
Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

PONG GAME
FINAL PROJECT REPORT

DECEMBER 12, 2002

E155

Reneé Logan & Philip Vegdahl

Abstract:

Among the earliest computer games ever to hit the American household was pong. It is

a fairly simple game based on hitting a ball back and forth between two players. The

goal of each player is to hit the ball in such a way that it will move past the other

player’s paddle without them being able to deflect it back. When this happens, that

player scores a point. For our remake of this classic we used an LCD to display the

game, an analog knob to control each paddle, and a dual seven segment display to

show the scores. Our final product performs entirely to the specifications we set out,

except for the start up sequence which may be related to a bug in the microcontroller.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

E[1]

HC11

C[7:0] B[5:0] B[7] B[6] D[5]

DD[5]

 P[7]

FPGA

Seven segment display

DB[7:0] R,CS1,CS2,R/W,D/I,E
Pins 4-11 Pins 12-17

LCD

 Pin 1: VDD

Pin 2: GND

Pin3: Display Constrast

Introduction
 This project is an adaptation of the classic video game, Pong. It is a contest between

two players to see who can use their paddle to knock a bouncing ball past the other

player’s paddle. Whenever a player achieves this, they score a point. After a score, the

ball reappears moving straight down the centre of the screen, away from the side where

it just scored. The first player to reach seven points wins.

 Player 1’s knob

 E[0] Player 2’s knob

 Player 1 Scores
 6
 Data LCD Control Start Game

 8 Player 2 Scores

 Scores

 5V

 -4.5 V

When a player has won the game stops until the FPGA is reset. The reset button on the

FPGA will zero the scores and start the game over. If the reset button is pressed at any

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

other time then the score will simply be reset. The score is displayed on a dual seven

segment display. The game itself appears on a LCD with a resolution of 128x64 pixels.

Each player controls their paddle with a separate analogue knob. These knobs will

provide a DC voltage between 0 and 5 volts depending on the angular position of the

knob. These values are then interpreted by the HC11 A/D converter to create paddle

positions on the short sides of the display.

 All of the controlling logic for the game is done in the FPGA and the HC11. The HC11

calculates the physics of the game and controls the LCD. The FPGA keeps track of the

score and outputs it to the dual seven segment display.

Starting the Game

To run this game, first power up the hc11 and load the file main.s19 in. The FPGA can now

be powered up. Type ‘g d000’ at the command prompt which should start the game

with some flaws (see results section). Reset the HC11 and reload the file. Type ‘g d000’

again. This time the game should start correctly. It is unknown why this is necessary, or

even helps.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Microcontroller Design

 The HC11 provided the control for most of the game. The entire body of code

can be found in the appendix. All of the code was written using its standard assembly

language. The code can be divided up into 6 basic sections that will be explained in

more detail later. There is the run once, initialization code. This code turns on the LCD and

sets the HC11 to a few initial states. There is the idling control code. This code is usually

doing nothing except polling for specific port values. The remaining four sections are all

called in the following order once ever eight milliseconds as part of the real time

interrupt. One section uses the A/D converter to get paddle positions. There are two

sections that control ball movement, one for each direction of motion. The last section

updates the LCD based on the ball and paddle positions stored in memory.

Start up Sequence
During the start up sequence the A/D converter and LCD are turned on and port D is

configured for output on its lowest two bits. These are the bits that are used for player

score signals. They are both stored with an initial value of 1 to be consistent with the initial

state of the FPGA finite state machine. Interrupts in general are also enabled at this time,

although no specific interrupts are yet active.

Idling Control
This section of code will simply run an unproductive loop while the game is in progress.

While the game is running all of the game’s data will be handled by the real time

interrupt. Whenever a score signal goes high, this code will disable the real time interrupt

until the FPGA sends its start signal. At that point the code will set all of the values for the

game to start again, the interrupt will be re-enabled, and then it will return to the loop.

A/D Converter Code
This code configures and runs the A/D converter to grab the values from pins E0 and E1.

It shifts down the top 6 bits to create a number in the range [0:63]. It then edits them into

the range [5:58] so that that the paddle will always remain entirely on the screen. To edit

the numbers into this range it simply takes the bits outside of this range and moves them

to the closest value inside the range.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Horizontal Method of Ball Movement
This method controls the horizontal movement of the ball by changing its position

periodically based on its speed. It also checks to see when the ball collides with a wall

and changes the direction of the ball’s velocity, while keeping the same magnitude.

Vertical Method of Ball Movement
This controls the vertical movement of the ball. It periodically changes the position of the

ball based on its velocity. Whenever the ball reaches one edge of the screen it checks to

see if the paddle position overlaps with the position of the ball. If it does not overlap, then

it will send a signal to the FPGA indicating that a player has scored. If they do overlap,

then it will reverse the direction of the ball’s vertical velocity while maintaining the same

magnitude. The position of the ball on the paddle determines how much the horizontal

velocity of the ball changes. A dead centre hit will produce no change, while a hit at the

very edge of the paddle will create a large change in the direction of the ball relative to

the centre of the paddle. The velocity of the ball is limited to a magnitude of 64 to

prevent a strange physics engine as the result of overflow errors, and to accommodate a

limitation of the algorithm that controls the movement of the ball.

Movement Algorithm
The same algorithm is used to control the movement of the ball for each direction. The

velocity of the ball is a number in the range [-64:64]. During each cycle of a not yet

determined length, the magnitude of the ball velocity is added to an accumulator.

Whenever this accumulator reaches a number equal or greater than 64, the ball is

moved over one pixel in the appropriate direction and the 64 is subtracted from the

accumulator, which is equivalent to doing a mod 64 on its value.

Display On
In this routine, the LCD’s display is turned on. When the LCD is first powered data is sent to

the LCD display RAM but nothing is actually displayed on the screen. To turn on the LCD

display, the reset signal is set high and all other instructions (CS1, CS2, R/W, D/I, E) are set

low. Then $3F is sent to the data bus where the last bit indicates whether or not the

display is on or off (1 being on, 0 being off).

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

LCD Write
In this routine Port C is firstly set up to take input. The control pattern is then masked so

that only CS1, CS2, and Reset retain the value. Then the R/W is set high which now makes

this pattern the status check pattern. This pattern is written to port B and then after a

micro second (timing issues) the enable bit is set high which executes the pattern on the

LCD. At this point the data on the data bus is read off port c. If the data bus is all zeroes,

this indicates that the LCD isn’t busy, the display is on and reset is low, all of which are

necessary. If the data bus is not all zeroes, the function keeps looping until the data bus is

all zeroes. Port C is now set up to output. The control pattern is put on port b and then the

enable bit is set high after half a micro second. The data or instruction is also written to

port C at this time and then the enable signal is dropped to indicate that the operation is

finished. The idle state is then turned on.

Writing to the LCD / Clearing a Pixel
This function calls the LCD write routine to write a pixel to the screen. Firstly the control

pattern is loaded so that the LCD knows whether to write to CS1 or CS2. This control

pattern also has Reset high, D/I low, R/W low and enable low. The page number is

loaded into the data field and the LCD Write function is called with these values of LCD

control and Data. After this the Y coordinate of the ball is taken and then the 6th bit

forced high to convert it to a set line instruction and stored into data. LCD write is once

again called with LCD control (which hasn’t changed from the last time LCD write was

called) and the present value of data. Lastly, the 1st bit of the LCD control pattern is set

high to indicate that the next value coming over the Data bus is the data to be written

to the LCD. Then the pattern of 0s and 1s for the page earlier specified is loaded into

data and so written to the LCD. A slight variation of this method is the clear pixel method.

Instead of calculating the data to be written to the LCD, the data is automatically set to

#$00 which clears each pixel in the current page.

Clear LCD / Clear Line
The Clear LCD function writes all zeroes to the LCD, effectively clearing the LCD. Basically

the routine starts at line 127 and then for each page writes zeroes to that page. After this

is finished the routine moves on to the next line and repeats the process. The Clear line

subroutine is just a subset of the Clear LCD routine that takes in a line and writes zeroes to

each page on that line.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Paddle
This function writes the 11 pixel wide paddle to the screen given the location of the

centre of the paddle. The reason the ordinary write function can’t be used to in a loop

11 times to write the 11 pixels to the screen is that one page of data has to be addressed

at a time, and so if this was used within one page only one pixel would be written to. I

decided that the paddles shouldn’t be able to come partially off the screen so the

routine first checks if that would normally happen and then sets the value of the centre

of the paddle so that the paddle will stop at the edge of the screen. Even though this is

also done in the A/D converter, I found for a bug free game this had to be repeated in

the LCD engine as well. After this the x coordinate of the paddle is decremented by five

to get the first pixel in the paddle. The page to be written to is found using the setpage

subroutine as it was in the writing to the LCD subroutine. However, obtaining the data is a

lot different. The first time in the loop the number of darkened pixels in that page was the

last 3 bits of the x coordinate of the first pixel of the paddle which would indicate the

page data. After this the number of darkened pixels for each page was found by

loading in the number of pixels that were left to be written to the LCD. The page was

initialized to being all darkened pixels and then shifted right (8 – num of darkened pixels)

times. If this is the first part of the paddle this pattern needs to be flipped so that the first

part of the paddle can connect with the rest of the paddle. As a result the number of

darkened pixels needs to be flipped as well. This is done by subtracting the data and

dark values from #$FF and #$08 respectively. In the case where the total number of

pixels left to be written to the LCD is more than 8 this value if forced to 8.

Idle Pattern
Thanks to Aaron Stratton (who also used this graphical LCD last year), I know that an idle

pattern is a very good idea between instructions so that random garbage doesn’t get

written to / read from the LCD. After every instruction, an idle pattern of $38 is loaded

onto port B which means that reset, CS1 and CS2 are all set high and R/W, D/I and E are

all low to make sure that nothing can get read from or written to the LCD at an

inappropriate time and also as an added timing precaution.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

FPGA Design

HC11 & FPGA Handshake
 The score controlling interface between the HC11 and the FPGA is done as a

handshake. When the HC11 physics engine detects a score, it outputs one of two signals

to the FPGA indicating which player scored. The HC11 then pauses the game by

disabling the interrupt used to time the game. When the FPGA receives a score signal it

updates the score and then sends its handshake signal back to the HC11 telling it to start

again. This signal is not sent when the score of one player reaches 7 points (i.e. when a

player has won). The HC11, upon receiving this start signal, lowers all scoring signals and

re-enables the real time interrupt so that play will resume. At this point the FPGA lowers its

start signal and starts waiting for another score to occur.

FPGA
 The dual seven segment display driver on the FPGA was taken from lab 3, and was

edited to remove the LED outputs. The score controlling logic involves the before

mentioned handshake with the HC11. The FPGA uses the following three state finite state

machine to keep track of which part of the handshake it is in.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

State = 00

allowScore = 0
allowStart = 1

State = 10

allowScore = 1
allowStart = 0

State = 01

allowScore = 0
allowStart = 0

Score = 1

Score = 0

Score = 1

Reset

Score = 1

Score = 0

Score = 0 is not
possible from this

state based
on the rest of

the design

The input signal “score” is an OR of both players’ score signals, and is therefore true when

either player scores. The output signal “allowScore” tells other logic that it can add the

current scoring signals to the old scores, thus updating the score. The other output,

“allowStart,” sends a start signal back to the FPGA unless the score of one player is seven.

 In the next higher module above this finite state machine the outputs of the FSM are

refined a bit more and executed upon. The allowStart signal is anded with the player

scores both being non-seven and is then outputted to the HC11 as the start signal. Each

cycle the current score is updated by adding to it the players scoring signals anded with

allowScore. Since allowScore is only held high for a single cycle, this insures that the score

is not double added. Even though the scores only require three bits to represent numbers

zero to seven, four bits are used for the convenience of using the already designed four

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

bit seven segment display driver. At this level the two player scoring signals are also ored

to create the single scoring signal for the FSM.

 At the top level of the FPGA circuit, the scores for the two players are sent to be

displayed on the seven segment displays. The proper inputs and outputs to the FPGA are

also set as such. All of the Verilog code can be found in the appendix.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Results

 Our project resulted in a pong game that functions nearly entirely in the spec that we

set out. The only problem that we have noticed is that the first time we try to start up the

system and run the game the SB6108 chip that drove the part of the LCD furthest from

pin 1 would display pixels on the LCD one pixel more to the right than it should. This

problem was always solved by resetting the HC11 and reloading the file.We are not sure

if this is a strange bug in the HC11s that we have been using, or a bug in the LCD

hardware. In either case, once the game is started and the file reloaded it runs flawlessly.

 The biggest challenges in this project involved actually getting the LCD display to

perform correctly. Everything from turning the LCD on, to drawing a single pixel, to

drawing an actual pong screen as a group of pixels proved to be a challenge. This

project also involved interfacing together far more pieces of complex hardware than

had ever been done in class.

 The back and forth communication involved in the handshake was not something we

had previously done in class. This aspect of the project, however, actually worked

correctly without any real problems to debug. This is likely the result of careful planning

prior to the actual coding of the hardware.

 If given more time to expand upon and improve this project a few changes we would

look into would be fixing the start up conditions so that it starts up correctly on the first try

every time. We would look into using the backlighting built into the LCD to improve the

visibility, and therefore playability, of the game. There is also a slight bug in the physics

engine that potentially allows the ball to move one pixel into a wall and then bouncing

back out under very specific conditions. Since this is only a rare bug, and likely wouldn’t

be noticeable when it did happen, we decided not to fix it for our final project.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

References

1. CrystalFontz Graphical LCD Products,

http://www.crystalfontz.com/products/12864b/CFAG12864BWGHV.pdf

http://www.crystalfontz.com/products/DS_S6B0108_V00.pdf

Parts List
Part Source Vendor Part # Price

LCD Display Crystalfontz.com CFAG12864B-WGH-V 37.03

Knobs Stockroom

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Appendix

HC11 Code
* main.asm
* Written by Philip Vegdahl - pvegdahl@hmc.edu
* Reneé Logan - rlogan@hmc.edu
*
* Started on November 23, 2002
* Finished on December 9, 2002
*
*This file codes the movement of the paddles and ball on the screen and
outputs this information to the LCD.

*Constants

PORTB EQU $1004 *Port B Register

PORTC EQU $1003 *Port C Register
DDRC EQU $1007 *Port C Data Direction Register
PORTD EQU $1008
DDRD EQU $1009
TMSK2 EQU $1024
TFLG2 EQU $1025
PACTL EQU $1026
SCCR2 EQU $102D
ADCTL EQU $1030
ADR1 EQU $1031
ADR2 EQU $1032
OPTION EQU $1039

*Variables

 ORG $0000
LCDCTRL EQU $0001 *Control Pattern for LCD
DATA EQU $0002 *Data to be written to LCD
PAGENUM EQU $0004 *Max value of page number
LINENUM EQU $0005 *Max value of line number
CURLINE EQU $0006 *Current Line
CURPAGE EQU $0007 *Current Page
KNOB1 EQU $DFF0 *Current knob x - coordinate values
KNOB2 EQU $DFF1
HVEL EQU $DFF2 *Horizontal velocity of ball
VVEL EQU $DFF3 *Vertical velocity of ball
XCOOR EQU $0008 *Horizontal position of ball
YCOOR EQU $0009 *Vertical position of ball
OLDX EQU $000A *Old horizontal position of ball
OLDY EQU $000B *Old vertical position of ball
KNOBX EQU $000C *Horizontal position of centre of paddle
KNOBY EQU $000D *Vertical position of paddle

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

DARK EQU $000E *Number of pixels of the paddle that have been
written to the screen
TOTAL EQU $000F *Total number of paddle pixels to be written
TIMES EQU $0010 *Number of consecutive times the pwrite loop
(in paddle) has been executed
COUNT EQU $0011 *Number of consecutive times the clear loop (in
clrline) has been executed
HCOUNT EQU $DFF6 * counters for moving ball
VCOUNT EQU $DFF7

START EQU $D000 * Program ORG location
RTI EQU $D100 * RT Interrupt ORG location

 ORG $00EB * RTI Jump vector location

 JMP rStart

 ORG START

* This first section of the code is only run once to initialize the
* HC11 and the LCD display to the correct initial states.

Start BSET OPTION #$80 * Turn on AD Converter
 LDAA #$40
Delay DECA * Count down on A to let A/D warm up
 BNE Delay
 STAA YCOOR * Initialize YCOOR to 0
 STAA SCCR2 * Needs to be cleared for PortD to work

*LCD initialization

 LDAA #$38 *Idle Control Pattern
 STAA PORTB *Write it to the LCD control lines

*End LCD initialization

*Turn On LCD

 LDAA #$20 *Generate LCD Write Control Pattern
 LDAB #$3F *Generate Display On instruction

 STAA PORTB *Write control to Port B
 NOP *Timing Issues
 NOP
 ORAA #$01 *Set E bit in the Control Pattern High
 STAA PORTB *so that things can be written to the LCD
 STAB PORTC *Write the Instruction to Port C

 LDAA #$38 *Control Pattern Idle State
 STAA PORTB *Write it to the LCD
 LDAB #$00 *Put empty data on to the LCD control lines
 STAB PORTC

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

*End LCD on Routine

 LDAA PACTL * Choose speed for RTI to be ~8ms
 ORAA #$01
 STAA PACTL
 LDAA #$03
 STAA DDRD * Pins 0 & 1 set as outputs
 STAA PORTD * Reset state for port D
 JSR CLRLCD *Clear LCD
 CLI * Enable interrupts

* This section of the code essentially idles while the interrupts
* are controlling the game. Whenever a player scores it disables
* interrupts until the FPGA tells it to start again. When that
* signal comes it re-enables interrupts and goes back to idling

mWait LDAA PORTD
 ANDA #$03 * Mask for point score bits
 CMPA #$00
 BEQ mWait * Game currently in progress
 LDAA TMSK2 * set mask bit 6 low to disable RTI
 ANDA #$BF
 STAA TMSK2 * Disable real time interrupts
 LDAA PORTD
 ANDA #$20 * Mask for ready to start bit
 CMPA #$20
 BNE mWait * Not ready to start again yet
 STAA PORTD * Clear score bits
 LDAA #$20
 STAA XCOOR * Initialize XCOOR to 32
 LDAA YCOOR
 CMPA #$00
 BNE mTop * Ball at top of screen
 LDAB #$10 * VVEL will be +16
 BRA mSkip

mTop LDAB #$F0 * VVEL will be -16

mSkip STAB VVEL * Initialize VVEL
 LDAA #$00
 STAA HVEL * Initialize HVEL to 0
 STAA VCOUNT * Reset movement counters
 STAA HCOUNT
 LDAA TMSK2 * set mask bit 6 high to enable RTI
 ORAA #$40
 STAA TMSK2 * Enable Real time interrupts
 BRA mWait

 ORG RTI

rStart LDAA #$40 * Clear interrupt flag
 STAA TFLG2
 JSR aStart * A/D subroutine
 JSR hStart * Horizontal ball movement subroutine
 JSR vStart * Vertical ball movement subrountine

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 JSR UPDATE
 RTI

* This subroutine grabs the knob values from the A/D ports
* E0 and E1. It then converts these values to 6 bit paddle
* positions representing the center of the paddles.

aStart LDAA #$10 * Configure ADCTL to start
 STAA ADCTL

aSpin LDAB ADCTL * Load ADCTL to check for done
 ANDB #$80
 CMPB #$80 * Is the Convertion Complete flag set?
 BNE aSpin * Not done, keep waiting.
 LDAA ADR1
 LDAB ADR2
 LSRA * Shift down to lowest 6 bits for
 LSRA * position of the center of the paddle
 LSRB * (ie a number in the range [0:63])
 LSRB
 CMPA #$05 * Hold paddle on the screen
 BGE aSkip1
 LDAA #$05 * Paddle off on low end, bring up
 BRA aSkip2
aSkip1 CMPA #$3A
 BLE aSkip2
 LDAA #$3A * Paddle off high end, bring down
aSkip2 CMPB #$05
 BGE aSkip3
 LDAB #$05 * Paddle off on low end, bring up
 BRA aSkip4
aSkip3 CMPB #$3A
 BLE aSkip4
 LDAB #$3A * Paddle off high end, bring down
aSkip4 STAA KNOB1 * Store paddle positions
 STAB KNOB2
 RTS

* This subroutine handles all of the horizontal motion of
* the ball. It changes its position based on velocity and
* changes its velocity on wall collisions.

hStart LDAA HVEL
 CMPA #$00 * Check horizontal direction of ball
 BEQ hDone * Ball not moving
 BLT hNeg * Ball movement negative
 LDAB HCOUNT
 ADDB HVEL * Update count
 CMPB #$40 * Check count for ready to move ball
 BLT hWait * keep waiting
 SUBB #$40
 STAB HCOUNT * Mod the count by 64 and save
 LDAA XCOOR

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 INCA * Move ball right by one
 STAA XCOOR
 CMPA #$3F * right wall
 BGE wall
 BRA hDone

hNeg LDAB HCOUNT
 SUBB HVEL * Update count
 CMPB #$40 * Check count for ready to move ball
 BLT hWait * keep waiting
 SUBB #$40
 STAB HCOUNT * Mod the count by 64 and save
 LDAA XCOOR
 DECA * Move ball left by one
 STAA XCOOR
 CMPA #$00 * left wall
 BLE wall
 BRA hDone

wall LDAB #$00
 SUBB HVEL * flip horizontal velocity direction
 STAB HVEL
 BRA hDone

hWait STAB HCOUNT * save new count and keep waiting

hDone RTS

* The subroutine handles the vertical motion of the ball.
* Whenever the ball reaches the end of the screen, it
* checks to see if there is a paddle collision or a score,
* then either changes the ball velocities, or asserts the
* appropriate player's scoring signal.

vStart LDAA VVEL
 CMPA #$00
 BLT vNeg * Ball movement negative
 LDAB VCOUNT
 ADDB VVEL * Update count
 CMPB #$40 * Check count for ready to move ball
 BGE jSkip1 * Branch out of range, must use jump
 JMP vWait * keep waiting
jSkip1 SUBB #$40
 STAB VCOUNT * Mod the count by 64 and save
 LDAA YCOOR
 INCA * Move ball up by one
 STAA YCOOR
 CMPA #$7F * Check for ball at edge of table
 BEQ jSkip2
 JMP vDone * Branch out of range, must jump

jSkip2 LDAA XCOOR * Check for hitting paddle
 LDAB KNOB2
 ADDB #$05 * Right side of paddle
 CBA

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 BGT score1 * branch if a point is scored
 SUBB #$0A * Left side of paddle
 CBA
 BLT score1 * branch if a point is scored

 LDAB KNOB2 * Calculate velocity to add to ball
 LDAA XCOOR * as distance from ball to center of
 SBA * the paddle times 4
 LSLA
 LSLA
 LDAB HVEL
 ABA * New horizontal ball speed
 CMPA #$40 * Max speed 64
 BLE vSkip1
 LDAA #$40 * Set speed down to max
 BRA vSHV

vSkip1 CMPA #$C0 * Min speed -64
 BGE vSHV
 LDAA #$C0 * Set speed up to max
 BRA vSHV

score1 LDAA #$01 * Set port D bit 0 high to signal
 STAA PORTD * FPGA that player 1 scored
 BRA vDone

vNeg LDAB VCOUNT
 SUBB VVEL * Update count
 CMPB #$40 * Check count for ready to move ball
 BLT vWait * keep waiting
 SUBB #$40
 STAB VCOUNT * Mod the count by 64 and save
 LDAA YCOOR
 DECA * Move ball down by one
 STAA YCOOR
 CMPA #$00 * Check for ball at edge of table
 BNE vDone

 LDAA XCOOR * Check for hitting paddle
 LDAB KNOB1
 ADDB #$05 * Right side of paddle
 CBA
 BGT score2 * branch if a point is scored
 SUBB #$0A * Left side of paddle
 CBA
 BLT score2 * branch if a point is scored

 LDAB KNOB1 * Calculate velocity to add to ball
 LDAA XCOOR * as distance from ball to center of
 SBA * the paddle times 4
 LSLA
 LSLA
 LDAB HVEL
 ABA * New horizontal ball speed
 CMPA #$40 * Max speed 64
 BLE vSkip2

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 LDAA #$40 * Set speed down to max
 BRA vSHV

vSkip2 CMPA #$C0 * Min speed -64
 BGE vSHV
 LDAA #$C0 * Set speed up to min
 BRA vSHV

score2 LDAA #$02 * Set port D bit 1 high to signal
 STAA PORTD * FPGA that player 2 scored
 BRA vDone

vSHV STAA HVEL * Store horizontal velocity
 LDAA #$00
 SUBA VVEL * flip vertical velocity
 STAA VVEL
 BRA vDone

vWait STAB VCOUNT * Save count and keep waiting

vDone RTS

UPDATE JSR CLRPIX *Clear old position of ball

 LDAA XCOOR *Store current positions of ball which on the
next loop
 STAA OLDX *will be the old positions of the ball
 LDAA YCOOR
 STAA OLDY

 JSR WRITE *Write the position of the ball to the screen

 LDAA YCOOR *Preserve the value of y coordinate
 PSHA

 LDAA #$7F *Knobs are always either at 00 or 7f
 STAA YCOOR
 JSR CLRLINE *Clear the old position of the paddle

 LDAA #$00
 STAA YCOOR
 JSR CLRLINE *Clear the old position of the paddle

 PULA
 STAA YCOOR *Restore old value of y coordinate

 LDAA KNOB1 *X coordinate value of the centre of the first
knob
 STAA KNOBX
 LDAA #$00 *Place this paddle at the bottom of the screen
 STAA KNOBY
 JSR PADDLE *Write the paddle to the screen

 LDAA KNOB2 *X coordinate value of the centre of the second
knob
 STAA KNOBX

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 LDAA #$7F *Place this paddle at the top of the screen
 STAA KNOBY
 JSR PADDLE *Write the paddle to the screen
 RTS

WRITE JSR SETPAGE *Sets values for the LCD Control and the
data
 JSR LCDW *Write these values to the LCD

 LDAB YCOOR
 ORAB #$40 *Change to set line instruction
 STAB DATA
 JSR LCDW *Write these values to the LCD

 LDAA LCDCTRL
 ORAA #$02 *Changing from instruction to data
 STAA LCDCTRL
 JSR SETDATA *Sets data value
 JSR LCDW *Write actual pixel to the LCD
 RTS

CLRPIX LDAA XCOOR *Preserve values of x and y coordinates
 PSHA
 LDAA YCOOR
 PSHA
 LDAA OLDX *Load in position that is to be cleared
 STAA XCOOR
 LDAA OLDY
 STAA YCOOR
 JSR SETPAGE *Sets values for the LCD Control and the
data
 JSR LCDW *Write these values to the LCD

 LDAB YCOOR
 ORAB #$40 *Change to set line instruction
 STAB DATA
 JSR LCDW *Write these values to the LCD

 LDAA LCDCTRL
 ORAA #$02 *Changing from instruction to data
 STAA LCDCTRL
 LDAA #$00 *Load in 0s which clears the page that being
written to
 STAA DATA *Sets data value
 JSR LCDW *Write these values to the LCD
 PULA *Restore values of x and y coordinates
 STAA YCOOR
 PULA
 STAA XCOOR
 RTS

LCDW LDAA #$00 *Setup Port C to input
 STAA DDRC

CHKW LDAA LCDCTRL *Get LCD Control Pattern
 ANDA #$38 *Alter it into the status check pattern
 ORAA #$04

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 STAA PORTB *Write the pattern to port B
 NOP
 NOP *Wait one micro second
 ORAA #$01 *Set E in the control bit high
 STAA PORTB *Write pattern to port B

 LDAB PORTC *Read the results
 BNE CHKW *Check until not busy anymore

 LDAA #$FF *Setup Port C to output
 STAA DDRC

 LDAA LCDCTRL *Get LCD control pattern
 STAA PORTB *Write the pattern to Port B

 LDAB DATA *Get Instruction/Data
 NOP
 ORAA #$01 *Set E in the control pattern high
 STAA PORTB *Write LCD control to port B
 STAB PORTC *Write the instruction/data to Port C

 ANDA #$FE *Drop the enable signal
 STAA PORTB *Write control to port B

 LDAA #$38 *Control pattern idle state
 STAA PORTB *Write it to the LCD
 LDAB #$00 *Put empty data on to the LCD lines
 STAB PORTC
 PULA
 STAA TMSK2
 RTS

CLRLCD LDAA #$80 *Max value of line number
 STAA LINENUM
 LDAA #$C0 *Max value of page number + 1
 STAA PAGENUM
 LDAA #$7F
 STAA CURLINE *Current Line number

OUTER LDAA #$B8
 STAA CURPAGE *Current page number

INNER LDAA CURLINE
 ANDA #$40 *Get the value of the 6th bit
 BNE UPPER *Branch to upper which indicates that the CS1
lines should be set

 LDAA #$28 *Set the CS2 lines
 STAA LCDCTRL
 BRA CONT

UPPER LDAA #$30 *Set the CS1 lines
 STAA LCDCTRL

CONT LDAB CURPAGE *Current Page

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 STAB DATA *Write the current page to the LCD so that LCD
knows where to write
 JSR LCDW *to when it gets the data

 LDAB CURLINE *Set line that should be written to
 ORAB #$40 *Change to set line data
 STAB DATA
 JSR LCDW

 LDAA LCDCTRL
 ORAA #$02 *Changing from instruction to data
 STAA LCDCTRL

 LDAB #$00 *Write nothing to every pixel which effectively
clears LCD
 STAB DATA
 JSR LCDW
 INC CURPAGE *Increment the page
 LDAA CURPAGE
 CMPA PAGENUM *See if the current page is the last page that
needs to be written to
 BNE INNER *Finished with that line

 LDAA CURLINE *Current line
 CMPA #$00
 BEQ END *Gone through all the lines
 DEC CURLINE *Move the line that is being cleared
 JMP OUTER
END RTS

PADDLE LDAA XCOOR *Preserve values of x and y coordinates
 PSHA
 LDAA YCOOR
 PSHA
 LDAA #$0B *Paddle is 11 pixels long
 STAA TOTAL *Total number of pixels left to be written in
paddle
 LDAA #$00 *No pixels are dark as yet
 STAA DARK *Number of paddle pixels that have been drawn
 LDAA KNOBY *Y coordinate of paddle
 STAA YCOOR

 SUBA #$05 *X coordinate of first pixel in paddle
 STAA XCOOR

PNEXT LDAA #$01 *Start number of times throught the routine off
at 1
 STAA TIMES *Number of consecutive times through the pwrite
routine

PWRITE JSR SETPAGE *Sets values for the LCD Control
and the data
 LDAA TIMES *Amount of times this routine has looped
 DECA
 ADDA DATA *Increment pages according to the number of
times through the routine

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 STAA DATA *so that each time this loop is executed the
next page over is being written
 JSR LCDW *to which is essential to draw the 11 pixels
which has to stretch over at least 2 pages

 LDAB YCOOR
 ORAB #$40 *Change to set line instruction
 STAB DATA
 JSR LCDW *Write these values to the LCD

 LDAA LCDCTRL
 ORAA #$02 *Changing from instruction to data
 STAA LCDCTRL

 LDAA TOTAL *Write the pixels that have not yet been
written
 STAA DARK

 LDAA TIMES
 CMPA #$01 *Check if first time through the loop
 BEQ FTIME

 LDAA TOTAL
 CMPA #$08 *See if the whole page needs to be written to
 BGE TOOBIG
 JMP GETD

FTIME LDAA XCOOR
 ANDA #$07 *Just want page data
 STAA DARK

 JSR PADDATA *Get data to be written to the LCD
 LDAA #$FF
 SUBA DATA *Invert data so that the paddle can be
connected in the two pages
 STAA DATA
 JSR LCDW *Write these values to the LCD

 LDAA #$08
 SUBA DARK
 STAA DARK *Data and Dark both need to be inverted

 JMP PCONT

TOOBIG LDAA #$08 *Write to the whole page
 STAA DARK

GETD JSR PADDATA *Sets data value
 JSR LCDW

PCONT INC TIMES *Increment the number of times the loop has
executed
 LDAA TOTAL *Update the number of pixels left to be written
by subtracting
 SUBA DARK *the pixels that have just been written
 BEQ PDONE *No more pixels to be written
 STAA TOTAL

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 JMP PWRITE

PDONE PULA *Restore values of x and y coordinate
 STAA YCOOR
 PULA
 STAA XCOOR
 RTS

SETPAGE LDAA YCOOR
 ANDA #$40 *Obtain value of 6th bit
 BNE SECOND *Branch to second which indicates that
the CS1 lines should be set

 LDAA #$28 *Set to CS2 lines
 STAA LCDCTRL
 JMP NEXT

SECOND LDAA #$30 *Set to CS1 lines
 STAA LCDCTRL

NEXT LDAA XCOOR
 ANDA #$38 *The first 3 bits of the X coordinate indicate
the page since they're 8 pages per line
 LSRA *Shift these 3 bits down to the end so they can
be manipulated
 LSRA
 LSRA
 ANDA #$07 *Only want last 3 bits
 ORAA #$B8 *Change it to page pattern
 STAA DATA *Write this data pattern to the LCD
 RTS

SETDATA LDAA XCOOR
 ANDA #$07 *Just want page data

 LDAB #$80 *Darken the pixel to the utmost right of the
current page

*In this loop the pixel that we want darkened is found by shifting the
pixel that is darkened to the left.
*This is done by rightshifting the value in accumulator value which
amounts to doing what's stated above.
*To get the right data within the page then the amount of shifts will
be the difference of 7 and the last
*3 bits of the X - coordinate.
LOOP1 CMPA #$07
 BEQ GOOD *Shift until the accumulator has gotten to 7
 LSRB *Shift the pixel that's darkened to the right
 INCA
 BRA LOOP1
GOOD STAB DATA *Store the pattern to be written to the LCD
 RTS

PADDATA LDAA DARK

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 LDAB #$FF *Darken all the pixels in the current page

*In this loop the pixel that we want darkened is found by shifting the
pixel that is darkened to the left.
*This is done by rightshifting the value in accumulator value which
amounts to doing what's stated above.
*To get the right data within the page then the amount of shifts will
be the difference of 7 and the last
*3 bits of the X - coordinate.
PLOOP1 CMPA #$08
 BEQ PGOOD *Shift until the accumulator has gotten to 8
 LSRB *Shift the pixels that are darkened to the
right
 INCA
 BRA PLOOP1
PGOOD STAB DATA *Store the pattern to be written to the LCD
 RTS

CLRLINE LDAA XCOOR *Preserve values of x and y coordinates
 PSHA
 LDAA YCOOR
 PSHA

 LDAA #$01 *Start the counter at 1
 STAA COUNT *Number of consecutive times the Clear loop has
been executed

 LDAA #$00 *Set the x coordinate to 0 which sets the page
to be the one to the utmost left
 STAA XCOOR

CLEAR JSR SETPAGE *Sets values for the LCD Control and the
data
 JSR LCDW *Write these values to the LCD

 LDAB YCOOR
 ORAB #$40 *Change to set line instruction
 STAB DATA
 JSR LCDW *Write these values to the LCD

 LDAA LCDCTRL
 ORAA #$02 *Changing from instruction to data
 STAA LCDCTRL
 LDAA #$00 *Write 0s to that page on the LCD which clears
that page on the LCD
 STAA DATA
 JSR LCDW *Write these values to the LCD

 LDAA XCOOR
 ADDA #$08 *Advance to next page
 STAA XCOOR
 LDAA COUNT
 CMPA #$08 *See if loop has executed 8 times (for the 8
pages that need to be written to)
 BEQ CDONE
 INC COUNT *Increase the number of times the loop has
executed

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 JMP CLEAR

CDONE PULA *Restore the values of the x and y coordinates
 STAA YCOOR
 PULA
 STAA XCOOR

RTS

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Verilog Code
/*
For all of the following modules:
Written by Philip Vegdahl
December 4, 2002
pvegdahl@hmc.edu
*/

module scoreTop(clk,reset,player1,player2,start,myseg,power);

/*
This is the top level module that sends all of the output
signals and receives all of the input signals. It uses lower
level modules to do all of the data crunching. The overall
module receives scoring signals from the HC11, updates the
score, and then returns a start signal to the HC11 so it will
know to start the game again. This signal will not be sent when
a player has reached 7 points, thus winning the game.
*/

 input clk;
 input reset;
 input player1; // player 1 scores
 input player2; // player 2 scores
 output start; // tell HC11 to start game again
 output [6:0] myseg; // 7-seg output
 output [1:0] power; // power switcher for 7-seg
 wire [3:0] score1, score2;

 scoreMem theScore(clk,reset,player1,player2,score1,score2,start);
 Lab3 theseg(clk,reset,score1,score2,myseg,power);

endmodule

module scoreMem(clk,reset,player1,player2,score1,score2,start);

/*
This module keeps track of, and updates the players scores.
It will also choose whether or not a start signal can be sent
based on whether or not a player has already won.
*/

 input clk;
 input reset;
 input player1; // Player 1 scores
 input player2; // Player 2 scores
 output [3:0] score1; // Player 1's current score
 output [3:0] score2; // Player 2's current score
 output start; // Tells HC11 to start game

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 reg [3:0] score1;
 reg [3:0] score2;
 wire win; // One player has won (7
points)
 wire allowScore; // Score can be updated
 wire allowStart; // FSM ready for game to start
 wire score; // A player has scored

 scoreFSM theScore(clk,reset,score,allowScore,allowStart);
 assign win = (score1==4'd7)|(score2==4'd7);
 assign start = allowStart&(~win); // Don't start when a player
has won
 assign score = player1|player2;

 always@(posedge clk or posedge reset)
 if(reset) begin
 score1 <= 0;
 score2 <= 0;
 end
 else begin
 score1 <= score1 + (player1&allowScore);
 score2 <= score2 + (player2&allowScore);
 end

endmodule

module scoreFSM(clk,reset,score,allowScore,allowStart);

/*
This is a finite state machine that controls the scoring
handshake with the HC11. The states are as follows.

State 00: Score has been updated and start is being sent.
 Start will be lowered whenever the score signal
 is lowered.

State 01: Waiting for a score signal from the HC11.

State 10: Score signal recieved from HC11, update score.
*/

 input clk;
 input reset;
 input score; // A player score signal is high
 output allowScore; // Allow the score to be changed
 output allowStart; // Score has been updated and game can resume
 reg [1:0] state; // Current state of FSM

 assign allowStart = (state==2'b00);
 assign allowScore = (state==2'b10);

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 always@(posedge clk or posedge reset)
 if(reset) state <= 2'b00;
 else begin
 state[0] <= ~score;
 state[1] <= state[0]&score;
 end

endmodule

module Lab3(clk,reset,s0,s1,myseg, power);

/*
This module takes 2 4-bit binary numbers as user inputs and
outputs signals to display both numbers on different
7-segment displays using only one piece of decoding hardware.
*/

 input clk, reset;
 input [3:0] s0, s1; // the 2 binary input signals
 output [6:0] myseg; // output to 7-segment displays
 output [1:0] power; // controlers for which display to power
 wire [3:0] s2; // wire carying the binary input in use
 wire sel; // selector for the mux and power
signals

 slow_clk theclk(clk, reset, sel); // slower clock used to

 // switch between displays
 mux2_4 themux(s0,s1,sel,s2); // mux to select input
signal
 seg theseg(s2, myseg); // 7-segment
output
 assign power = {~sel, sel}; // power selection
signals

endmodule

module seg(s,seg);

/*
This is the hardware to decode a 4-bit binary number into a
single digit hexadecimal output.
*/

 input [3:0] s; // Binary input
 output [6:0] seg; // 7-segment output

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 //These are the different segment selection signals

 assign seg[0] = ((~s[3] & ~s[2] & ~s[1] & s[0]) | // 1
 (~s[3] & s[2] & ~s[1] &
~s[0]) | // 4
 (s[3] & ~s[2] & s[1] &
s[0]) | // B
 (s[3] & s[2] & ~s[1] &
s[0])); // D

 assign seg[1] = ((~s[3] & s[2] & ~s[1] & s[0]) | // 5
 (~s[3] & s[2] & s[1] &
~s[0]) | // 6
 (s[3] & ~s[2] & s[1] &
s[0]) | // B
 (s[3] & s[2] & ~s[1] &
~s[0]) | // C
 (s[3] & s[2] & s[1] &
~s[0]) | // E
 (s[3] & s[2] & s[1] &
s[0])); // F

 assign seg[2] = ((~s[3] & ~s[2] & s[1] & ~s[0]) | // 2
 (s[3] & s[2] & ~s[1] &
~s[0]) | // C
 (s[3] & s[2] & s[1] &
~s[0]) | // E
 (s[3] & s[2] & s[1] &
s[0])); // F

 assign seg[3] = ((~s[3] & ~s[2] & ~s[1] & s[0]) | // 1
 (~s[3] & s[2] & ~s[1] &
~s[0]) | // 4
 (~s[3] & s[2] & s[1] &
s[0]) | // 7
 (s[3] & ~s[2] & ~s[1] &
s[0]) | // 9
 (s[3] & ~s[2] & s[1] &
~s[0]) | // A
 (s[3] & s[2] & s[1] &
s[0])); // F

 assign seg[4] = ((~s[3] & ~s[2] & ~s[1] & s[0]) | // 1
 (~s[3] & ~s[2] & s[1] &
s[0]) | // 3
 (~s[3] & s[2] & ~s[1] &
~s[0]) | // 4
 (~s[3] & s[2] & ~s[1] &
s[0]) | // 5
 (~s[3] & s[2] & s[1] &
s[0]) | // 7
 (s[3] & ~s[2] & ~s[1] &
s[0])); // 9

 assign seg[5] = ((~s[3] & ~s[2] & ~s[1] & s[0]) | // 1

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

 (~s[3] & ~s[2] & s[1] &
~s[0]) | // 2
 (~s[3] & ~s[2] & s[1] &
s[0]) | // 3
 (~s[3] & s[2] & s[1] &
s[0]) | // 7
 (s[3] & s[2] & ~s[1] &
s[0])); // D

 assign seg[6] = ((~s[3] & ~s[2] & ~s[1] & ~s[0]) | // 0
 (~s[3] & ~s[2] & ~s[1]
& s[0]) | // 1
 (~s[3] & s[2] & s[1] &
s[0]) | // 7
 (s[3] & s[2] & ~s[1] &
~s[0])); // C

endmodule

module slow_clk(clk,reset,new_clk);

/*
This hardware creates a new clock signal that runs 1024 times slower
than
the original clock. This prevents timing problems from switching back
and
and forth quickly.
*/

 input clk, reset; // basic clock and reset
 output new_clk; // outputed slower clock
 reg [9:0] counter; // counter to keep track of timing on new clock

 always@(posedge clk or posedge reset)
 if(reset) counter = 0; // reset the counter to zero
 else counter = (counter+1) % 1024; // add to the clock and
wrap around

 // to 0 whenever it hits 1024

 assign new_clk = counter[9]; // Output signal is MSB of the
counter.

endmodule

module mux2_4(d0,d1,sel,y);

/*
This is just a two-way, 4-bit multiplexor.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

*/

 input [3:0] d0; // Mux input 1
 input [3:0] d1; // Mux input 2
 input sel; // Selection signal
 output [3:0] y; // Output signal

 assign y = sel?d1:d0; // Chooses the correct output from the
 // selection
signal.

Endmodule

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Breadboard Schematic

B1 H1

A1 C1

F1 G1

Vdd1 D1

Vdd2 E1

B2 H2

A2 C2

G2 D2

F2 E2

P3

P7

P8

P23
 P70
P24

P25

P26

P27

P28

P29

P38

P39

330 ohms

1000 ohms

Knob 1

Knob 2

5V

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Crystalfontz Graphical LCD

Overview
For this project we used a 128x64 pixel LCD, part number #CFAG12864B-WGH-V, which is

available from www.crystalfontz.com. This LCD contains two 64x64 Samsung S6B0108

chips placed side by side which drive the display. As a result there are 128 lines on the

LCD, with line 0 being the edge of the screen nearest to pin 1 and line 64 (line 0 of the 2nd

chip) being in the middle of the screen. Each line contains 8 pages of data with each

page containing 8 pixels each. A page of data must be addressed all at once. A logic

value of ‘1’ being written to a certain pixel on the screen means that the pixel is

darkened. The pixels all retain their value until another value is explicitly written to them.

When the LCD is first powered up, the display RAM in the chips have the value 1 for every

pixel. However, even though the data is in the display RAM this pattern isn’t seen on the

LCD until the LCD is given the write control pattern and the display on instruction.

PinOut
Pin 1: +5V

Pin 2: GND

Pin 3: -2.5V to -4.5V, where -2.5V is a light background and -4.5V is a fully darkened

background.

Pin 4-11: Data Bus Bits 0-7: Sends instructions or data to be written to the LCD. Returns

status flags or data read from the LCD.

Pin 12: CS1 – Column Select 1: Active low control signal that selects the first S6B108

device and so writes to lines 0 to 63.

Pin 13: CS2 – Column Select 2: Active low control signal that selects the second S6B108

device and so writes to lines 64 to 127.

Pin 14: R – reset: an asynchronously low reset signal that turns off the screen and resets

the line scroll register.

Pin 15: R/W – Read or Write. 1 indicates read from LCD data bus, 0 indicates write to LCD

data bus.

Pin 16: D/I – Data or Instruction. 1 indicates data is being sent the LCD, 0 indicates that an

instruction is being sent to the LCD.

Reneé Logan & Philip Vegdahl E155 Final Report 16/12/2002

Pin 17: E – enable: acts as a clocking signal, that is the signal needs to be high for

anything to happen to the LCD.

Pin 18: Negative Voltage Output (Not used in this project)

Pin 19: Positive Power for LED Backlight (Not used in this project)

Pin 20: Negative Power for LED Backlight (Not used in this project)

General Operations
There are two main operations that can be done with this LCD – reads and writes.

However, reading from the LCD is something that wasn’t used in this project and as a

result I’m not able to provide much information on this function of the LCD. The E signal

acts as the clock for the device. As a result, the E signal should idle low and only be

changed when an instruction is ready to be started. On a suggestion from Aaron

Stratton, an idle pattern of {R = 1, CS1 = 1, CS2 = 1, R/W = 0, D/I = 0, E = 0} was written to

the LCD between instructions. This idle pattern ensures that nothing can be written to the

LCD as neither column is selected. Each instruction done on the LCD followed this basic

format:

1. Set the Control Pattern (R, CS1, CS2, R/W, D/I, E). Reset should be high and

enable should be low at this point. The other values will depend on what the user

is trying to get the LCD to do.

2. Raise the Enable signal.

3. Send the Data/Instruction that needs to be written to the LCD.

4. Lower the Enable signal.

Status Checks
When executing instructions that affect the LCD display, a status check needs to be

made, as if the LCD is busy when an instruction is sent then that instruction is ignored. The

only place in the Pong game that a status check is used is when trying to write to LCD (in

this context, writing to LCD includes writing instructions, not only writing pixels to the

screen). This status check keeps on executing until the LCD is no longer has the busy flag

set indicating that its busy. Aaron Stratton found an error in the S6B0108 documentation

in Version 0.0 on page 16. In the documentation it was stated that the busy flag was set

on the falling edge of E but in actuality its set on the rising edge of E.

