LCDW *Wite these values to the LCD

LDAA XCOOR

ADDA #3$08 *Advance to next page

STAA XCOCOR

LDAA COUNT

CVMPA #3$08 *See if |loop has executed 8 times (for the 8
pages that need to be witten to)

BEQ CDONE

INC COUNT *] ncrease the nunber of tines the | oop has
execut ed

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

JMP CLEAR

CDONE PULA *Restore the values of the x and y coordinates
STAA YCOOR
PULA
STAA XCOOR
RTS

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Verilog Code

/*

For all of the foll ow ng nodul es:
Witten by Philip Vegdah

Decenber 4, 2002

pvegdahl @nt. edu

*/

nmodul e scoreTop(cl k, reset, pl ayer1, pl ayer 2, start, nyseg, power);

/*

This is the top | evel nodule that sends all of the output
signals and receives all of the input signals. It uses |ower

| evel nodules to do all of the data crunching. The overal
nodul e receives scoring signals fromthe HCll, updates the
score, and then returns a start signal to the HCl1l so it wll
know to start the gane again. This signal will not be sent when
a player has reached 7 points, thus w nning the gane.

*/
i nput clk;
i nput reset;
i nput player1,; /1 player 1 scores
i nput pl ayer2; /1 player 2 scores
out put start; /1 tell HCl1ll to start gane again
output [6:0] nyseg; // 7-seg out put
output [1:0] power; // power switcher for 7-seg
wire [3:0] scorel, score2
scoreMem t heScor e(cl k, reset, pl ayer 1, pl ayer 2, scorel, score2, start);
Lab3 theseg(cl k, reset, scorel, score2, nyseg, power);
endnmodul e

nmodul e scoreMen(cl k, reset, pl ayer1, pl ayer 2, scorel, score2,start);

/*
Thi s nmodul e keeps track of, and updates the players scores.
It will also choose whether or not a start signal can be sent
based on whether or not a player has already won.
*/
i nput cl k;
i nput reset;
i nput player1; /1l Player 1 scores
i nput player?2; /'l Player 2 scores
output [3:0] scorel; /1 Player 1's current score
output [3:0] score2; /1 Player 2's current score
out put start; /1 Tells HCl1l to start game

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

reg [3:0] scorel,;
reg [3:0] score2

Wire wn; /I One player has won (7
poi nts)

wi re all owScore; /1 Score can be updat ed

wire allowstart; /1 FSM ready for gane to start

Wi re score; /1 A player has scored

scoreFSM t heScor e(cl k, reset, score, al | owScore, al l owStart);

assign win = (scorel==4"'d7)| (score2==4"'d7);

assign start = allowStart & ~w n); /1l Don't start when a player
has won

assign score = playerl|player2

al ways@ posedge cl k or posedge reset)
i f(reset) begin
scorel <= O;
score2 <= 0;
end
el se begin
scorel <= scorel + (playerl&all owScore);
score2 <= score2 + (player2&all owScore);

end

endnodul e

nmodul e scoreFSM cl k, reset, score, al | owScore, al l owStart);

/*
This is a finite state machine that controls the scoring
handshake with the HCl1l. The states are as foll ows.

State 00: Score has been updated and start is being sent.
Start will be | owered whenever the score signa
is | owered.

State O1: Waiting for a score signal fromthe HClL1.

State 10: Score signal recieved fromHCll, update score.
*/
i nput clk;
i nput reset;
i nput score; /1 A player score signal is high

out put allowScore; // Allow the score to be changed
output allowStart; // Score has been updated and ganme can resume
reg [1: 0] state; /1l Current state of FSM

assign all owStart
assign all owScor e

(state==2'b00);
(state==2'b10);

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

al ways@ posedge cl k or posedge reset)
if(reset) state <= 2'b00;
el se begin
state[0] <= ~score;
state[1l] <= state[O0]&score;
end

endnodul e

nodul e Lab3(cl k, reset, s0, s1, nyseg, power);

/*

This nmodul e takes 2 4-bit binary nunbers as user inputs and
outputs signals to display both nunbers on different
7-segnent di splays using only one piece of decodi ng hardware.
*/

i nput clk, reset;

input [3:0] s0, s1; // the 2 binary input signals

output [6:0] nyseg; // output to 7-segnent displays

output [1:0] power; // controlers for which display to power

wire [3:0] s2; /1l wire carying the binary input in use
wire sel; /1l selector for the nux and power
signal s
slow cl k theclk(clk, reset, sel); /1 slower clock used to

/1 switch between displays

mux2_4 thenux(so0, sl, sel, s2); /1 mux to select input
si gnal

seg t heseg(s2, myseq); /1 7- segnent
out put

assign power = {~sel, sel}; /1 power sel ection
signal s
endnmodul e

nmodul e seg(s, seqg);

/*

This is the hardware to decode a 4-bit binary nunber into a
single digit hexadeci mal output.

*/

i nput [3:0] s; /1 Binary input
out put [6:0] seg; /1 7-segnent out put

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

~s[0]) |
s[0]) |
s[0]));

~s[0]) |
s[0]) |
~s[0]) |
~s[0]) |
s[0]));

~s[0]) |
~s[0]) |
s[0]));

~s[0]) |
s[0]) |
s[0]) |
~s[0]) |
s[0]));

s[0]) |
~s[0]) |
s[0]) |
s[0]) |
s[0]));

Reneé Logan & Philip Vegdahl E155 Final Report

/1l These are the different segnent selection signals

assign seg[0]

11

/11

/Il D

assign seg[1]

11

11

/1 C

11

assign seg[2]

I/ C

11

assign seg[3]

11

11

11

I A

assign seg[4]

11

11

11

11

11

assign seg[5]

4

B

6

B

E

4

7

9

3

4

5

7

9

((~s[3] & ~s[2] & ~s[1] & s[0]) |

/11

1

(~s[3] & s[2] & ~s[1]

(s[3] & ~s[2]
(s[3] & s[2]
((~s[3] &s[2] & ~S[(1]~s?3]5[?§]£)s[|2]
(s[3] & ~s[2]
(s[3] & s[2]
(s[3] & s[2]
(s[3] & s[2]
((~s[3] & ~s[2] & S[(l]s[gc] ~58[0i[)2]l
(s[3] & s[2]

(s[3] & s[2]

((~s[3] & ~s[2] & ~s[1] & s[0]) |

& s[1]

& ~s[1]

/15

& s[1]
& s[1]
& ~s[1]
& s[1]
& s[1]
/1
& ~s[1]
& s[1]

& s[1]

11

2

1

(~s[3] & s[2] & ~s[1]

(~s[3] & s[Z2]

& s[1]

(s[3] & ~s[2] & ~s[1]

(s[3] & ~s[2]

(s[3] & s[Z2]

((~s[3] & ~s[2] & ~s[1] & s[0]) |

& s[1]

& s[1]

11

1

(~s[3] & ~s[2] & s[1]

(~s[3] & s[2] & ~s[1]

(~s[3] & s[2] & ~s[1]

(~s[3] & s[Z2]

& s[1]

(s[3] & ~s[2] & ~s[1]

((~s[3] & ~s[2] & ~s[1] & s[0]) |

11

1

Ro

16/12/2002

(~s[3] & ~s[2] & s[1] &
~s[0]) | I 2

(~s[3] & ~s[2] & s[1] &
s[0]) | 113

(~s[3] & s[2?2] & s[1l] &
s[0]) | 17

(s[3] & s[2] & ~s[1] &
s[0])): /1 D

assign seg[6] = ((~s[3] & ~s[2] & ~s[1] & ~s[O0]) | /1 0

(~s[3] & ~s[2] & ~s[1]
& s[0]) | 11

(~s[3] & s[2] & s[1l] &
s[0]) | 7

(s[3] & s[2] & ~s[1] &
~s[0])); Il C
endnodul e

nodul e sl ow cl k(cl k, reset, new cl k) ;

/*
This hardware creates a new clock signal that runs 1024 tinmes slower
t han
the original clock. This prevents timng problens from sw tching back
and
and forth quickly.
*/
i nput clk, reset; /1 basic clock and reset
out put new cl k; /1 outputed slower clock
reg [9:0] counter; // counter to keep track of timing on new clock
al ways@ posedge cl k or posedge reset)
if(reset) counter = 0; // reset the counter to zero
el se counter = (counter+1) % 1024; // add to the clock and
wrap around
I/ to O whenever it hits 1024

assign new clk = counter[9]; // CQutput signal is MSB of the
counter.

endnodul e

nodul e nmux2_4(do0, d1, sel ,y);

/*
This is just a two-way, 4-bit multiplexor.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

*/

i nput [3:0] dO; /1 Mix input 1

i nput [3:0] di; [l Mux input 2

i nput sel; /1 Selection signa

output [3:0] v; /1 Qutput signa

assign y = sel ?2d1: do; /1l Chooses the correct output fromthe
11 sel ection

si gnal .
Endnodul e

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Breadboard Schematic

P3
P7
330 ohms P8
B1 H1 [P23 P70
<A1 c1 CH—\ P24
E;;CH Gl [P25
T—vdd1 D1 (I P26
] T <vdd2 El H]| P27
B2 H2 (3 P28
iifk\ ~ a2 C2 | P29
G2 D2 (]
™ 2 1000 ohms
P38
P39

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Crystalfontz Graphical LCD

Overview
For this project we used a 128x64 pixel LCD, part number #CFAG12864B-WGH-V, which is

available from www.crystalfontz.com. This LCD contains two 64x64 Samsung S6B0108

chips placed side by side which drive the display. As a result there are 128 lines on the
LCD, with line 0 being the edge of the screen nearest to pin 1 and line 64 (line 0 of the 2nd
chip) being in the middle of the screen. Each line contains 8 pages of data with each
page containing 8 pixels each. A page of data must be addressed all at once. A logic
value of ‘1’ being written to a certain pixel on the screen means that the pixel is
darkened. The pixels all retain their value until another value is explicitly written to them.
When the LCD is first powered up, the display RAM in the chips have the value 1 for every
pixel. However, even though the data is in the display RAM this pattern isn’t seen on the

LCD until the LCD is given the write control pattern and the display on instruction.

PinOut

Pin 1: +5V

Pin 2: GND

Pin 3: -2.5V to -4.5V, where -2.5V is a light background and -4.5V is a fully darkened
background.

Pin 4-11: Data Bus Bits 0-7: Sends instructions or data to be written to the LCD. Returns
status flags or data read from the LCD.

Pin 12: CS1 - Column Select 1: Active low control signal that selects the first S6B108
device and so writes to lines 0 to 63.

Pin 13: CS2 - Column Select 2: Active low control signal that selects the second S6B108
device and so writes to lines 64 to 127.

Pin 14: R — reset: an asynchronously low reset signal that turns off the screen and resets
the line scroll register.

Pin 15: R/W - Read or Write. 1 indicates read from LCD data bus, 0 indicates write to LCD
data bus.

Pin 16: D/I - Data or Instruction. 1 indicates data is being sent the LCD, 0 indicates that an

instruction is being sent to the LCD.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Pin 17: E — enable: acts as a clocking signal, that is the signal needs to be high for
anything to happen to the LCD.

Pin 18: Negative Voltage Output (Not used in this project)

Pin 19: Positive Power for LED Backlight (Not used in this project)

Pin 20: Negative Power for LED Backlight (Not used in this project)

General Operations

There are two main operations that can be done with this LCD - reads and writes.
However, reading from the LCD is something that wasn’t used in this project and as a
result I’'m not able to provide much information on this function of the LCD. The E signal
acts as the clock for the device. As a result, the E signal should idle low and only be
changed when an instruction is ready to be started. On a suggestion from Aaron
Stratton, an idle pattern of {R =1, CS1 =1, CS2 =1, R/W = 0, D/l = 0, E = 0} was written to
the LCD between instructions. This idle pattern ensures that nothing can be written to the
LCD as neither column is selected. Each instruction done on the LCD followed this basic
format:

1. Set the Control Pattern (R, CS1, CS2, R/W, D/I, E). Reset should be high and
enable should be low at this point. The other values will depend on what the user
is trying to get the LCD to do.

2. Raise the Enable signal.

3. Send the Data/Instruction that needs to be written to the LCD.

4. Lower the Enable signal.

Status Checks

When executing instructions that affect the LCD display, a status check needs to be
made, as if the LCD is busy when an instruction is sent then that instruction is ignored. The
only place in the Pong game that a status check is used is when trying to write to LCD (in
this context, writing to LCD includes writing instructions, not only writing pixels to the
screen). This status check keeps on executing until the LCD is no longer has the busy flag
set indicating that its busy. Aaron Stratton found an error in the S6B0108 documentation
in Version 0.0 on page 16. In the documentation it was stated that the busy flag was set

on the falling edge of E but in actuality its set on the rising edge of E.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

