

Mastermind: The Game
Final Project Report
December 12, 2002

Carl Larsen and William Berriel

Abstract:

The logic game mastermind involves one player creating a hidden sequence out of
colored pins and another player making a limited number of guesses about what the
sequence is. The player with the hidden sequence gives the guesser feedback on each
guess, revealing, through the use of black and white pegs, if the guess featured any
pins that exactly matched the color of the hidden sequence and whether the guess had
pins that only matched the color of the hidden sequence. We implemented this game,
with the sequence being a sequence of numbers, using the 68hc11 to play as the
player with a hidden sequence. The FPGA receives input through a matrix keypad,
and the system outputs to the player through
a matrix of LCD's for the feedback on the guesses, and an LCD screen that displays
all guesses.

Introduction:

 Mastermind is a logic game that involves one player making a hidden

sequence of colored pins and a second player trying to guess the sequence. The

original version featured the second player responding to the first players guesses with

a series of black and white pins, with the number of pins in one color representing the

number of pins in the guess that are the correct pin color in the correct position, and

the other color representing the number of pins in the guess that are the right color but

in the wrong position. The second player had a limited number of guesses, after which

they would lose. For our project, we implemented a version of mastermind using the

FPGA and 68hc11. The hidden sequence would be a 4 digit sequence of numbers

from zero to five. The input is through a nine key matrixed keypad. The system

outputs using both a 16x2 character LCD screen and 6x8 LED matrix. The LCD

displays the current guess as well as previous guesses, and will also reveal the hidden

sequence if the player wins or loses. The LED's are set up in six rows of eight, with

four green and four red per row. The red LED's represent the correct digit in the

correct position while the green represent the correct digit in the wrong position. The

position of the lit LED's does not correspond in any way to the where in the sequence

the correct digits occur. The 68hc11 acts as the player with the hidden sequence,

randomly assigning the digits from zero through five to the positions in the sequence.

It also controls the LCD screen output, and the FPGA output. The FPGA takes in the

input from the keypad, and multiplexes the output to the LED matrix.

New Hardware:

 We used a 16x2 character LCD from the stockroom, which although may

have been used by E155 students before, featured 2 pitfalls that might not have been

documented earlier. This LCD is controlled by a standard Hitachi HD4780A00

controller, featuring 14 pins. Controlling the LCD was rather simple, but we had

problems with 2 aspects. The first was that the controller needs to be given negative

voltage for ground. Secondly, the auto startup routine, which runs whenever the LCD

is powered up normally, prevents the controller from being set to 2 line mode. In

order to fix this, we needed to slowly ramp up the +5V rail on the power supply that

powered the LCD. This prevents the auto reset feature from being used by the LCD,

allowing us to initialize it manually. We would like to thank Aaron Stratton who

provided much needed assistance by helping us debug the initialization and reset

sequences. In addition, for a complete overview on how to use an LCD display, please

look at reference 3.

 Although each part of the LED matrix is readily available, its operation

may not be extremely obvious. It works just like the multiplexed seven-segment

displays from our earlier labs, except individual LED's are used. It is multiplexed in

six rows by eight columns. Each row is powered by a transistor which is controlled by

the FPGA. The FPGA provides a voltage on the opposite side of the LED to mask the

LED's, selecting which columns are lit. Each port has a 330O resistor wired to it, to

lower the current through the LED's, limiting them to 15mA of current. Since the

LED's run at a 1/6 duty cycle, it might be possible to lower this a bit to raise the

brightness of the LED's, if they are not sufficiently bright.

Microcontroller Design:

 The 68hc11 controls the game logic and LCD screen. It controls the

LCD screen using modified code from “The Super Happy Fun Game”, written by Ari

Moradi and Ryan Stuck in E155 in the Fall of 2000. Two functions exist to

communicate to the LCD, WRITEC and WRITED. WRITEC writes a binary

command from accumulator B to the LCD. WRITED writes the ASCII character from

accumulator B to the LCD. Between commands and data, the 68hc11 waits for at least

two miliseconds.

 The FPGA raises an XIRQ whenever it has input from the keypad. The

68hc11 reads the input from Port E. It first determines if the input is a reset, which has

priority and will always reset the game state. If not a reset, it determines the state that

the game is in and acts accordingly. The game has three finite state machines: One

that records whether it has determined a hidden sequence yet, one that stores whether

the user has input a full guess, and one that stores the number of guesses that the user

has made.

 If the random sequence has not been fully generated, on a key press that

is not reset the 68hc11 runs the random subroutine. This subroutine takes the least

eight bits of the timer, which should be sufficiently random since the clock runs at

eight megahertz, and overflows the eight bits in less than a millisecond. It multiplies

the lower byte of the timer by six, generating a sixteen bit number with a value from

0x0000 to 0x05FF. The higher byte of the timer is then taken since, it is between zero

and five, which is the range that we need. This method has a close to even distribution

of numbers, with five having a 1.5% advantage. The random subroutine is not run

after the random sequence is generated and the game is not reset.

 After determining if it needs a to generate the hidden sequence or not,

the system handles the incoming number. By this point, since it was not a reset, the

digit must be between zero and five. Since the input must be valid, it is stored in the

proper place in the guest sequence.

 Once we have the complete guess sequence input, we need to score the

sequence. Scoring the sequence consists of first determining the exact matches by

comparing each digit in the guess with each digit in the hidden sequence. For each set

of matching digits, the output to the FPGA gets another one in its high nibble. Thus if

none are correct, the high nibble is a 0x0, otherwise it's an 0xF. Once it has found the

exact matches, it finds the number of right digits in the wrong position. To do this,

each digit of the hidden sequence is compared to all four digits of the guess in

succession, until a match is found or all four have been compared. If a match is found,

the position in the guess is marked, the match is recorded, and the next digit in the

hidden sequence is compared to the guess, skipping over the marked digits. Once it

has compared each digit of the hidden sequence, it subtracts the number of correct

position digits from the number in the incorrect position and outputs the numbers as

one-hot encoded sequence corresponding to the LED's that will be on to the FPGA. It

holds this sequence on port c, raises the enable pin (a[6]) for a short time, shifting the

FPGA once, and then lowers enable. If after scoring, the guess is found to be a

winning guess, then the game enters the win state, printing the win message on the

LCD, and displaying the hidden sequence. If the six guesses have been used up and

the player has not won, the game enters the lose state and prints the lose message and

the hidden sequence on the LCD. It stays in the winning and losing states until reset is

pressed.

FPGA Design

The FPGA contains two independent modules, a user input module and a user

feedback output module. Schematics of the breadboard circuits, block diagrams, and

verilog code for these modules are in the appendix.

User Input Module:

 The input module is allows the user to input guesses for mastermind

game. It consists of a matrix keypad connected to the FPGA. The columns of the

matrix keypad are polled by the FPGA, via a finite state machine, by sequentially

setting each column low. If a button is pressed a short will occur in one of the rows of

the keypad when the polling reaches the column of the pressed button. When it

detects a short (i.e. a low value in the row input) the FPGA will then stop polling the

columns and wait until the button is released and the short is gone. The combination

of low column and low row values caused by the short on the matrix keypad are

decoded on the FPGA to determine the binary value indicated by the particular key

pressed. Our system uses the nine button located in the upper left of the key pad

which are encoded as the following values:

 0 1 2

 3 4 5

 6 7 7

Zero through five are used by the user to provide input for the game. Six, and the two

sevens will be used to control game logic such as allowing the user to reset the game.

 The binary value generated by the encoder is stored, until a new button

press is detected, in a 3-bit asynchronously resetable flip-flop with enable. This flip-

flop is enabled by an fsm that will output high for one cycle of the slow clock, or

about 1 ms, each time a button is pressed. The following is a state transition diagram

of this fsm.

Figure 1: Enable Generator State Transition Diagram

Transtions between states depend an whether the row input is all zero or not, in other

words whether the button is being pressed or not. The fsm will stay in state zero until

it detects a press at which point it will move to state 1, generating the enable signal,

and then move to state 2. It will stay in state 2 until the button is release at which

point it returns to state zero and is ready for another press. In all cases reset sends the

fsm back to state zero.

In addition to functioning as the enable for the flip-flop, the output of this fsm

is inverted, buffered in two 1-bit flip-flop in series, and then used as an interrupt

signal to tell the HC11 that new user input is ready. Buffering through two flip-flops

ensure that the interrupt signal arrives after the new input data is ready.

~ (&row)

reset

 &row
 or reset

~ (&row) State 0
Y = 0

State 1
Y = 1

State 2
Y = 0

&row or reset

Feedback Output Module:

 The feedback output module is used to display the values calculated by

the HC11 game logic for the number of correct numbers in the correct position and

the number of correct numbers in the incorrect position. These are displayed on six

rows of four red LEDs and four green LEDs. Since these 48 LEDs are far more

numerous than the number of available output pins on the FPGA it is necessary to

multiplex the output from one set of eight output pins in order to simultaneously drive

all 48 LEDs. This requires us to both provide an output for the individual values of

each LED and an output sequentially enabling one row of LEDs. We achieve this be

having the anode of all eight LEDs of a row connected to the collector of a PNP

transistor which has its emitter tied to 5V. The FPGA then drives the base low or high

in order to enable or disable a single row. Each LED’s cathode is then tied to the

FPGA, if the FPGA pin is low it sinks the LED and turns the LED on, if the pin is

held high it prevents current from passing through the LED and turns it off. Therefore

the FPGA can individually turn LEDs on or off by setting each particular output pin

low or high.

 The output module stores up to six input values in a 8-bit wide, 6 bit shift

register. The register is triggered to write a new output value when it receives an

“update” signal from the HC11. This signal is used to clock the register. The output of

each register is sent to an 8-bit wide for input mux that selects the correct value

among the six options for the individual LED output pins of a given row. The select

signal for the mux is generated by a 3 bit counter which counts from zero to five. The

counter signal is also sent to a 6-bit priority encoder that sets all of the row enable

outputs high except one. This signal, in conjunction with the output of the mux

multiplexes and drives the six rows of eight LEDs. However, in order to prevent any

smearing of the values between rows we slow the clock input of the counter down by

sending the system clock through another counter which divides the clock by 2048.

This results in a clock rate of about 2 kHz. This should be slow enough to prevent

smearing of the values but fast enough to prevent any perceptible flickering.

Results:

 We were successfully able to implement the complete mastermind game.

It performed all of the functions of the game that we outlined in the original proposal.

Furthermore we were able to successfully use both the LCD module and multiplexed

LED array for the output and implement interrupt based input exactly as we had

originally envisioned.

The most difficult part of the design was determining the correct wiring and

initialization procedure for the LCD Module. Learning that the module required

negative contrast was quite a revelation. Additionally, the hardware initialization

mode of the module did not quite behave as describe in the datasheet and necessitated

the workaround of a slow power increase in order to get the LCD functional. Other

than that, implementation was relatively straightforward and required only minor

debugging.

References:

[1] F. Cady, Software and Hardware Engineering. New York: Oxford University
Press, 1997.
[2] Hitachi HD47780 LCD Controller Datasheet,
http://semiconductor.hitachi.com/hd44780.pdf
[3]Ari Moradi and Ryan Stuck, “The Super Happy Fun Game: A Text-Based
Adventure Game.”
http://odin.ac.hmc.edu/~harris/class/e155/projects00/superhappyfungame.pdf

Parts List:

 Part Source
Hitachi LM016H LCD Module Stock Room

Appendix A: Schematics

Appendix B: FPGA Block Diagrams

8-Bit
Shift Register Update

Reset

Feedback
Output

6x8
MUX

Output 1

Output 2

Output 3

Output 4

Output 5

Output 6

Slow Clock

Clock
Divider
FSM Clock

3-Bit
Counter

Sel MUX

6-Bit
Priority
Encoder

8-Bit
Inverter

LEDS

Select

Output Module Block Diagram

Input Module Block Diagram

Enable
Signal
FSM

Column

Matrix
Keypad
Decoder

3-Bit
Register

2-Bit Shift
Register Enable

Clock

Reset

Reset

XIRQ

Column

Scanner
 FSM

Slow

Row
Number

Number

Clock
Divider
FSM Clock

Appendix C: Assembly Code
* AUTHORS: William Berriel and Carl Larsen
* Purpose: The Code for the 68hc11 part of the Mastermind game which
 is the final project for HMC E155
* Date : 12/9/02
* Email : wberriel@hmc.edu

* Useful ports and such, as well as masks for the ports when
necessary.
PORTA EQU $1000
AMSK EQU %01000000 ; masks used when pulsing bit 6 of
PORTA
AMSKNOT EQU %10111111

PORTB EQU $1004

PORTC EQU $1003 ; PORTC and control
register DDRC
DDRC EQU $1007 ; Set bits high that are
outputs

PORTE EQU $100A
EMSK EQU %00000111 ; Mask to get the lower 3 bits of
porte

TCNTL EQU $100F ; The lower byte of the timer.

GUESS EQU $0001 ; Stores the number of Guesses that
have been made.

ENDSTAT EQU $0006 ; Whether we ae in the ending state.

GLINE EQU $03 ; Constant storing Guesses per line,
here it's 3
GGAME EQU $06 ; Constant storing Guesses per Game,
here it's 6

FIRST EQU $0015 ; Location of the first, second,
third, and fourth
SECOND EQU $0016 ; hidden digits respectively
THIRD EQU $0017
FOURTH EQU $0018

STATE EQU $0010 ; STATE is the address of the upper byte
of state (not used)

STATEL EQU $0011 ; STATEL is the address of the lower
byte of the state,
* it determines what digit in a
sequence is being input.

STATE2 EQU $0012 ; STATE2 stores whether we have a
random number yet.

* In1 - In4 store the digits from the guess.
IN1 EQU $0019

IN2 EQU $0020
IN3 EQU $0021
IN4 EQU $0022

IRQVEC EQU $00F1 ; The address of the XIRQ vector in buffalo.

ALOC EQU $15 * Temporary Answer Location
GLOC EQU $19 * Temporary Guess Location
FDBCK EQU $03 * Feedback Output Location
FDBCKT EQU $04 * Temporary CVCP Output Location
FDBCKB EQU $05 * Temporary CVIP Output Location
MSB1 EQU %10000000
MSB2 EQU %00001000

NUM EQU $dd00 ; The Address of the Number Strings
to be output.

* LCD code was modified from Ari Moodi and Ryan Stuck, e155 2000.

* OUTPUT Masks
* b5 = RS Register Select
* b4 = R/W Read/Write
* b3 = E enable

WRD EQU %00100000
WRDEN EQU %00101000
WRC EQU %00000000
WRCEN EQU %00001000

* Commands

CLEAR EQU %00000001 ; $01
HOME EQU %00000010 ; $02
ENTRY EQU %00000110 ; $06
DISPON EQU %00001111 ; $0c
FUNCT EQU %00111000 ; $38
INIT EQU %00110000 ; $30
DISPOFF EQU %00001000 ; $08
DDRLN2 EQU %11000000 ; $C0

* Time delay to allow for proper interfacing with the LCD
* HTIME is in milliseconds, and are much slower than
* necessary.
HTIME EQU $05

DTIME EQU $40

 ORG #IRQVEC
 JMP IRQISR

* Start the game by setting up the parameters, the ports, and setting
up interrupts
* for the XIRQ. Then Just busy wait, interrupt driven code.

 ORG $D100
 TPA ; Transfer CCR to A

 ANDA #%10111111 ; To unmask the XIRQ, need
to reset bit 6
 TAP ; Transfer A to CCR
 JSR RESETGAME
 LDAA #$FF ; Set PORTC as OUTPUT
 STAA DDRC
 JSR INITLCD ; Initiate the LCD

 CLI ; Enable Interrupts
BUSYW BRA BUSYW

* RESETGAME will initialize the game to a beginning state where it
can begin
* playing the game.
RESETGAME
 LDAA #FIRST
 STAA STATEL ; STATEL stores which digit is being
input
 CLRA
 STAA STATE2
 STAA STATE
 STAA GUESS
 STAA ENDSTAT
 RTS

* Random Simply takes the lower 8 bits of the time clock, and
multiplies by 6.
* The higher byte should be a number between 0 and 6.
RANDOM
 LDAA TCNTL
 LDAB #06
 MUL
 LDX STATE

 STAA 0,X
 RTS

IRQISR
* ON Input, need to see if we're started (have a seed yet) if not, we
* seed, as long as not a reset, then we handle it.

 LDAA PORTE
 ANDA #EMSK ; Clean up input, make sure only
lower 3 bits are checked.
 CMPA #$05 ; are we not at reset?
 BLE NORESET ; On reset, simply reset state fully
and return.
 JMP RESET ; would use BGT, but reset is too far
away for 8 bit break

NORESET
 LDAB ENDSTAT
 CMPB #$0 ; Are we in an endstate? If so, only
accept reset.
 BNE RETURN

 LDX STATE

 STAA 4,X ; Store number as guessed input.

 LDAA STATE2
 CMPA #$0 ; state2 = 0 means we need random
numbers
 BNE HAVESEQ ; otherwise we don't
 JSR RANDOM
HAVESEQ
 LDAB PORTE ; To get the character to print, need
to get input number
 ANDB #EMSK
 LDX #NUM ; and add it to the starting point
for where the numbers
 ABX ; are stored.
 LDAB 0,x ; That should give us the ascii value
for the number.
 JSR WRITED ;(Write the character to the screen).

 INC STATEL ; move to the next input state

 LDAA STATEL
 CMPA #IN1 ; If we're not at the 4th input number,
return
 BLT RETURN ; otherwise handle it.

STARTED
 LDAB SPACE ; Upon recieving 4 input digits,
write a space to the screen.
 JSR WRITED
 LDAB #HTIME
 JSR IDELAY

 JSR SCORE ; Score the inputs.
 LDAA FDBCK ; Load the feedback and print it to
the FPGA

 STAA PORTC ; Output the DATA output first
 LDAA PORTA ; Then output the enable, being sure
to preserve the state of A
 ORAA #AMSK ; Since we only care about bit 6,
whereas the LCD runs off of bits
 STAA PORTA ; 5,4, and 3.
 LDAA PORTA
 ANDA #AMSKNOT
 STAA PORTA ; Raise the enable for a short time,
then lower it.

 LDAA #FIRST ; Point the State back at the first
digit for the input guess
 STAA STATEL
 LDAA #1
 STAA STATE2

* Now that we have output everything see if we need to go to a win
state.
 LDAA FDBCK
 CMPA #$F0 ; Feeback of #$F0 means we have 4
right in the right place
 BNE NOWIN
 JSR WIN
 BRA RETURN

NOWIN
 INC GUESS ; If not win, increment the number of
guesses
 LDAA GUESS
 CMPA #GLINE ; See if we need a carriage return
 BNE SAMELINE
 LDAB #HTIME
 JSR IDELAY
 LDAB #DDRLN2
 JSR WRITEC
 LDAB #HTIME
 JSR IDELAY

SAMELINE
 CMPA #GGAME ; See if we are in a lose state
 BNE RETURN
 JSR LOSE

RETURN
 RTI

* Upon Reset, clear the LCD, reset the game and return.

RESET
 LDAB #CLEAR
 JSR WRITEC
 LDAA #HTIME
 JSR IDELAY

 LDAB #HOME
 JSR WRITEC
 LDAA #HTIME
 JSR IDELAY

 JSR RESETGAME
 BRA RETURN

* Upon winning, enter winning state, clear the lcd and output
winmessage.
WIN
 LDAA #$01
 STAA ENDSTAT
 JSR CLEARHOME
 LDX #WINMESS

WINLOOP
 LDAB 0,X
 JSR WRITED
 LDAA #HTIME
 JSR IDELAY

 INX
 CMPX #LOSMESS
 BNE WINLOOP

 JSR HIDDENPRINT

 RTS

* Upon a loss, Enter the ending state, clear the LCD and output the
losing message
LOSE
 LDAA #$01
 STAA ENDSTAT
 JSR CLEARHOME
 LDX #LOSMESS

LOSELOOP
 LDAB 0,X
 JSR WRITED
 LDAA #HTIME
 JSR IDELAY

 INX
 CMPX #ENDPT
 BNE LOSELOOP

 JSR HIDDENPRINT

 RTS

* Print the hidden sequence.
HIDDENPRINT
 LDAB #DDRLN2
 JSR WRITEC
 LDAA #HTIME
 JSR IDELAY

PRINTLOOP
 LDAB FIRST
 LDX #NUM
 ABX
 LDAB 0,X
 JSR WRITED
 LDAA #HTIME
 JSR IDELAY

 LDAB SECOND
 LDX #NUM
 ABX
 LDAB 0,X
 JSR WRITED
 LDAA #HTIME
 JSR IDELAY

 LDAB THIRD
 LDX #NUM
 ABX
 LDAB 0,X
 JSR WRITED
 LDAA #HTIME
 JSR IDELAY

 LDAB FOURTH
 LDX #NUM
 ABX
 LDAB 0,X
 JSR WRITED
 LDAA #HTIME

 JSR IDELAY

 RTS

* Send the clear and home commands.
CLEARHOME
 LDAB #CLEAR
 JSR WRITEC
 LDAA #HTIME
 JSR IDELAY

 LDAB #HOME
 JSR WRITEC
 LDAA #HTIME
 JSR IDELAY
 RTS

* Check Correct Value Correct Position
SCORE
 LDAB #$00
 LDX #ALOC
 LDY #FDBCKT
CVCP LDAA 0,X * Check first two numbers
 CMPA 4,X
 BNE NOMATCH
 LSLB * If a match Shift left
 INCB * and increment

NOMATCH INX * Move to next number
 CPX #GLOC
 BNE CVCP * If not 4th no. loop
 STAB FDBCKT * Store result
 BEQ DNCVCP * If zero result don't shift
SHIFT1 BRSET 0,Y MSB1 DNCVCP
 LSL FDBCKT * Loop till output is shifted
 BRA SHIFT1 * completely to the MS Bits

* Check Correct Value Incorrect Position

DNCVCP LDAB #$00
 LDX #ALOC
 LDY #GLOC

CVIP1 LDAA 0,X * Check answer no.
 CMPA 0,Y * vs first guess no.
 BNE CVIP2
 LSLB * If match shift and increment
 INCB
 LDAA #$FF * Mark guess no. as used
 STAA 0,Y
 BRA DNCHK

CVIP2 CMPA 1,Y * Check answer no.
 BNE CVIP3 * vs second guess no.
 LSLB
 INCB * If match shift and increment
 LDAA #$FF
 STAA 1,Y * Mark guess no. as used
 BRA DNCHK

CVIP3 CMPA 2,Y * Check answer no.

 BNE CVIP4 * vs third guess no.
 LSLB
 INCB * If match shift and increment
 LDAA #$FF
 STAA 2,Y * Mark guess no. as used
 BRA DNCHK

CVIP4 CMPA 3,Y * Check answer no.
 BNE DNCHK * vs fourth guess no.
 LSLB
 INCB * If match shift and increment
 LDAA #$FF
 STAA 3,Y * Mark guess no. as used

DNCHK INX
 CPX #GLOC * If not all answer numbers checked
 BNE CVIP1 * loop back and compare vs. guess again
 STAB FDBCKB * Store result
 BEQ DNCVIP * If zero result skip shift
 LDY #FDBCKB
SHIFT2 BRSET 0,Y MSB1 DNCVIP
 LSL FDBCKB * Loop till output is shifted
 BRA SHIFT2 * completely to the MS Bits

* Calculate Final Output

DNCVIP LDAA FDBCKB * Subtract CVCP value from CVIP value
 SUBA FDBCKT
 LSRA * Shift new CVIP to Lower Nibble
 LSRA
 LSRA
 LSRA
 STAA FDBCKB
 BEQ DNSH3
 LDY #FDBCKB
SHIFT3 BRSET 0,Y MSB2 DNSH3
 LSL FDBCKB * Shift CVIP to MS Bits
 BRA SHIFT3 * of lower nibble

DNSH3 LDAA FDBCKT
 ORAA FDBCKB * Or CVCP and CVIP to get final
output
 STAA FDBCK * Store final Output
 RTS

* Write Data that's in accumulator b

WRITED
 LDAA #WRD
 STAA PORTA
 JSR STALL
 LDAA #WRDEN
 STAA PORTA
 JSR STALL
 STAB PORTB
 LDAA #WRD
 STAA PORTA
 RTS

* Write Command in accumulator b

WRITEC
 LDAA #WRC
 STAA PORTA
 JSR STALL
 LDAA #WRCEN
 STAA PORTA
 JSR STALL
 STAB PORTB
 LDAA #WRC
 STAA PORTA
 RTS

* Stall Function
STALL
 LDY #$0100
LOOP DEY
 CPY #$0000
 BNE LOOP
 RTS

* DELAY Function, to delay for 1 ms

DELAY
 LDY #$01E8 ; 1000 loops
MORE DEY ;4
 NOP ;2
 NOP ;2
 NOP ;2
 NOP ;2
 CPY #$0000 ;5
 BNE MORE ;3
 RTS

* Instruction Delay, delays for number of seconds in A

IDELAY
 DECA
 JSR DELAY
 CMPA #$00
 BNE IDELAY
 RTS

* Initialize the LCD, hardware initialize the LCD to 2 lines,
blinking cursor,
* 8 bit input, and the cursor beginning in the home position.
INITLCD
 LDAB #INIT
 JSR WRITEC
 LDAA #HTIME
 JSR IDELAY

 LDAB #INIT
 JSR WRITEC
 LDAA #HTIME
 JSR IDELAY

 LDAB #INIT
 JSR WRITEC
 LDAA #HTIME
 JSR IDELAY

 LDAB #FUNCT
 JSR WRITEC
 LDAA #HTIME
 JSR IDELAY

 LDAB #DISPOFF
 JSR WRITEC
 LDAA #HTIME
 JSR IDELAY

 LDAB #CLEAR
 JSR WRITEC
 LDAA #HTIME
 JSR IDELAY

 LDAB #ENTRY
 JSR WRITEC
 LDAA #HTIME
 JSR IDELAY

 LDAB #DISPON
 JSR WRITEC
 LDAA #HTIME
 JSR IDELAY

 RTS

 ORG NUM
 FCC "0"
 FCC "1"
 FCC "2"
 FCC "3"
 FCC "4"
 FCC "5"
SPACE FCC " "
WINMESS FCC "YOU WIN"
LOSMESS FCC "YOU LOSE"
ENDPT FCC "E"

Appendix D: Verilog
/*
 Name: mastmind
 Author: Carl V. Larsen
 Date: 10 - 24 - 02

 This module is the top level of the FPGA portion of the
mastermind game. It combines the keypad input and multiplexed
feedback output portions into one module and provides the correct
reset behavious for the output module.
*/

module mastmind(clk,reset,update,hc11val,row,leds,select,column,
 s0,intr);
 input clk;
 input reset;
 input update;
 input [7:0] hc11val;
 input [2:0] row;
 output [7:0] leds;
 output [5:0] select;
 output [2:0] column;
 output [2:0] s0;
 output intr;

 wire outreset;

 assign outreset = s0[2]&s0[1];

 mminput inpart(clk,reset,row,column,s0,intr);
 mmoutput
outpart(clk,outreset,update,hc11val,leds,select);

endmodule

User Input Module:

/*
 Name: mminput
 Author: Carl V. Larsen
 Date: 10 - 24 - 02

 This module is the top level module for the user input of
the
 mastermind game. It decodes matrix keypad input into
binary and
 generates a interrupt signal each time a button is
pressed.
*/

module mminput(clk,reset,row,column,s0,intr);
 input clk;
 input reset;
 input [2:0] row;
 output [2:0] column;
 output [2:0] s0;
 output intr;

 wire u;
 wire update;
 wire upnot;

 wire [2:0] num1;
 wire [2:0] s0;

wire sclk;

 assign upnot = ~update;

 // slow down internal clock
 div2k slwclk(clk,reset,sclk);

 // scan for input
 scanner scanfsm(row,sclk,reset,column);

 // generate hc11 input interrupt
 wrtenb enabler(sclk,reset,row,update);

 // decode matrix input to binary
 number numdecd(row,column,num1);

 // store most recent input
 flipflop reg0(sclk,reset,update,num1,s0);

 // store the input interrupt
 flopr intrreg(sclk,reset,upnot,intr);

endmodule

/*
 Name: flipflop
 Author: Carl V. Larsen
 Date: 10 - 07 - 02

 This module is a simple 3-bit asynchronously resettable
flip-flop
 with enable. It is used to store the column output for the
keypad.
*/

module flipflop(clk,reset,en,d,q);
 input clk;
 input reset;
 input en;
 input [2:0] d;
 output [2:0] q;

 reg [2:0] q;

 always @(posedge clk or posedge reset)
 if (reset) q <= 3'b0;
 else if (en) q <= d;

endmodule

/*
 Name: flopr
 Author: Carl V. Larsen
 Date: 10 - 24 - 02

 This module is a simple 1-bit asynchronously resettable
flip-flop.
 It is used to buffer the input interrupt.
*/

module flopr(clk,reset,d,q);
 input clk;
 input reset;
 input d;
 output q;

 reg q;

 always @(posedge clk or posedge reset)
 if(reset) q <= 0;
 else q <= d;

endmodule

/*
 Name: number
 Author: Carl V. Larsen
 Date: 10 - 24 - 02

 this module decodes values from a matrix keypad into a 4-
bit
 binary number according to the following arrangement.

 0 1 2
 3 4 5
 6 7 7
*/

module number(row,column,num);
 input [2:0] row;
 input [2:0] column;
 output [2:0] num;

 assign num[2] = ~row[1]&~column[1] | ~row[1]&~column[2]
| ~row[2]&~column[0] | ~row[2]&~column[1] | ~row[2]&~column[2];

 assign num[1] = ~row[0]&~column[2] |
~row[1]&~column[0] | ~row[2]&~column[0] | ~row[2]&~column[1] |
~row[2]&~column[2];

 assign num[0] = ~row[0]&~column[1] |
~row[1]&~column[0] | ~row[1]&~column[2] | ~row[2]&~column[1] |
~row[2]&~column[2];

endmodule

/*
 Name: scanner
 Author: Carl V. Larsen
 Date: 10 - 07 - 02

 This module is an fsm which polls the columns of a matrix
keypad
 until it detects a short. It then stops polling until the
short
 is gone.
*/

module scanner(row,clk,reset,state);
 input [2:0] row;
 input clk;
 input reset;
 output [2:0] state;

 reg [2:0] state, nextstate;

 parameter NP = 3'b111;

 parameter S0 = 3'b110;
 parameter S1 = 3'b101;
 parameter S2 = 3'b011;

 always @(posedge clk or posedge reset)
 if (reset) state <= S0;
 else state <= nextstate;

 always @(state or row)
 case (state)
 S0:
 begin
 if (row == NP)
nextstate <= S1;
 else nextstate <=
state;
 end
 S1:
 begin
 if (row == NP)
nextstate <= S2;
 else nextstate <=
state;
 end
 S2:
 begin
 if (row == NP)
nextstate <= S0;
 else nextstate <=
state;
 end
 default: nextstate <= S0;
 endcase

endmodule

/*
 Name: wrtenb
 Author: Carl V. Larsen
 Date: 10 - 07 - 02

 this module is an fsm which generates the enable signal
which is
 used to generate the input interrupt signal for the hc11.
 It goes high for one cycle when a row is shorted.
*/

module wrtenb(clk,reset,row,update);
 input clk;
 input reset;
 input [2:0] row;
 output update;

 parameter S0 = 2'b00;
 parameter S1 = 2'b01;
 parameter S2 = 2'b10;

 reg [1:0] state, nextstate;

 always @(posedge clk or posedge reset)
 if (reset) state <= S0;
 else state <= nextstate;

 always @(state or row)
 case (state)
 S0:
 if (~&row) nextstate <= S1;
 else nextstate <= state;
 S1:
 nextstate <= S2;
 S2:
 if (&row) nextstate <= S0;
 else nextstate <= state;
 default: nextstate <= S0;
 endcase

 assign update = state[0];

endmodule

Feedback Output Module:

/*
 Name: mm output
 Author: Carl V. Larsen
 Date: 10 - 24 - 02

 This module is the top level module for the mastermind
feedback
 output. It uses an 8-bit shift register to store the
feedback
 information recieved from the hc11 and then multiplexes
these
 6 six values to display on 48 LEDs.
*/

module mmoutput(clk,reset,update,hc11val,leds,select);
 input clk;
 input reset;
 input update;
 input [7:0] hc11val;
 output [7:0] leds;
 output [5:0] select;

 wire [7:0] q0, q1, q2, q3, q4, q5;
 wire [3:0] selmux;
 wire [7:0] invleds;

 // shift register stores feedback values. Write is
enabled
 // by an output signal from the hc11.
 flopr8 flop0(update,reset,hc11val,q0);
 flopr8 flop1(update,reset,q0,q1);
 flopr8 flop2(update,reset,q1,q2);
 flopr8 flop3(update,reset,q2,q3);
 flopr8 flop4(update,reset,q3,q4);
 flopr8 flop5(update,reset,q4,q5);

 // slow down the clk to prevent smearing of LED output
 div2k slowclk(clk,reset,sclk);

 // generate signals to cycle through each of the six
outputs
 switcher switgen(sclk,reset,selmux,select);

 // multiplex the outputs
 mux6_8 bigmux(q0,q1,q2,q3,q4,q5,selmux,invleds);

 assign leds = ~invleds;

endmodule

/*
 Name: div2k
 Author: Carl V. Larsen
 Date: 9 - 29 - 02
 Modified: 10 - 24 - 02

 This module is a counter which is used to divide the clock
rate
 by 2048. When used with the FPGA's 1 Mhz clock this
results in a
 slow clock of about 2 kHz

*/

module div2k(clk,reset,y);
 input clk;
 input reset;
 output y;

 parameter S0 = 11'b000_0000_0000;
 parameter SF = 11'b111_1111_1111;

 reg [10:0] state, nextstate;

 always @(posedge clk or posedge reset)
 if (reset) state <= S0;
 else state <= nextstate;

 always @(state)
 if (state == SF) nextstate <= S0;
 else nextstate <= state + 1;

 assign y = state[10];

endmodule

/*
 Name: flopr8
 Author: Carl V. Larsen
 Date: 10 - 24 - 02

 This module is a simple 8-bit asynchronously resettable
flip-flop.
 It is used to store the user feedback for all 6 guesses in
the
 mastermind game.
*/

module flopr8(clk,reset,d,q);
 input clk;
 input reset;
 input [7:0] d;
 output [7:0] q;

 reg [7:0] q;

 always @(posedge clk or posedge reset)
 if (reset) q <= 8'b0;
 else q <= d;
endmodule

/*
 Name: mux6_8
 Author: Carl V. Larsen
 Date: 10 - 24 - 02

 This module is a 8-bit wide 6 input mux.
*/

module mux6_8(d0,d1,d2,d3,d4,d5,s,y);
 input [7:0] d0;
 input [7:0] d1;
 input [7:0] d2;
 input [7:0] d3;
 input [7:0] d4;
 input [7:0] d5;
 input [2:0] s;
 output [7:0] y;

 wire [7:0] A, B, C, AA;

 mux2_8 Amux(d0,d1,s[0],A);
 mux2_8 Bmux(d2,d3,s[0],B);
 mux2_8 Cmux(d4,d5,s[0],C);

 mux2_8 AAmux(A,B,s[1],AA);

 mux2_8 finalmux(AA,C,s[2],y);

endmodule

/*
 Name: mux2_8
 Author: Carl V. Larsen
 Date: 10 - 24 - 02

 This module is an 8-bit wide 2 input mux.
*/

module mux2_8(d0,d1,s,y);
 input [7:0] d0;
 input [7:0] d1;
 input s;
 output [7:0] y;

 assign y = s ? d1 : d0;

endmodule

/*
 Name: switcher
 Author: Carl V. Larsen
 Date: 10 - 24 - 02

 This module has a 3 bit counter which counts from 0 to 5.
 It uses these values to switch between values on the mux
 and calls the priority encoder to generate the select
output
 for each row of leds.
*/

module switcher(clk,reset,selmux,seldisp);
 input clk;
 input reset;
 output [2:0] selmux;
 output [5:0] seldisp;

 wire [5:0] invsel;

 reg [2:0] q;

 always @(posedge clk or posedge reset)
 if (reset) q <= 2'b0;
 else q <= q[2]&q[0] ? 0 : q + 1;

 assign selmux = q;

 d2x6 priority(selmux,invsel);

 assign seldisp = ~invsel;

endmodule

/*
 Name: d2x6
 Author: Carl V. Larsen
 Date: 10 - 24 - 02

 This module is a 6 bit priority encoder.
*/

module d2x6(select,out);
 input [2:0] select;
 output [5:0] out;

 reg [5:0] out;

 always @(select)
 begin
 out = 0;
 case (select)
 0: out[0] = 1;
 1: out[1] = 1;
 2: out[2] = 1;
 3: out[3] = 1;
 4: out[4] = 1;
 5: out[5] = 1;
 default: out[0] = 1;
 endcase
 end

endmodule

