

Line Tracing Robot (Name: TBD)

Final Project Report
December 12, 2002

E155 – Microprocessor Design

Morgan Cross
Raymond Fong

Abstract:

TBD is a robot that follows a path composed of black electric tape against a white
background. While line following path robots have been designed before, TBD uses a
new and robust algorithm that allows it to turn up to 180º and work even in a non-closed
path. The robot is a self-powered individual entity unattached to other objects. The
mobilizing units on TBD are two modified RC servos. The algorithm is implemented in
an HC908 microcontroller which takes inputs from seven strategically placed
phototransistors and sends appropriate instructions to the RC servos. TBD is able to stay
on the path but is not fully capable of continuing in the same direction in certain
situations.

 1

Introduction

 The team designed a robot (TBD) capable of following a pre-set path composed

of electric tape on a relatively white ground. The robot is an individual entity not

attached to any other objects. It contains its own power source and is controlled by an

HC908 microcontroller that is mounted onboard. The robot, once powered on, would run

for infinitely long (or until it is turned off or its onboard power source is depleted) and is

capable of turning up to 180 degrees so that it is able to return along the path when it

reaches the end of a line.

Algorithm

 In order to follow the preset path, TBD is able to detect the path and determine

which direction the path is headed. This is accomplished with the use of seven reflective

infrared sensors and by ensuring that the path is composed of black electric tape against a

relatively white ground. The sensors take advantage of the fact that the tape has a

different reflectivity than the white background and depending on the signals the sensors

get back, TBD is able to tell which of the sensors are directly above the path. The

sensors are strategically placed on the base of the robot (Fig. 1) such that sensor D will

always be over the path (this will be an axiom which the robot will function on). TBD

scans sensors B and C frequently to see if either one has detected the path, if so, it stores

the appropriate values that will command the robot to spin in the direction of the sensor

into four memory locations. The robot moves forward while sensors D and G detect the

path, however, as soon as G does not detect the path, it goes into spin mode. In the spin

mode, it reads the four memory locations and determines which way to spin. It will

continue to spin until A detects the path.

 In an ideal world, since D is positioned in the halfway point between the wheels

on the axis and the servos are told to rotate at the same speed, TBD should spin about

sensor D. However, this is not a perfect world and this is why sensors E and F are in

place. E and F serve only to correct TBD’s position and attempt to realign it such that D

is on the path again. This is done so by checking E and F whenever D does not detect the

tape; if E senses the tape, TBD turns right (stop the right servo while making the left

servo rotate in a forward direction); if F senses the tape, TBD turns left.

 2

Figure 1: Infrared Phototransistor Layout

As mentioned before, TBD operates on the axiom that D needs to be kept over the

path; this implies that no matter what it is doing, it always check D to make sure this is

true. If TBD is in a spin and D somehow gets off track, it stops the spin, but keep

checking to see if B and C ever detect that path and if so, write the corresponding values

to the memory locations, and make the appropriate turn. Once D is back on track, it goes

back into the spin mode, reading from the four memory locations. The values in these

memory locations might have been changed depending on whether in the turning process

B and C ever sense the path.

 This algorithm is more easily understood with the aid of the finite state machine

diagram found in Appendix A.

 3

New Hardware

Power Supply

 The power that is driving TBD is a battery pack containing eight AA batteries for

a total of 12V and a sufficient amount of current to run our system. Since the

components used in this project require 5V, a voltage regulator is used. The purpose of a

voltage regulator is to take a voltage higher than the desired output voltage and output the

desired voltage. In this case, the regulator takes in 12V and outputs 5V. The advantage

of this process is that while voltage is kept to 5V, the available current is fairly high (as

compared to a standard 9V battery). The chosen regulator for this project is the LM7805

(http://www.national.com/pf/LM/LM7805C.html).

HC908

 The HC908 microcontroller has sixteen pins – one ground pin, one power pin, one

IRQ pin, and thirteen input/output pins. The key features of this microcontroller relevant

to the project are the fact that it can output two independent pulse-width modulated

(PWM) signals and that it may take in seven inputs.

 While the operation of the HC908 is similar to the HC11 microcontroller with

which the team is familiar with, there are some subtle differences between their

instruction sets. The team studied these differences carefully with the aid of the on-line

manual on Motorola’s website• and adjusted accordingly.

RC Servo

 Two Futaba S-148 RC servos (obtainable from such hobby stores as Pegasus and

Tower Hobbies, http://www.towerhobbies.com) are selected to act as the motors that

mobilize TBD. Whereas a conventional motor takes in only power and ground to

operate, the servos need an additional PWM input signal. The signal dictates the

direction and speed of rotation of the servo by adjusting the pulse width. For example, a

PWM signal whose period is 20 ms and pulse width is 1.5 ms makes the servo hold its

• Data sheet: http://e-www.motorola.com/brdata/PDFDB/docs/MC68HC908KX8.pdf
and instruction set: http://e-www.motorola.com/brdata/PDFDB/docs/MC68HC908QY4SM.pdf

 4

position, a pulse width of 2 ms makes it rotate clockwise, and a pulse width of 1 ms

makes it rotate counter-clockwise.

 Conventional RC servos such as the ones used are limited in their range of

motion, typically 0 ~ 210 degrees depending on the manufacturer. In order for these

servos to act as motors, they must be capable of continuous rotation; this is accomplished

by “hacking” the servos. The instruction for doing this is well documented and can be

found on such websites as http://www.rdrop.com/~marvin/explore/servhack.htm.

Essentially, this process removes the mechanism that halts the servos at the designated

degree of rotation.

When selecting servos to use, one must be careful to select ones which are

capable of being dissembled without ruining the servos. Some servos, especially ones

involving ball bearings, have a plastic covering over some of the internal screws,

therefore preventing one from taking out the electrical parts. The Futaba S-148 is an

ideal servo to hack and is the one used in the presented website. Some pre-hacked servos

may also be purchased from Parallax (http://www.parallax.com).

Phototransistor Sensors

 The phototransistor sensor chosen for this project is the QRB1114 available from

Digi-Key. It has four pins and how they are to be hooked up are diagramed in Figure 3.

The phototransistors implement an infrared LED that shines down onto an object and a

phototransistor configured to accept incoming light from an object. According to the

amount of light reflected back to phototransistor, it outputs a signal that varies from zero

to five volts.

200 47k

sensor
1 2 3 4

Vcc

GND
Signal

Figure 2: Phototransistor Sensor and setup

 5

Both the LED and the phototransistor are angled inward so that the light reflects of the

object directly towards the phototransistor when the object is placed about an inch away.

Comparators

 The purpose of comparators is to compare an input voltage with a set reference

voltage and depending on which is greater, output either 5V or 0.1V. This chip is ideal

for use with the phototransistors since their output varies anywhere from 0 to 5V. By

selecting an appropriate reference voltage (which is created through implementing the

voltage divider rule and using the available 5V power source and two resistors), all

values output by the phototransistor lower than this voltage is translated to 0.1V before

being sent to the HC908 and all values higher is translated to 5V. This ensures that the

HC908 is getting clean high or low signals. In this project, the reference voltage is set at

3.2V and is obtained by using an 820? and a 470? resistor.

 6

Schematics
 Many of the components required additional circuitry in order to function

properly.

Figure 3: Schematic

 7

 Voltage levels produced from the IR photo sensors are passed to the comparators

which translate that voltage into a stable logic HI or LOW voltage according the

reference voltage. The output signal from the comparators then goes to the

microcontroller running the algorithm. According to the algorithm, the microcontroller

sends out proper pulse width modulated signals to the RC servos.

The IR photo sensors require a resistor in series with the emitter diode in order to

limit the incoming current. A pull-up resistor is also needed on the signal line in order to

provide the proper output level referenced to Vcc. The comparator chips require a

reference voltage in order to determine a HI or LOW logic level. This is fabricated with

the implementation of a voltage divider to drop the operating voltage of five volts down

to the required 3.2 volts. The phototransistors produce outputs with voltage levels

between 2.25V and 5V. Choosing the reference voltage was through trial and error

because the output voltages varied between phototransistors. A ten-microfarad capacitor

is placed between the Vcc and ground pins in order to prevent any drops in voltage when

the chip demanded more current, ensuring clean PWM signals. A switch is implemented

as a convenience to the users. A power LED is used to determine whether the power is

on or not to reduce the risk of mistaking the power to be off when attempting to debug.

 8

Microcontroller Design
 The microcontroller code is divided into five main sections: the declaration of the

constants, initializing the PWM channels, the main program, and the subroutines all

resemble the setup for the HC11 code, and the section that instructs the chip what to do

upon power up is new to the HC908.

In setting up the chip upon power up, the program needs to know where to start

reading the memory location. "Org ROMStart " declares that all code from that point on

will be placed at the memory location declared by ROMStart. “Main_Init:” is a label so

that the program knows where to start reading upon power up. The RSP (reset stack

pointer) command that follows will be at memory location ROMStart.

"Dummy_ISR" is a routine that does nothing. It is simply there so that on any

interrupt, the CPU will go to this dummy routine instead of some undefined location in

memory. The location that the PC goes to after an interrupt is defined by the vector table

(which is a set of registers in the 0xFFF0 area of memory, starting at the location

VectorStart). Each of these vectors is given a particular piece of memory location to

jump to. For example, if the IRQ pin goes low, the interrupt vector Dummy_ISR is

jumped to. Since it jumps to Dummy_ISR, effectively nothing happens on an active IRQ

line.

The "dw" lines after the "ORG VectorStart" are what actually fill up the vector

registers. These commands place the memory location of “Dummy_ISR” into each of the

registers starting at memory location VectorStart and then Main_Init in the 18th register.

 After configuring the chip according to the codes discussed above, the chip

initializes the PWM channels 0 and 1. First it stops the timer counter, resets it, and

selects the appropriate prescalar by writing to the Timer Status and Control (TSC). The

prescalar is used for slowing down the clock and helping to create a PWM of the desired

period. With the internal clock operating at 2.5 MHz, a prescalar of ÷16 is appropriate to

ultimately obtain a period close to 20 ms. Values are loaded into the Timer Counter

Modulo Register High/Low (TMODH/L) to further declare the period of the PWM. Both

Timer Channel 0 and 1 Status and Control Registers (TSC0/1) are configured so that the

unbuffered PWM outputs are cleared on compare, the timer counter toggle on overflow is

 9

enabled, and max 100% duty cycle is disabled. Finally, the STOP bit of TSC is cleared

to start the timer, thus enabling PWM.

 The main program contains the algorithm and represents a finite state machine

(FSM). It sequentially scans the sensors following the logic demonstrated in Figure 1.

CHECK is a variable that keeps track of what the servos are doing. Before putting new

values in the Timer Channel 0/1 Registers (TCH 0/1 H/L), the program determines if this

is redundant by comparing CHECK. If CHECK is the same value as the CHECK that

corresponds to the new values that are to be stored in the TCH, the program avoids

storing the new values into the TCH since this would result in no change. The purpose of

this is to reduce the number of wasted cycles and ensure cleaner PWM signals. To

demonstrate, imagine that TBD is on a straight path, if CHECK were not in place, TBD

would constantly be writing the same signals to the TCH to move forward. Every time

these values are written to TCH, a slight glitch occurs because the “new” PWM signals

interrupt the “old” PWM signals, causing it to go high for the appropriate amount of time

before settling into the appropriate PWM signals.

There are two subroutines, “ChkBC” and “Servo”. ChkBC scans sensors B and C

to see which one detects the path and store the corresponding values into the four

dedicated memory locations. Servo is used to copy the values of these four memory

locations into actual TCH registers and direct the servos to behave as dictated.

 10

Implementation
The final design of our robot consisted of a chassis produced from sheet metal,

two protoboards, two servos, an eight-battery power source, a voltage regulator, an

HC908 sixteen pin package, a ten-microfarad capacitor, two voltage comparators, seven

IR reflective photo sensors, and various resistors.

The chassis was built from sheet metal and was constructed using a bender. The

chassis had holes to hold the large protoboard that held the sensors and the comparators.

The bends were necessary to set the heights of the phototransistors at the proper distance

from the ground. The chassis also cradled the servos and allowed them to be screwed in.

A hole was poked at the front of the robot in order to use the skid pad available made

from Lego’s. Another hole was made at the front of the robot to allow the voltage

regulator to be screwed down to the chassis to help dissipate heat.

As mentioned earlier, the large protoboard held the sensors and its necessary

circuitry, and the voltage comparators along with the voltage dividers providing the

reference voltage. This protoboard was screwed into the chassis to keep it in place on the

underbelly of the robot. The smaller protoboard held the microcontroller, the voltage

regulator, the power switch and LED. This protoboard was held in place on the top of the

robot by poster mounts. The power and ground wires coming from the battery pack was

connected to this board. The common ground came from the battery pack and the power

wire from the batteries went to the voltage regulator. The output of the voltage regulator

was then sent to long rails of both the protoboard. The power was observed to be “bald”

in certain areas along the long rail of the large protoboard. This required extra wires to

supply power to every spot on the board.

Implementation of the IR photo sensors was very difficult because they had to be

placed a certain distance from the ground and all of them required being the same

distance if the same reference voltage wanted to be used. A lot of debugging work was

necessary to find the proper distance from both the ground and from each other.

 11

Results
 TBD requires a path composed of electric tape laid out against white paper to

operate optimally; this is so that there is a significant change between the amount of light

the sensors sense while positioned over the electric tape and the white paper. TBD

demonstrates that it is very well capable of making turns up to, and even over, 180°. If

placed on a path that does not loop upon itself, it is able to turn around when it reaches

the end of the path and retrace the path. However, while TBD is able to stay on a path, it

sometimes arbitrarily chooses to turn 180° and go the opposite way instead of continuing

down a path even though the path does not end. This “feature” of TBD occurs due to two

main reasons: the fact that the servos are not spinning at the same rate and the width of

the electric tape.

TBD is incapable of moving exactly straight (perpendicular to the wheels’ axis)

because the servos do not spin at the same rate. The reason why the servos are not

calibrated to the same speed is because the resolution in which to control the PWM

signals within the code are restricted by the fact that TBD operates better at a slower

speed. This difference in servo speed causes TBD to steer off track more often than it

should, even when the path is obviously a straight line. This is especially problematic

when it approaches a turn because just before it reaches the turn, it may find itself off

track and start the spin prematurely, causing it sometimes to miss the turn completely.

The path that TBD is supposed to follow is composed of electric tape; however,

the thickness of this path also plays a role in determining TBD’s performance. The tape

used is half an inch in width; this implies that the sensors detect the tape even though

they are not necessarily positioned directly over the middle of the tape. Therefore,

whenever TBD attempts to reposition itself relative to the tape (i.e. in the midst of a spin,

TBD stops when sensor A picks up the path), it may start going forward even though it is

positioned at an angle relative to the path, causing it to get off path again.

These two main issues with TBD are the main reasons why it sometimes behaves

unexpectedly, making spins when it is not suppose to (albeit it still remains on the path).

Attempts have been made to make the path thinner so that when TBD repositions after a

spin or turn, it may better realign itself. However, because of the thinness of the tape, the

 12

robot now has a more difficult time detecting the path and also, due to its inability to go

straight forward, falls off the path even more often.

Difficulties

 Some difficulties were encountered throughout the course of this project. The

regulator caused one such difficulty. The regulator was originally affixed into a

protoboard by its three pins. It behaves as expected, outputting five volts, but after a

small amount of time, about thirty seconds, it gets heated up rather significantly. It was

not detected until later that as it heats up, it behaves erratically, outputting voltage well

below the expected five volts. This proved to be a problem that caused TBD to behave

abnormally. The solution was to use the chassis as a heatsink and attach the regulator to

it. Some thermal compound was used between these two mediums to aid the heat

transferring process.

The IR reflective phototransistor sensors were very difficult to work with because

of how much variance in output it would generate. The output signal was very dependent

on the position of the sensor relative to the ground. Changes in this distance on the range

of millimeters would cause the “no tape” signal voltage to shift either up or down around

a volt. This was a large problem because if the reference voltage were too close, the

output would be unstable causing the output of the comparators to bounce HI and LOW.

This confuses the microcontroller and TBD would often end up in the wrong place.

Debugging of the mechanical system mostly consisted of sensor placement. The sensors

ended up having a radius of sight that caused the placement of the sensors relative to each

other, and to the ground, another large factor. If the sensors were placed too close to each

other, this would create the problem where certain signals that should not be on would be

on causing the algorithm to act as though the tape was present directly under the sensor.

One example of this is in the algorithm where after sensor A falls of the tape and is now

checking sensor G until that falls off before it spins. The problem here is that if sensor G

stays on long enough to allow sensor D to fall off as well, the algorithm will then cause

the robot to turn instead of spin. The distances between the sensors were eventually

spaced enough to not overlap their radii of sight.

 13

References

[1] Motorola, http://e-www.motorola.com/brdata/PDFDB/docs/MC68HC908KX8.pdf
 and http://e-www.motorola.com/brdata/PDFDB/docs/MC68HC908QY4SM.pdf
[2] National Semiconductor Products, http://www.national.com/pf/LM/LM7805C.html
[3] Ross, Kevin, “Hacking a Servo,”
 http://www.rdrop.com/~marvin/explore/servhack.htm

Parts

Part Source Vendor Part # Price

MCHC908KX8
Microcontroller

VLSI Design Lab ------------- -------------

Duracell Batteries
(x8)

Vons ------------- $10.06

Futaba FP-S148
RC Servo (x2)

Pegasus Hobbies ------------- $31.15

LM339
Comparator (2x)

MarVac
Electronics

LM339 $2.21

8505 Voltage
Regulator

VLSI Design Lab ------------- -------------

10microFarad
Capacitor

Engineering
Stockroom

------------- -------------

IR Reflective
Phototransistor
Sensors (x7)

Digikey

QRB1114-ND

$12.51

Protoboard (x2) Engineering
Stockroom

------------- -------------

Lego Skidpad Professor Harris ------------- -------------

Lego Wheels Professor Harris ------------- -------------

Sheet Metal Tool Shop ------------- $1.00

TOTAL $56.93

 14

Appendix A – Finite State Machine

Stop Straight
Scan B & C Spin

Scan F Turn left
Scan B & C

Scan E Turn right
Scan B & C

D = 1 A = 0 & G = 0

A = 1

D = 0

E = 1

D = 0

D = 1

A = 0

D = 0

D = 0

D = 1

E = 0

Power on

D = 0

F = 1

F = 0

 15

Appendix B – Block Diagram

HC908
KX8

VCCGND

RC
SERVO
(ch 1)

RC
SERVO
(ch 0)

AC B

F D E

G

QRB1114
IR reflective
photo sensor

QRB1114
IR reflective
photo sensor

QRB1114
IR reflective
photo sensor

QRB1114
IR reflective
photo sensor

QRB1114
IR reflective
photo sensor

QRB1114
IR reflective
photo sensor

QRB1114
IR reflective
photo sensor

Comparator

Comparator
Reference Voltage

(3.2V)

Reference Voltage
(3.2V)

8AA Batteries
(12V)

Voltage
Regulator

VCC (5V)

 16

Appendix C – HC908 Code
* TBD.asm
*
*Written 12/12/02 Raymond Fong and Morgan Cross
*
*Line following robot that uses six photosensors, two RC Servos, and a
*HC908.

* Constants*

AON EQU $01
BON EQU $02
CON EQU $04
DON EQU $10
EON EQU $20
FON EQU $40
GON EQU $80
CCWH0 EQU $00
CCWL0 EQU $80
CWH0 EQU $00
CWL0 EQU $7A
CCWH1 EQU $00
CCWL1 EQU $81
CWH1 EQU $00
CWL1 EQU $7B
LOOKA EQU $0000
DDRA EQU $0004
DDRB EQU $0005
SENSA EQU $0001
SENSB EQU $0001
SENSC EQU $0001
SENSD EQU $0001
SENSE EQU $0001
SENSF EQU $0001
SENSG EQU $0001
TSC EQU $0020
TMODH EQU $0023
TMODL EQU $0024
TSC0 EQU $0025
TSC1 EQU $0028
TCH0H EQU $0026
TCH0L EQU $0027
TCH1H EQU $0029
TCH1L EQU $002A
XTCH0H EQU $00F2
XTCH0L EQU $00F3
XTCH1H EQU $00F0
XTCH1L EQU $00F1
STOPH0 EQU $00
STOPL0 EQU $7D
STOPH1 EQU $00
STOPL1 EQU $7E
COPCTL EQU $001F
CHECK EQU $00E8

 17

RAMStart EQU $0040
RomStart EQU $E000
DataStart EQU $E300
VectorStart EQU $FFDC

*CHECK is so the program knows what the servos are doing
*$00 = Stop
*$01 = Straight
*$02 = Turn right
*$03 = Turn left
*$04 = Spin

Main Program

 ORG ROMStart

Main_Init:
 rsp

*Make port B pins to be inputs

 LDA #$00
 STA DDRB

 LDA #01
 STA DDRA

*Turn off COP so that the program does not reset when it thinks it is
*in an infinite loop

 LDA #$01
 STA COPCTL

*Start RC Servo, but do not make them spin (Make CHECK = $00)
*Initialize PWM by stopping TSC, and putting in the desired time scale;
*the desired period values are inputted into the
*TMODH/L and the desired high times are put into the PWM channels
*1 and 0 with TCH1/0H/L, the TSC0/1 declares the PWMs as
*unbuffered PWMs; the fifth bit of TSC is cleared to start the PWM

 MOV #$00,CHECK

 MOV #%00110100,TSC

 MOV #$07,TMODH
 MOV #$D4,TMODL

 MOV #STOPH1,TCH1H
 MOV #STOPH0,TCH0H

 MOV #STOPL1,TCH1L
 MOV #STOPL0,TCH0L

 MOV #%00011010,TSC0
 MOV #%00011010,TSC1

 18

 BCLR 5,TSC

*Setup the values needed for spinning left, in case the robot
*goes on a straight line with no turns and hits the end... it will
*know to spin right 180

 MOV #CCWH1,XTCH1H
 MOV #CCWH0,XTCH0H

 MOV #CCWL1,XTCH1L
 MOV #CCWL0,XTCH0L

*Check CHECK and see if it is $00, if so, then there is no need to
*write the same STOP values into the PWMs

Stop LDA CHECK
 CMP #$00
 BEQ Loop

*Write $00 into CHECK

 MOV #$00,CHECK

 MOV #STOPH1,TCH1H
 MOV #STOPH0,TCH0H

 MOV #STOPL1,TCH1L
 MOV #STOPL0,TCH0L

*Check sensor D and see if robot is on track
*If not, go to Offtk
*Check sensor B and C, if either is true, store the
*appropriate values in dummy variables XTCH1 and XTCH0

Loop LDA SENSD
 AND #DON
 CMP #DON
 BNE Offtk
 JSR ChkBC

*Check sensor A, if A senses the track, make robot go
*straight and restart Loop, if not, go to Spn

 LDA SENSA
 AND #AON
 CMP #AON
 BNE Spn

*****Make robot go straight*****

*Check CHECK and verify the need to write the straight values
*into the PWMs

Go LDA CHECK
 CMP #$01
 BEQ Loop

 19

 MOV #$01,CHECK

 MOV #CCWH1,TCH1H
 MOV #CCWL1,TCH1L

 MOV #CWH0,TCH0H
 MOV #CWL0,TCH0L

 BRA Loop

*Check sensor G, if G is off the path
*Make robot spin until sensor A picks up tape, when that
*happens, make robot go straight and restart Loop
*this whole time, check D in case D is off the path,
*if D is off the path, go to Offtrk
*The whole time, it is still scanning B and C

Spn JSR ChkBC
 LDA SENSG
 AND #GON
 CMP #GON
 BEQ Spn
 JSR Servo

ChkA LDA SENSD
 AND #DON
 CMP #DON
 BNE Offtk
 LDA SENSA
 AND #AON
 CMP #AON
 BEQ Go
 BRA ChkA

*If D is off the track, then
*Check E, if E senses the path, turn right, if E
*does not sense the path, check F

Offtk LDA SENSE
 AND #EON
 CMP #EON
 BNE Right

*****Store the appropraite values needed to make the robot turn
*right*****

*Check CHECK and verify the need to write the turn left values
*into the PWMs

 LDA CHECK
 CMP #$03
 BEQ Dchk

 MOV #$03,CHECK

 MOV #STOPH0,TCH0H

 20

 MOV #STOPL0,TCH0L

 MOV #CCWH1,TCH1H
 MOV #CCWL1,TCH1L

*Now check D, if D is on, go to Loop
*If D is not on the path yet, check B and C and store
*appropriate spinning values if need to

Dchk LDA SENSD
 AND #DON
 CMP #DON
 BEQ Spn1
 JSR ChkBC
 BRA Dchk

*Check F, if F senses the path, start the turn, and then check D, B,
*and C if need to, if F does not sense the path, HALT!

Right LDA SENSF
 AND #FON
 CMP #FON
 BNE Mkjmp

*****Store the appropraite values needed to make the robot turn
*left*****

*Check CHECK and verify the need to write the turn left values
*into the PWMs

 LDA CHECK
 CMP #$02
 BEQ Dchk

 MOV #$02,CHECK

 MOV #STOPH1,TCH1H
 MOV #STOPL1,TCH1L

 MOV #CWH0,TCH0H
 MOV #CWL0,TCH0L

 BRA Dchk

Mkjmp JMP Stop

*Spn1 is used after TBD gets out of a turn, it is going to start
*spinning while checking D, if D is on the path, it will keep spinning
*until A is back on the path, if D is off the path, it will go to
*Offtrk

Spn1 JSR Servo
ChkD LDA SENSD
 AND #DON
 CMP #DON
 BNE Offtk

 21

 LDA SENSA
 AND #AON
 CMP #AON
 BEQ Goo

 BRA ChkD

Goo JMP Loop

*Subroutine for spinning
*If the values in the PWMs are the same as the appropriate
*memory location, there is no need to make any changes
*Make the CHECK know that it is spinning

Servo MOV #$04,CHECK

 LDA TCH1L
 CMP XTCH1L
 BEQ Other

 MOV XTCH1H,TCH1H
 MOV XTCH1L,TCH1L

Other LDA TCH0L
 CMP XTCH0L
 BEQ Bah

 MOV XTCH0H,TCH0H
 MOV XTCH0L,TCH0L

Bah RTS

*Subroutine for checking B and C

ChkBC LDA SENSB
 AND #BON
 CMP #BON
 BNE Left

Setup the values needed for spinning right

 MOV #CCWH1,XTCH1H
 MOV #CCWH0,XTCH0H

 MOV #CCWL1,XTCH1L
 MOV #CCWL0,XTCH0L

Left LDA SENSC
 AND #CON
 CMP #CON
 BNE End

Setup the values needed for spinning left

 MOV #CWH1,XTCH1H

 22

 MOV #CWH0,XTCH0H

 MOV #CWL1,XTCH1L
 MOV #CWL0,XTCH0L

End RTS

*Setup the vectors so the chip knows what to do at powerup

dummy_isr:
 rti

 org VectorStart

 dw dummy_isr ; Time Base Vector
 dw dummy_isr ; ADC Conversion Complete
 dw dummy_isr ; Keyboard Vector
 dw dummy_isr ; SCI Transmit Vector
 dw dummy_isr ; SCI Receive Vector
 dw dummy_isr ; SCI Error Vector
 dw dummy_isr ; Reserved
 dw dummy_isr ; Reserved
 dw dummy_isr ; Reserved
 dw dummy_isr ; Reserved
 dw dummy_isr ; Reserved
 dw dummy_isr ; TIM Overflow Vector
 dw dummy_isr ; TIM Channel 1 Vector
 dw dummy_isr ; TIM Channel 0 Vector
 dw dummy_isr ; CMIREQ Vector
 dw dummy_isr ; ~IRQ1 Vector
 dw dummy_isr ; SWI Vector
 dw Main_Init ; Reset Vector

