Mastermind: The Game

Final Project Report
December 12, 2002

Carl Larsen and William Berriel



Abstract:

The logic game mastermind involves one player creating a hidden sequence out of
colored pins and another player making alimited number of guesses about what the
sequenceis. The player with the hidden sequence gives the guesser feedback on each
guess, revealing, through the use of black and white pegs, if the guess featured any
pins that exactly matched the color of the hidden sequence and whether the guess had
pins that only matched the color of the hidden sequence. We implemented this game,
with the sequence being a sequence of numbers, using the 68hcl1 to play asthe
player with a hidden sequence. The FPGA receives input through a matrix keypad,
and the system outputs to the player through

amatrix of LCD's for the feedback on the guesses, and an LCD screen that displays
all guesses.



[ ntroduction:

Mastermind is alogic game that involves one player making a hidden
sequence of colored pins and a second player trying to guess the sequence. The
original version featured the second player responding to the first players guesses with
aseries of black and white pins, with the number of pinsin one color representing the
number of pinsin the guess that are the correct pin color in the correct position, and
the other color representing the number of pinsin the guess that are the right color but
in the wrong position. The second player had alimited number of guesses, after which
they would lose. For our project, we implemented a version of mastermind using the
FPGA and 68hcl11. The hidden sequence would be a4 digit sequence of numbers
from zero to five. Theinput is through a nine key matrixed keypad. The system
outputs using both a 16x2 character LCD screen and 6x8 LED matrix. The LCD
displays the current guess as well as previous guesses, and will also reveal the hidden
sequence if the player winsor loses. The LED's are set up in six rows of eight, with
four green and four red per row. Thered LED's represent the correct digit in the
correct position while the green represent the correct digit in the wrong position. The
position of thelit LED's does not correspond in any way to the where in the sequence
the correct digits occur. The 68hcll acts as the player with the hidden sequence,
randomly assigning the digits from zero through five to the positions in the sequence.
It also controls the LCD screen output, and the FPGA output. The FPGA takesin the

input from the keypad, and multiplexes the output to the LED matrix.



New Hardwar e

We used a 16x2 character LCD from the stockroom, which although may
have been used by E155 students before, featured 2 pitfalls that might not have been
documented earlier. ThisLCD is controlled by a standard Hitachi HD4780A00
controller, featuring 14 pins. Controlling the LCD was rather simple, but we had
problems with 2 aspects. The first was that the controller needs to be given negative
voltage for ground. Secondly, the auto startup routine, which runs whenever the LCD
is powered up normally, prevents the controller from being set to 2 line mode. In
order to fix this, we needed to slowly ramp up the +5V rail on the power supply that
powered the LCD. This prevents the auto reset feature from being used by the LCD,
alowing ustoinitialize it manually. We would like to thank Aaron Stratton who
provided much needed assistance by helping us debug the initialization and reset
sequences. In addition, for a complete overview on how to use an LCD display, please
look at reference 3.

Although each part of the LED matrix is readily available, its operation
may not be extremely obvious. It works just like the multiplexed seven-segment
displays from our earlier labs, except individual LED's are used. It is multiplexed in
six rows by eight columns. Each row is powered by atransistor which is controlled by
the FPGA. The FPGA provides a voltage on the opposite side of the LED to mask the
LED's, selecting which columns are lit. Each port has a 3300 resistor wired to it, to
lower the current through the LED's, limiting them to 15mA of current. Since the
LED'srun at a 1/6 duty cycle, it might be possible to lower this a bit to raise the

brightness of the LED's, if they are not sufficiently bright.



Microcontroller Design:

The 68hcl1 controls the game logic and LCD screen. It controls the
LCD screen using modified code from “ The Super Happy Fun Game”, written by Ari
Moradi and Ryan Stuck in E155 in the Fall of 2000. Two functions exist to
communicate to the LCD, WRITEC and WRITED. WRITEC writes abinary
command from accumulator B to the LCD. WRITED writes the ASCII character from
accumulator B to the LCD. Between commands and data, the 68hc11 waits for at least
two miliseconds.

The FPGA raises an XIRQ whenever it has input from the keypad. The
68hcl1 reads the input from Port E. It first determinesif the input is areset, which has
priority and will always reset the game state. If not areset, it determines the state that
the gameisin and acts accordingly. The game has three finite state machines: One
that records whether it has determined a hidden sequence yet, one that stores whether
the user has input afull guess, and one that stores the number of guesses that the user
has made.

If the random sequence has not been fully generated, on akey press that
is not reset the 68hcl1 runs the random subroutine. This subroutine takes the least
eight bits of the timer, which should be sufficiently random since the clock runs at
eight megahertz, and overflows the eight bitsin less than amillisecond. It multiplies
the lower byte of the timer by six, generating a sixteen bit number with avalue from
0x0000 to OxO5FF. The higher byte of the timer is then taken since, it is between zero
and five, which is the range that we need. This method has a close to even distribution
of numbers, with five having a 1.5% advantage. The random subroutine is not run
after the random sequence is generated and the game is not reset.

After determining if it needs ato generate the hidden sequence or not,



the system handles the incoming number. By this point, since it was not areset, the
digit must be between zero and five. Since the input must be valid, it is stored in the
proper place in the guest sequence.

Once we have the compl ete guess sequence input, we need to score the
sequence. Scoring the sequence consists of first determining the exact matches by
comparing each digit in the guess with each digit in the hidden sequence. For each set
of matching digits, the output to the FPGA gets another onein its high nibble. Thus if
none are correct, the high nibble is a 0x0, otherwise it's an OxF. Once it has found the
exact matches, it finds the number of right digitsin the wrong position. To do this,
each digit of the hidden sequence is compared to al four digits of the guessin
succession, until amatch isfound or al four have been compared. If amatch isfound,
the position in the guess is marked, the match is recorded, and the next digit in the
hidden sequence is compared to the guess, skipping over the marked digits. Once it
has compared each digit of the hidden sequence, it subtracts the number of correct
position digits from the number in the incorrect position and outputs the numbers as
one-hot encoded sequence corresponding to the LED's that will be on to the FPGA. It
holds this sequence on port c, raises the enable pin (a[6]) for a short time, shifting the
FPGA once, and then lowers enable. If after scoring, the guessisfound to bea
winning guess, then the game enters the win state, printing the win message on the
LCD, and displaying the hidden sequence. If the six guesses have been used up and
the player has not won, the game enters the lose state and prints the lose message and
the hidden sequence on the LCD. It staysin the winning and losing states until reset is

pressed.



FPGA Design

The FPGA contains two independent modules, a user input module and a user
feedback output module. Schematics of the breadboard circuits, block diagrams, and
verilog code for these modules are in the appendix.

User |nput Module:

The input module is allows the user to input guesses for mastermind
game. It consists of amatrix keypad connected to the FPGA. The columns of the
matrix keypad are polled by the FPGA, via afinite state machine, by sequentially
setting each column low. If abutton is pressed a short will occur in one of the rows of
the keypad when the polling reaches the column of the pressed button. When it
detects ashort (i.e. alow value in the row input) the FPGA will then stop polling the
columns and wait until the button is released and the short is gone. The combination
of low column and low row values caused by the short on the matrix keypad are
decoded on the FPGA to determine the binary value indicated by the particular key
pressed. Our system uses the nine button located in the upper left of the key pad

which are encoded as the following values:

0 1 2
3 4 5
6 7 7

Zero through five are used by the user to provide input for the game. Six, and the two
sevens will be used to control game logic such as alowing the user to reset the game.
The binary value generated by the encoder is stored, until a new button
press is detected, in a 3-bit asynchronously resetable flip-flop with enable. Thisflip-
flop is enabled by an fsm that will output high for one cycle of the slow clock, or

about 1 ms, each time a button is pressed. The following is a state transition diagram



of thisfsm.

&row or reset

>

State 0 ~ (&row) State 1
Y=0 j:! Y=1
reset
&row
or reset
State 2
Y=0
~ (&Tow

Figure 1: Enable Generator State Transition Diagram

Transtions between states depend an whether the row input is all zero or not, in other
words whether the button is being pressed or not. The fsm will stay in state zero until
it detects a press at which point it will move to state 1, generating the enable signal,
and then move to state 2. It will stay in state 2 until the button is release at which
point it returns to state zero and is ready for another press. In all cases reset sends the
fsm back to state zero.

In addition to functioning as the enable for the flip-flop, the output of thisfsm
isinverted, buffered in two 1-bit flip-flop in series, and then used as an interrupt
signal to tell the HC11 that new user input is ready. Buffering through two flip-flops

ensure that the interrupt signal arrives after the new input datais ready.



Feedback Output Module:

The feedback output module is used to display the values calculated by
the HC11 game logic for the number of correct numbersin the correct position and
the number of correct numbers in the incorrect position. These are displayed on six
rows of four red LEDs and four green LEDs. Since these 48 LEDs are far more
numerous than the number of available output pins on the FPGA it is necessary to
multiplex the output from one set of eight output pinsin order to simultaneously drive
al 48 LEDs. This requires us to both provide an output for the individual values of
each LED and an output sequentially enabling one row of LEDs. We achieve this be
having the anode of all eight LEDs of arow connected to the collector of a PNP
transistor which has its emitter tied to 5V. The FPGA then drives the base low or high
in order to enable or disable asingle row. Each LED’s cathode is then tied to the
FPGA, if the FPGA pinislow it sinksthe LED and turnsthe LED on, if thepinis
held high it prevents current from passing through the LED and turnsit off. Therefore
the FPGA can individually turn LEDs on or off by setting each particular output pin
low or high.

The output module stores up to six input values in a 8-bit wide, 6 bit shift
register. The register istriggered to write a new output value when it receives an
“update” signal from the HC11. Thissignal is used to clock the register. The output of
each register is sent to an 8-bit wide for input mux that selects the correct value
among the six options for the individual LED output pins of a given row. The select
signal for the mux is generated by a 3 bit counter which counts from zero to five. The
counter signal is also sent to a 6-bit priority encoder that sets all of the row enable

outputs high except one. This signal, in conjunction with the output of the mux



multiplexes and drives the six rows of eight LEDs. However, in order to prevent any
smearing of the values between rows we slow the clock input of the counter down by
sending the system clock through another counter which divides the clock by 2048.
Thisresultsin aclock rate of about 2 kHz. This should be slow enough to prevent

smearing of the values but fast enough to prevent any perceptible flickering.



Results:

We were successfully able to implement the compl ete mastermind game.
It performed all of the functions of the game that we outlined in the original proposal.
Furthermore we were able to successfully use both the LCD module and multiplexed
LED array for the output and implement interrupt based input exactly as we had
originally envisioned.

The most difficult part of the design was determining the correct wiring and
initialization procedure for the LCD Module. Learning that the module required
negative contrast was quite arevelation. Additionally, the hardware initialization
mode of the module did not quite behave as describe in the datasheet and necessitated
the workaround of aslow power increase in order to get the LCD functional. Other
than that, implementation was relatively straightforward and required only minor

debugging.



Refer ences:

[1] F. Cady, Software and Hardware Engineering. New Y ork: Oxford University
Press, 1997.

[2] Hitachi HD47780 LCD Controller Datashest,
http://semiconductor.hitachi.com/hd44780.pdf

[3]Ari Moradi and Ryan Stuck, “ The Super Happy Fun Game: A Text-Based
Adventure Game.”

http://odin.ac.hmc.edu/~harris/class/e155/proj ects00/superhappyfungame. pdf

PartsList:

Part Source

Hitachi LM016H LCD Module Stock Room




Appendix A: Schematics

Overall System

LCD Display

RS RW E

DATA

8

PORTA[S] Al4] AL3] F'CI)RTE;U':D]

Motorola 68het1

XIRGQ PORTE[2:0] PORTA[6] PORTC[7:0]
+5v / x
1k I 2
' =
XIRQ Update b3
3| 8] T
-
— B |
PE7  [70:68] P10 7784l pagst, P1-8
56:60]
LED Matrix
Xilinx Spartan FPGA [24:29] SELECT >
[7:9] COLUMN I\
Matrix Keypad
ROW

[18:20]




FPGA

LED QUTPUT System

P1-8 Sell Sel2 Sel3 Seld Sel5 Selé
e BEL
8 LED Module
> P1-P8
B
SEL
LED Module
P1-P8
8
SEL
LED Module
> P1-P§
8
SEL
LED Module
\ P1-P8
8
SEL
LED Module
> P1-P8
8
SEL
\ LED Module
/ P1-P8




~ 4 h +
P1 P2 P3 Pya P5 P& PT




Appendix B: FPGA Block Diagrams

Input Module Block Diagram

Clock
Divider ¢ l
Clock FSM
T Sow ner Matrix
FSM
Reset P o Keypad \ 3—Bi}t
Row || > % Decoder # Register ’ Number
Cloci LR&
Enable
Signal 2-Bit Shift
Enabl i
FSM K Register 1 xR0
> Column
Output Module Block Diagram
3-Bit
Clock Counter
o k_; Divider Slow Clock
ocl ESM .
6-Bit
Priority
Sel
Y Encoder => ect
8-Bit
Update—T—»| Shift Register
8-Bit
Reset — P 6x8
MUX Inverter

Feedback
Output

=> LEDS




Appendix C: Assembly Code
* AUTHORS: Wl liam Berriel and Carl Larsen
* Purpose: The Code for the 68hcll part of the Mastermnm nd ganme which
is the final project for HMC E155
Dat e : 12/9/02
* Email : wberriel @nt. edu

* Useful ports and such, as well as nasks for the ports when

necessary.

PORTA EQU $1000

ANMSK EQU %91000000 ; masks used when pulsing bit 6 of
PORTA

AMSKNOT EQU 240111111

PORTB EQU $1004

PORTC EQU $1003 ;. PORTC and control

regi ster DDRC

DDRC EQU $1007 ; Set bits high that are
out puts

PORTE EQU $100A

EMBK EQU %90000111 ; Mask to get the lower 3 bits of
porte

TCNTL EQU $100F ; The lower byte of the tiner.
GUESS EQU $0001 ; Stores the nunber of Guesses that
have been nade.

ENDSTAT EQU $0006 ; Whether we ae in the ending state.
Gl NE EQU $03 ; Constant storing Guesses per |ine,
here it's 3

GGAME EQU $06 ; Constant storing Guesses per Gane,
here it's 6

FI RST EQU $0015 ; Location of the first, second,
third, and fourth

SECOND EQU $0016 ; hidden digits respectively

THI RD EQU $0017

FOURTH EQU $0018

STATE EQU $0010 ; STATE is the address of the upper byte

of state (not used)

STATEL EQU $0011 ; STATEL is the address of the | ower
byte of the state,
* it determnes what digit in a
sequence i s being input.

STATE2 EQU $0012 ;. STATE2 stores whether we have a
random nunber yet.

* Inl - In4 store the digits fromthe guess.
I N1 EQU $0019



I N2
I N3
I N4

EQU
EQU
EQU

| RQVEC EQU$00F1

ALCC
G.CC
FDBCK
FDBCKT
FDBCKB
VBSB1
VBB2

NUM

EQU $15
EQU $19
EQU $03
EQU $04
EQU $05

$0020
$0021
$0022

; The address of the Xl RQ vector

EQU 940000000
EQU %©0001000

EQU

to be output.

$ddoo

* X F X X

* LCD code was nodified fromAri

b5

* % F *

o
a
oIl

E

* Conmands

CLEAR
HOMVE
ENTRY
DI SPON
FUNCT
INIT

DI SPOFF
DDRLN2

* Time delay to allow for
* HTIME is in mlliseconds,

QUTPUT Masks
RS Register Select
R'WRead/ Wite

enabl e

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

* necessary.

HTI VE

DTl VE

* Start the game by setting up the paraneters,

EQU
EQU

ORG
JMP

up interrupts
* for the XIRQ Then Just busy wait,

ORG
TPA

990100000
990101000
290000000
290001000

%©0000001
290000010
290000110
%90001111
990111000
290110000
290001000
941000000

$05

$40

#| RQVEC
| RQ SR

$D100

proper

Tenporary Answer
Tenporary Quess Location
Feedback Qutput Location

in buffalo.

Locati on

Temporary CVCP CQutput Location
Tenporary CVIP Qutput Location

The Address of the Nunber

Moodi

$01
$02
$06
$0c
$38
$30
$08
$CO

interfacing with the LCD
and are nmuch sl ower than

and Ryan Stuck,

the ports,

Strings

el55 2000.

and setting

interrupt driven code.

Transfer

CCR to A



ANDA #940111111 To unmask the XIRQ need
to reset bit 6

TAP Transfer A to CCR

JSR RESETGAVE

LDAA #SFF Set PORTC as OUTPUT

STAA DDRC

JSR I NI TLCD Initiate the LCD

CLI Enabl e Interrupts
BUSYW BRA BUSYW
* RESETGAME will initialize the gane to a beginning state where it
can begin
* playing the gamne.
RESETGAME

LDAA #FI RST

STAA STATEL ; STATEL stores which digit is being
i nput

CLRA

STAA STATE2

STAA STATE

STAA GUESS

STAA ENDSTAT

RTS

* Random Sinply takes the |lower 8 bits of the tine clock, and

mul tiplies by 6.

* The hi gher byte should be a nunber between 0 and 6.

RANDOM
LDAA
LDAB
MUL
LDX

STAA
RTS

| RQ SR

TCNTL
#06

STATE

0, X

* ON Input, need to see if we're started (have a seed yet) if not, we
* seed, as long as not a reset,

LDAA PORTE
ANDA #EMSK
lower 3 bits are checked.
CVPA #3$05
BLE NORESET
and return.
JWP RESET
away for 8 bit break
NORESET
LDAB ENDSTAT
CVvPB #30
accept reset.
BNE RETURN
LDX STATE

’

then we handle it.

Cl ean up input, nmake sure only

are we not at reset?

On reset,

sinply reset state fully

woul d use BGI, but reset is too far

Are we in an endstate? If so, only



STAA 4, X ; Store nunber as guessed input.

LDAA STATE2

CVPA #30 ; state2 = 0 neans we need random
nunber s

BNE HAVESEQ ; ot herw se we don't

JSR RANDOM
HAVESEQ

LDAB PORTE ; To get the character to print, need
to get input nunber

ANDB #EMSK

LDX #NUM ; and add it to the starting point
for where the nunbers

ABX ; are stored.

LDAB 0, x ; That should give us the ascii value
for the nunber.

JSR WRI TED ;(Wite the character to the screen).

I NC STATEL ; nove to the next input state

LDAA STATEL

CVPA #1 N1 ; If we're not at the 4th input nunber,
return

BLT RETURN ; otherw se handle it.
STARTED

LDAB SPACE ; Upon recieving 4 input digits,
wite a space to the screen.

JSR VRl TED

LDAB #HTI ME

JSR | DELAY

JSR SCORE ; Score the inputs.

LDAA FDBCK ; Load the feedback and print it to
the FPGA

STAA PORTC ; Qutput the DATA output first

LDAA PORTA ; Then output the enable, being sure
to preserve the state of A

ORAA #AMSK ; Since we only care about bit 6,
whereas the LCD runs off of bits

STAA PORTA ; 5,4, and 3.

LDAA PORTA

ANDA #ANMSKNOT

STAA PORTA . Raise the enable for a short tine,
then lower it.

LDAA #FI RST ; Point the State back at the first
digit for the input guess

STAA STATEL

LDAA #1

STAA STATE2

* Now that we have output everything see if we need to go to a win
state.

LDAA FDBCK

CVPA #3$F0 ;. Feeback of #$FO neans we have 4
right in the right place

BNE NOW N

JSR W N

BRA RETURN



NOW N
I NC
guesses
LDAA
CVPA
BNE
LDAB
JSR
LDAB
JSR
LDAB
JSR

SAMELI NE
CVPA
BNE
JSR

RETURN
RTI

GUESS o If not win, increnent the nunber of

GUESS

#G.I NE ; See if we need a carriage return
SAMEL| NE

#HTI ME

| DELAY

#DDRLN2

WRI TEC

#HTI ME

| DELAY

#GGAME : See if we are in a | ose state
RETURN
LOSE

* Upon Reset, clear the LCD, reset the gane and return.

RESET
LDAB
JSR
LDAA
JSR

LDAB
JSR
LDAA
JSR

JSR
BRA

* Upon wi nni ng,

Wi nmessage.

W N
LDAA
STAA
JSR
LDX

W NLOOP
LDAB
JSR
LDAA
JSR

I NX
CVPX
BNE
JSR

RTS

#CLEAR
V\RI TEC
#HTI MVE
| DELAY

#HOVE

VRl TEC
#HTI MVE
| DELAY

RESETGAME
RETURN

enter winning state, clear the |cd and out put

#$01
ENDSTAT
CLEARHQOVE
#W NVESS

0, X

V\RI TED
#HTI VE
| DELAY

#LOSMESS
W NLOOP

HI DDENPRI NT



* Upon a | oss,
| osi ng message

LOSE

LOSELOOP

LDAA
STAA
JSR
LDX

LDAB
JSR
LDAA
JSR

I NX
CVPX
BNE
JSR

RTS

Enter the ending state,

#301
ENDSTAT
CLEARHQOVE
#LOSMESS

0, X

VARl TED
#HTI MVE
| DELAY

#ENDPT
LOSELOCP

HI DDENPRI NT

* Print the hidden sequence.
HI DDENPRI NT

PRI NTLOOP

LDAB
JSR
LDAA
JSR

LDAB
LDX
ABX
LDAB
JSR
LDAA
JSR

LDAB
LDX
ABX
LDAB
JSR
LDAA
JSR

LDAB
LDX
ABX
LDAB
JSR
LDAA
JSR

LDAB
LDX
ABX
LDAB
JSR
LDAA

#DDRLN2
V\RI TEC
#HTI MVE
| DELAY

FI RST
#NUM

0, X

VARl TED
#HTI VE
| DELAY

SECOND
#NUM

0, X

V\RI TED
#HTI VE
| DELAY

THI RD
#NUM

0, X

VARl TED
#HTI MVE
| DELAY

FOURTH
#NUM

0, X
V\RI TED
#HTI VE

clear the LCD and output the



* Send the clear and

CLEARHOVE

SCORE

CvCP

NOVATCH

JSR

RTS

| DELAY

home commands.

LDAB #CLEAR
JSR WRI TEC
LDAA #HTI ME
JSR | DELAY
LDAB #HOVE
JSR WRI TEC
LDAA #HTI ME
JSR | DELAY
RTS
* Check Correct Value Correct Position
LDAB #$00
LDX #ALOC
LDY #FDBCKT
LDAA 0, X * Check first two nunbers
CVPA 4, X
BNE NQOVATCH
LSLB * |f a match Shift left
| NCB * and i ncrenent
I NX * Move to next nunber
CPX #GLCC
BNE CVCP * If not 4th no. |oop
STAB FDBCKT * Store result
BEQ DNCVCP* |f zero result don't shift

SHI FT1

* Check Correct Value Incorrect

DNCVCP

CviP1

Cvl P2

CvI P3

BRSET 0, Y MsB1 DNCVCP

LSL FDBCKT* Loop till
BRA SHI FT1

LDAB #$00
LDX #ALOC
LDY #G.CC

LDAA O, X

CWPA 0, Y

BNE CVI P2
LSLB

I NCB

LDAA #$FF
STAA 0, Y

BRA DNCHK

CWPA 1,Y

BNE CVI P3
LSLB

I NCB

LDAA #$FF
STAA 1,Y

BRA DNCHK

CWPA 2, Y

output is shifted
* conpletely to the M5 Bits

Posi tion

* Check answer no.
* vs first guess no.

* | f match shift and increnent
* Mark guess no. as used

* Check answer no.
* vs second guess no

* |f match shift and increnent

* Mark guess no. as used

* Check answer no.



CVI P4

DNCHK

SHI FT2

* Cal cul ate Final

DNCVI P

SHI FT3

DNSH3

out put

* Wite Data that's i

VRI TED

BNE CVIP4 * vs third guess no.

LSLB

| NCB * |f match shift and increnent
LDAA #$FF

STAA 2, Y * Mark guess no. as used

BRA DNCHK

CMPA 3,Y * Check answer no.

BNE DNCHK * vs fourth guess no.

LSLB

| NCB * | f match shift and increnent
LDAA #S$FF

STAA 3,Y * Mark guess no. as used

I NX

CPX #G.OC * If not all answer nunmbers checked

BNE CVIP1 * | oop back and conpare vs. guess again
STAB FDBCKB * Store result

BEQ DNCVIP* |f zero result skip shift

LDY #FDBCKB

BRSET 0,Y MsSB1 DNCVI P

LSL FDBCKB* Loop till

output is shifted

BRA SHI FT2* conpletely to the M5 Bits

LDAA FDBCKB

Cut put

* Subtract CVCP value from CVIP val ue

SUBA FDBCKT

LSRA
LSRA
LSRA
LSRA

* Shift new CVIP to Lower Nibble

STAA FDBCKB

BEQ DNSH3

LDY #FDBCKB
BRSET 0, Y MsB2 DNSH3

LSL FDBCKB *
BRA SHI FT3 * of

Shift CVIP to M5 Bits
| ower nibbl e

LDAA FDBCKT

ORAA FDBCKB

STAA FDBCK*

RTS

LDAA
STAA
JSR

LDAA
STAA
JSR

STAB
LDAA
STAA
RTS

* O CVCP and CVIP to get final

Store final Qutput

n accunul ator b

#WRD
PORTA
STALL
#WRDEN
PORTA
STALL
PORTB
#WRD
PORTA

* Wite Command in accunulator b



VRI TEC

LDAA #WRC
STAA PORTA
JSR STALL
LDAA #WRCEN
STAA PORTA
JSR STALL
STAB PORTB
LDAA #WRC
STAA PORTA
RTS

* Stall Function

STALL
LDY #$0100

LOOP DEY
CPY #$0000
BNE LOOP
RTS

* DELAY Function, to delay for 1 ns

DELAY
LDY #$01E8 ; 1000 | oops
MORE DEY
NOP
NOP
NOP
NOP
CPY #$0000
BNE MORE ;
RTS

WOONNNDN D

* |Instruction Delay, delays for nunmber of seconds in A

| DELAY
DECA
JSR DELAY
CVPA #3$00
BNE | DELAY
RTS

* Initialize the LCD, hardware initialize the LCDto 2 |lines
bl i nki ng cursor,

* 8 bit input, and the cursor beginning in the honme position.
I NI TLCD

LDAB #NT

JSR V\RI TEC
LDAA #HTI MVE
JSR | DELAY
LDAB #NT

JSR VRl TEC
LDAA #HTI MVE
JSR | DELAY
LDAB #NT

JSR VRl TEC
LDAA #HTI MVE

JSR | DELAY



SPACE
W NMVESS
LOSMESS
ENDPT

LDAB
JSR
LDAA
JSR

LDAB
JSR
LDAA
JSR

LDAB
JSR
LDAA
JSR

LDAB
JSR
LDAA
JSR

LDAB
JSR
LDAA
JSR

RTS

FCC
FCC
FCC
FCC
FCC
FCC
FCC
FCC
FCC
FCC

#FUNCT
VRl TEC
#HTI MVE
| DELAY

#DI SPCFF
VRI TEC
#HTI MVE
| DELAY

#CLEAR
VRI TEC
#HTI VE
| DELAY

#ENTRY
VRl TEC
#HTI VE
| DELAY

#DI SPON
VRl TEC
#HTI MVE
| DELAY

NUM

e

wqn

"o

" g

"

" g

"YOU W N'
"YOU LOSE"
"



Appendix D: Verilog
/*

Nanme: mastm nd
Aut hor: Carl V. Larsen
Date: 10 - 24 - 02

This nodule is the top | evel of the FPGA portion of the
masterm nd gane. It conbi nes the keypad input and mnul tipl exed
f eedback output portions into one nbdul e and provi des the correct
reset behavious for the output nodul e.
*/

nmodul e mast mi nd(cl k, reset, updat e, hcllval, row, | eds, sel ect, col um,
sO,intr);
i nput clk;
i nput reset;
i nput update;
i nput [7:0] hcllval;
i nput [2:0] row,
output [7:0] Ieds;
out put [5:0] select;
out put [2:0] col um;
out put [2:0] sO;
output intr;

W re outreset;
assign outreset = s0[2] &O0[1];
mmi nput i npart(clk, reset, row, colum, s0,intr);

nmout put
out part (cl k, outreset, updat e, hcllval, | eds, sel ect);

endnodul e

User | nput Module:

/*

Name: mm nput

Aut hor: Carl V. Larsen

Date: 10 - 24 - 02

This nodule is the top | evel nodule for the user input of
t he

masterm nd ganme. It decodes matrix keypad input into
bi nary and

generates a interrupt signal each time a button is
pressed.
*/

nodul e mmi nput (cl k, reset, row, col um, sO,intr);
i nput clk;
i nput reset;
i nput [2:0] row
out put [2:0] col um;
out put [2:0] sO;
output intr;



wre u;
Wi re update;
W re upnot;

wire [2:0] numt;
wire [2:0] sO
wire sclk;
assi gn upnot = ~updat e;

/! slow down internal clock
di v2k slwel k(clk, reset, scl k);

/'l scan for input
scanner scanfsm(row, scl k, reset, col um);

/'l generate hcll input interrupt
wrtenb enabl er(scl k, reset, row, updat e) ;

/'l decode matrix input to binary
nunber nundecd(row, col um, nunt) ;

/1 store nobst recent input
flipflop regO(sclk,reset, update, numt, s0);

/1 store the input interrupt
flopr intrreg(sclk,reset,upnot,intr);

endnodul e
/*
Nanme: flipflop
Aut hor: Carl V. Larsen
Date: 10 - 07 - 02
This nodule is a sinple 3-bit asynchronously resettabl e
flip-flop
with enable. It is used to store the columm output for the
keypad.
*/
nmodul e flipflop(clk,reset,en,d,q);
i nput clk;
i nput reset;
i nput en;
i nput [2:0] d;

output [2:0] q;
reg [2:0] q;
al ways @ posedge cl k or posedge reset)
if (reset) q <= 3'b0
else if (en) q <= d;

endnodul e



/*
Nare: fl opr
Aut hor: Carl V. Larsen
Date: 10 - 24 - 02

This nodule is a sinple 1-bit asynchronously resettabl e

flip-flop.
It is used to buffer the input interrupt.
*/
nodul e flopr(clk,reset,d,q);
i nput clk;
i nput reset;
i nput d;
out put q;
reg d;

al wvays @ posedge cl k or posedge reset)
if(reset) g <= 0;
el se q <= d;

endnodul e

/*
Nanme: nunber
Aut hor: Carl V. Larsen
Date: 10 - 24 - 02

this nodul e decodes values froma nmatrix keypad into a 4-

bi t
bi nary nunber according to the foll owi ng arrangenent.
012
345
6 77
*/

nmodul e nunber (r ow, col utm, num ;
i nput [2:0] row
i nput [2:0] col um,;
output [2:0] num

assign nunf 2] = ~row 1] &-colum[1] | ~row 1] &-col um| 2]
| ~row 2] &-colum[0] | ~row 2] &-colum[1] | ~row 2] &-colum?2];

assign nunf{1] = ~row 0] &-colum[2] |
~row 1] &-colum[ 0] | ~row 2] &-colum[O0] | ~rowf 2] &-colum[1] |
~row 2] &-col umm|[ 2] ;

assign nunf 0] = ~row 0] &-col um[1] |

~row 1] &-colum[0] | ~row 1] &-colum[2] | ~rowf 2] &-col um|1] |
~rowf 2] &-col umm[ 2] ;

endnodul e



/*
Nanme: scanner
Aut hor: Carl V. Larsen
Date: 10 - 07 - 02

This nodule is an fsmwhich polls the colums of a matrix

keypad

until it detects a short. It then stops polling until the
short

i s gone.
*/

nodul e scanner (row, cl k, reset, state);
i nput [2:0] row,
i nput cl k;
i nput reset;
output [2:0] state;

reg [2:0] state, nextstate;

paraneter NP = 3'bl11;
paraneter SO = 3'bl10;
paranmeter S1 = 3'bl101;
paraneter S2 = 3' b011;

al ways @ posedge cl k or posedge reset)
if (reset) state <= S0;
el se state <= nextstate;

al ways @state or row)
case (state)

SO:
begi n
if (row == NP)
nextstate <= SI1;
el se nextstate <=
st at e;
end
S1:
begi n
if (row == NP)
nextstate <= S2;
el se nextstate <=
st at e;
end
S2:
begi n
if (row == NP)
nextstate <= S0O;
el se nextstate <=
st at e;
end

default: nextstate <= S0;
endcase

endnodul e



/*
Nanme: wrtenb
Aut hor: Carl V. Larsen
Date: 10 - 07 - 02

this nodule is an fsm which generates the enabl e signal
which is
used to generate the input interrupt signal for the hcll.
It goes high for one cycle when a row is shorted.
*/

nmodul e wrtenb(clk, reset, row, update);
i nput clk;
i nput reset;
i nput [2:0] row
out put updat e;

paraneter SO = 2' b0O0;
paraneter S1 = 2'b01;
paraneter S2 = 2'bl0;

reg [1: 0] state, nextstate;

al wvays @ posedge cl k or posedge reset)
if (reset) state <= S0;
el se state <= nextstate;

al ways @state or row)
case (state)

SO:
if (~& ow) nextstate <= Si;
el se nextstate <= state;

S1:

nextstate <= S2;

S2.
if (& ow) nextstate <= SO;
el se nextstate <= state;

default: nextstate <= S0;

endcase

assign update = state[0];

endnodul e



Feedback Output Module:

/*
Name: mm out put
Aut hor: Carl V. Larsen
Date: 10 - 24 - 02
This nodule is the top | evel nodule for the masterm nd
f eedback
output. It uses an 8-bit shift register to store the
f eedback
informati on recieved fromthe hcll and then multipl exes
t hese
6 six values to display on 48 LEDs.
*/
nmodul e mmout put (cl k, reset, updat e, hcllval, | eds, sel ect);
i nput clk;
i nput reset;

i nput update
i nput [7:0] hcllval
output [7:0] Ieds;
out put [5:0] select;

wire [7:0] qO0, ql1, g2, g3, g4, g5
wire [3:0] selnux;
wire [7:0] invleds

/'l shift register stores feedback values. Wite is
enabl ed

/1l by an output signal fromthe hcll

flopr8 flopO(update,reset, hcllval, q0);

flopr8 flopl(update,reset, q0,ql);

flopr8 flop2(update,reset, ql, q2);

flopr8 flop3(update,reset, g2, q3);

flopr8 flop4(update,reset, g3, q4);

flopr8 flop5(update,reset, g4, q5);

/1 slow down the clk to prevent snearing of LED out put
di v2k sl owcl k(cl k, reset, scl k) ;

/'l generate signals to cycle through each of the six
out put s
switcher switgen(sclk, reset, sel nux, sel ect);

/1 multiplex the outputs
mux6_8 bi gnux(q0, q1, g2, g3, g4, g5, sel nux, i nvl eds) ;

assign |leds = ~invl eds;

endnodul e



/*
Nane: div2k
Aut hor: Carl V. Larsen
Date: 9 - 29 - 02
Modified: 10 - 24 - 02

This nmodule is a counter which is used to divide the clock
rate

by 2048. Wen used with the FPGA's 1 Mz clock this
results in a

sl ow cl ock of about 2 kHz

*/
nmodul e di v2k(cl k, reset,vy);
i nput clk;
i nput reset;
out put vy;
paraneter SO = 11' b0O00_0000_0000;
paraneter SF = 11'b111 1111 1111;
reg [10: 0] state, nextstate;
al ways @ posedge cl k or posedge reset)
if (reset) state <= S0;
el se state <= nextstate;
al ways @ st ate)
if (state == SF) nextstate <= SO;
el se nextstate <= state + 1,
assign y = state[ 10];
endnodul e
/*
Nane: flopr8
Aut hor: Carl V. Larsen
Date: 10 - 24 - 02
This nodule is a sinple 8-bit asynchronously resettable
flip-flop.
It is used to store the user feedback for all 6 guesses in
t he
mast er mi nd gare.
*
/
nmodul e flopr8(clk,reset,d,q);
i nput cl k;
i nput reset;
input [7:0] d;

output [7:0] q;
reg [7:0] q;

al ways @ posedge cl k or posedge reset)
if (reset) g <= 8'b0;
el se q <= d;
endnodul e



/*
Name: nmux6_8

Aut hor: Carl V. Larsen

Date: 10 - 24 - 02

This nodule is a 8-bit wi de 6 input mux.

*/

nodul e mux6_8(do0, d1, d2, d3, d4, d5, s, Vy);

input [7:0] dO
input [7:0] di1
i nput [7:0] dz;
input [7:0] d3
i nput [7:0] d4;
input [7:0] d5
i nput [2:0] s;
output [7:0] v;

wire [7:0] A B, C AA

mux2_8 Anux(dO, d1,s[O0],A);
mux2_8 Brux(d2,d3,s[0], B);
mux2_8 Cmux(d4, d5,s[0],O);

mux2_8 AAmux(A, B, s[1], AA);

mux2_8 final mux(AA C s[2],y);

endnodul e

/*
Nanme: nmux2_8

Aut hor: Carl V. Larsen

Date: 10 - 24 - 02

This nodule is an 8-bit wide 2 input

*/

nmodul e mux2_8(d0, d1, s, vy);
i nput [7:0] doO;
i nput [7:0] di;
i nput s;
output [7:0] v;

assign y

endnodul e

=s ? dl :

do;



/*
Nanme: switcher
Aut hor: Carl V. Larsen
Date: 10 - 24 - 02

This nmodul e has a 3 bit counter which counts fromO to 5.
It uses these values to switch between val ues on the nux
and calls the priority encoder to generate the sel ect

out put
for each row of |eds.
*/
nodul e swi tcher (cl k, reset, sel nux, sel di sp);
i nput clk;
i nput reset;

out put [2:0] sel nmux;
out put [5:0] seldisp;

wire [5:0] invsel;
reg [2:0] q;
al wvays @ posedge cl k or posedge reset)
if (reset) g <= 2'bO0;
else q <= q[2]&q[0] ? O : g + 1;
assign selmux = q;
d2x6 priority(sel nux,invsel);

assign seldisp = ~invsel;

endnodul e



/*

*/

Nane: d2x6
Aut hor: Carl
Date: 10 - 24 - 02

V. Larsen

This nodule is a 6 bit priority encoder.

nodul e d2x6(sel ect, out);
i nput [2:0] select;

out put [5:0] out;

endnodul e

reg [5:0] out;

al ways @ sel ect)

begi n

end

out = 0;

case (sel ect

endcase

)

0:

2
3.
4:
5
d

ef

out [ 0]
out[ 1]
out[ 2]
out [ 3]
out [ 4]
out [ 5]
aul t: out

1
1
1
1
1
1
[

b] =1



