|R Rover

E155 Microprocessor Design
Fall 2002

By Stephen Friedman
and Micah Garside-White

Abstract

Our goal was to create alight-weight lego rover that could be remotely controlled
using the built in IR technology of Lego Mindstorms RCX. The controller, which
consistsof a4 X 4 keypad, an FPGA, and a HC11 microcontroller, transmits user input
signalsto the rover, takes in a user defined sequence of directions and durations, and
plays the program back to the robot. The FPGA isresponsible for retrieving and
debouncing the signals from the key-pad, sending the signal to the microcontroller, and
triggering an interrupt on the microcontroller. The microcontroller is responsible for
checking that the signal isvalid, driving the LED User Interface, storing a program,
outputting signals to the IR controller either directly or playing back a previously input
program. An RCX was used as a transmitter to the RCX on the rover, and the RCX on
the rover was responsible for controlling the DC motors that made the rover move.

I ntroduction

The goal of this project isto create a smart controller that uses IR to direct aslave
Lego rover. The controller isresponsible for the capture and interpretation of user
commands. The user interface consists of a4 X 4 matrix key-pad used for the input of
signals, ared error LED to report when a keypress was ignored, two green state LEDs that
report what type of input the controller is excepting, and a 7 segment display that shows
the 2 most recent keypresses. The key-pad has the directional keys, start programming,
start playback, stop, and numerical values al clearly designated on the keys themselves.

The FPGA is responsible for the capturing of the user input from the keypad, the
transmission of the keypress to the HC11 microcontroller, triggering the keypress
interpreter on the microcontroller, and driving the 7 segment display for the user
interface. The FPGA actively polled the keypad, and debounced the signal it received
from the keypad by using an appropriate signal. The FPGA stored the keypress along
with the other most recent and displayed both results to the 7 segment display. The most
recent keypress was also sent to the HC11, along with a pulse that fell and rose which
triggered the IC1 interrupt on the HC11.

The HC11 isresponsible for the validation of all signalsit recieves from the
FPGA, driving the LED user interface, storing programs, running stored programs,
transmission of directional signalsto the Lego rover. The keypress handler was an
interrupt routine that was triggered by the IC1 interrupt. The routine would keep the state
current, so the microcontroller knew whether to record incoming signals, transmit
incoming signals, or playback a stored signal. The microcontroller tracked what type of
input it was expecting and with that information drove the state LEDs. Lastly the
microcontroller checked the validity of the signal and used that information to drive the
error LED.

4x4 Matrix
Keypad

Raw Values

System Block Diagram

Dual 7 Digit
Display

Last Two
Keypresses

FPGA
Keypad and 7-
Segment Decoder

Error and
Expected
Entry Ul

Status Values

Decoded Key
Press

HC11
Translation,
Recording,
and
Playback

RCX

Transmitter

< Trinary Signal

IR
Transmission

RCX

Rover

Signal

Binary Output

Trinary Digit
Interface

New Hardware

For this project, we interfaced with the Lego RCX Brick[1] with embedded
microcontroller. One RCX was programmed to run the rover bot, while the other was
used as an IR communications interface with the RCX on therover. The RCX has 3
input pads available. Connection was made to these input pads by melting wires and tin
foil onto a 2x6 Lego plate in such away that would allow the wires to make contact with
the contacts for the input pads on the RCX. Using the Robotics Invention System 2.0
software, a program was designed and |oaded onto the RCX that would alow input from
these 3 pads. Thefirst input pad was configured in the software as a touch sensor. The
other two were configured as temperature sensors. In touch mode, a high or infinite
resistance between the two pad connectionsisinterpreted as unpressed and alow
resistance is interpreted as pressed. When configured as a temperature sensor, the RCX
interprets the resistance between the two pad connections as a temperature of 158.0
degrees Fahrenheit for little resistance, and —4 degrees Fahrenheit for infinite resistance.
More detailed information can be found on the MindStorms RCX Sensor Input Page
and the Lego Mindstorms Inter nals page.[2] [3]

To communicate with the HC11, the sensor configured for touch was used as a
synchronization signal and the other two inputs were used as trinary input digits. This
was accomplished by changing the resistance between the sensor connections using
transistors. For the circuit we used, the corresponding values were —4 degrees for aHigh
trinary value, approximately 107 degrees for aMid trinary value, and 158 degreesfor a
Low trinary value. Thus, using two inputs we have the values 0 through 8 that can be
decoded by the RCX. The data value was put out using 4 bits from the HC11 and
encoded in trinary by the interface circuit. The HC11 then notified the RCX that data was
available by pulsing the synchronization bit low for approximately a quarter of a second.
This was long enough to trigger the click event watcher on the touch sensor in the RCX
software, at which point it would grab the data from the other two sensors and send the
appropriately numbered IR message to the Rover Bot.

Rover Bot

The Rover Bot was designed using adual motor drive system. The primary drive
motor controls the robot’ s forward and reverse motion. Through a subtraction differential
system, the secondary drive motor controls the turn rate by controlling the differential
between the right and left drive wheels. Thisallows for straight line drive even when the
characteristic torques or speeds of the two motors are different.

The onboard control software for the Rover Bot was kept ssimple in support of the
lightweight rover paradigm. It was written using the Lego Robotics Invention System 2.0
because of its ease of use. The Rover accepts itsinput in the form of IR messages
numbered 0-255. Thereis no data payload associated with the message. The Rover
interprets messages in the following way:

1. Forward

2. Reverse

3. Turn counter-clockwise
4. Turn clockwise

5. Stop motors

When the Rover receives one of these messages, it sets the motor speeds and directions to
appropriately execute that action, and continues to execute it until the next messageis
received. The software can be easily extended to accept more IR signals and execute
more complicated behaviorsin the future.

Sync
Bit4
Bit3
Bit2
Bitl

Schematics

Connection between HC11 & RCX

O
4.7k ohm RCXInputl High

N

RCX Inputl Low

RCX Input3 High
330 Ohm

N
p 1K Ohm
Nt

O
RCX Input3 Low

RCX Input2 High
330 Ohm

1K Ohm

RCX Input2 Low

User Interface Schematic

+5v @
FPGA P60 /}‘g>
— 330 Ohm \\}>
FPGA P59 /P
— 330 Ohm \}>
FPGA P80
1K Ohm
FPGA P81
Co—AW—
1K Ohm
FPGA P83
1K Ohm
il s
¢ '-Ll
2 B2 K1 B
G2 51
E2 | L O | 1
L —]
n2 H2 D1 i
| R A R
E2 D2 3 T} E1 DI G1 C1 i
[|

FPGA P79

1K Ohm

330 Ohm

Red

EPGA P77 Error LED
1K Ohm
FPGA P78
1K Ohm
FPGA P82
1K Ohm
330 Ohm
HC11 PB5 Green
> Direction Expected
HC11 PB6 /\/‘
L > > VA
330 Ohm v 1K Ohm

Green
Number Expected

Connection between FPGA & Keypad

FPGA P23 FPGAP27 FPGAP28 FPGAP29

+5v @

J

,I_I
T
(@)
>
R
N
i

J

_I_I
0
[
>
0
N
o

J

_I_I
0
[
>
0
N
al

J

'r|
bl
[
>
0
N
o

Microcontroller Design

The HC11 isthe controller for the system as awhole, and as such it contained the
vast majority of theintelligence. It has two main modules that worked cooperatively to
provide the signal trandlation, error and state reporting, singal transmission, and storage
and playback capability. The observer pattern isthe model for the interactions between
the two components. The first component is responsible for setting the state, interpreting
the signals, transmitting user signals, and driving the error LED. The second component
uses the state to drive the playback functionality and it drives the expected state LEDs.

Thefirst module is an interrupt response triggered by the Input Capture 1
interrupt, on Port A bit 2. When the HC11 sees the signal on Port A bit 2 go from low to
high it triggers the IC1 interrupt jump table, which executes the code starting at memory
location $D100. First the routine determined whether the keypress, which was brough in
over the 4 least significant bits of Port E, would effect the current state of the software
(i.e. whether the keypress would trigger the initiation of play-back mode or end
programming mode). If there was any change in state the STATE memory location was
updated with the new state and the routine would finnish. If the keypress had no effect on
state it was then checked to be avalid keypress for the state the controller wasin. For the
numerical accepting state any keypress was valid, but for the direcrtiona state only 2,
45,6, & 8 where valid keypresses.

Once the input was validated one of two subroutines would be called to either
execute the programming or transmission functionality of the controller. If the controller
was in the transmit state the directional input would be trandated into asignal that the
RCX controller could understand and then sent to the 4 least significant bits of Port B.
Then the 5 LSB of Port B was toggeled down, the controller busy waited for
approximately %4 of a second, and the bit was brought back to high.

If the controller was in programming state the microcontroller would once again
determine which of two subroutines the input should be passed to, but this time using the
expected input, INPUT, memory location. If the controller was expecting a direction the
direction would be translated to the RCX code and stored in the first 4 bits of the memory
table that is pointed to by the NEXT memory location. |If the controller was expecting a
numerical input the controller would store that number in the upper 4 bits of the table and
incriment the NEXT memory location. If any input was found to be problimatic the error
LED was activated via PORT B bit 5 and the input was dropped.

The main loop of the program would output the expecting state of the controller to
the 2 STATE LEDs using Port B bit 6, then it would check to seeif the controller wasin
playback state. If it wasn't then the main program would loop. If it wasin play-back
state then the program would loop through the Table and play the signal in the current
entry then busy wait for the time, in seconds, noted in that same entry. While busy
waiting the program would check to see if the controller had ceased being in the play-
back state. If any entry had a O for the time of delay that signal was not outpui.

For the switching of states the controller could only switch into play-back from
transmission and vice-versa. The same was true for the programming state. |If the user
tried to change state in any other way an error was raised. Whenever the programming
state ended a null entry ($0) was written into the table to signify where the table ended;
on initiation the program put a null entry at the beginning of the tabel ($D300).
Whevenever the null entry was reached in play-back the NEXT memory location was set
to the beginning of the table and the main loop would start again.

The key agorithm was to use interrupts to implement an observer pattern based
on the input of the user and the use of dedicated memory locations to tell the main loop
what stateitisin. Therest of the program was straight forward signal error checking,
table storage and retrieval of information, and busy waiting.

10

FPGA Design

The FPGA was primarily configured to read the matrix keypad and relay key press
information on to the HC11. A Polling FSM of 3 states reads the keypad. Inthe
PollK eypad state, a second 4-state Cycling FSM is running which cycles one bit low on
each of the column inputs. While the Polling FSM isin the PollKeypad state, the
Cycling FSM successively transitions through its states. Otherwise, the polling FSM is
held inits current state. This allows the decoder to read both the output and the input and
map it to the sixteen corresponding values on the keypad. When a press is detected, the
cycling FSM is stopped and a sync signal is generated for one cycle. Then the FSM
enters the Hold state, where the input to the decoder will be held the same until the user
releases the key. At that time, the PollKeypad state is re-entered, and the Cycling FSM is
restarted.

Figure 1 Polling FSM Figure 2 Cycling FSM

Thereis also amultiplexed dual 7-segment display driver on the FPGA that is used to
display the user’s last two key presses. This simply takes the 4-bit input representing the
key press from a storage register, and decodes it into a seven-segment display. It aso
uses a clock divider to obtain afrequency around 60 Hz for switching between displaying
the left and right digits, to provide the illusion of two simultaneous displays.

In addition, thereislogic to provide an interrupt pulse to the HC11 when a new key
pressis available and a 4-bit busto allow access to that key press. The rest of thelogic
on the FPGA is set up to clean the signal from the keypad, run the FSM at a reasonable
clock rate, and store the last two key presses. See the Appendix for the block diagram of
the FPGA.

11

Results

The results of our project was afully functional rover that could respond to
commands issued by our smart controller. The controller itself could reliably and
consistantly transmit signals, store programs, and transmits the program it currently had
stored in memory. Our final project did not use the SCI or SPI, as was origionally planed,
nor the IR module, nor the independent propulsion of the rear wheels. Programming and
playback of a stored program was added, as was a custom protocol for communicating
with the RCX (using trinary digits and an A/D converter).

The two most difficult parts of our design where our failed attempts at using a
non-RCX based IR transmitter and the building of the differential that was used to steer
therover. Origionally we planned on sending a 2400 Baud RS-232 protocol signal to a
238 KHz singal modulator to an IR transmitter. We were going to use the SCI port on the
HC11 to generate the RS-232 signal at 2400 Baud. The modulator and transmitter were
constructed out of a 555 timer circuit and an infered LED. This should have functioned
correctly, but unfortunately the RCX IR protocal uses bit balancing rather than atrue RS-
232 protocol. Thus we needed to have one of the controll signals inverted and this
couldn’t be adjusted on the HC11. Rather than try to hack together hardware to invert the
first controll signal on the FPGA we opted to create an interface to another RCX and have
the new RCX communicate with the one on the rover.

The origional plan was to have a single motor drive a single wheel, and thus
steering would be accomplished by the differnce in speed of the two motors. The
origional model created aright hand drift, because the 2 motors had different output
characteristics. To correct for this a single motor was used to drive the forward and
reverse directions through a differential gear box and a second motor was used to spin the
differential thus causing one wheel to slow and the rover to turn. The syncing of the
gears proved to be awicked problem.

12

References

[1] Official Lego Mindstorms Site, http://mindstorms.lego.con/ .

[2] Gasperi, Michadl. MindStorms RCX Sensor Input Page
http://www.plazaearth.com/usr/gasperi/lego.htm

[3] Lego Mindstorms I nter nals, http://www.crynwr.com/lego-robotics .

[4] HC11, M68HC11 Reference Manual. ©Motorola Inc 1991.

[5] HC11, MC68HC11A8 Technical Data. ©Motorola Inc 1991.

[6] M6BHC11EVB Evaluation Board User’s Manual. ©Motor ola | nc September

1986.
Part List
Part Sour ce Vendor Part # Price
Lego RIS 2.0 http://shop.lego.com/ | Item#3804 $199.99
Lego RCX1.0 L ego Imagination ltem#9709 $69.99
Center, Downtown
Disney, Aneheim

13

14

Appendices

A) Assembly Code:

kkhkkhkkkkhhkkkhhkkkhhkhkkhhkhkkhhkhkkhkhkkhkhkkhkhhkhkhhkhkhhkkhkkhhkkkhkkkhkkk,kkkkkxk**x*%

* Authors: Micah Garside-White & Stephen Friedman

* Purpose: Create a controller for arover robot that will

* transmit signals, and program and replay user input
* Date: 12-10-02

R S RS E LSS LTS EELTETELEEEETEEEETEEEEEEEEEETEEEEEEEEEEEEEEEEE L
Ports of interest
IC1=PA2

Interrupt Vectors of interest

*
*
*
*
*
*
*

Timer Input Capture 1 = $00E8 - S00EA

kkhkkhkkkkhhkkkhhkkkhhkhkhhkhkhhkkhkhkkhkhkkhkhkkhkhhkkhkhhkhkkhhkkhkkk kkk,kkkkkx**,*% 11

kkhkkhkkkkhhkkhkkhhkkhkkhhkhkkhhkhkhhkkhkhkkhkhkkhkhhkhkhkkhkhhkhkkhhkkhkkhhkkhkkk,kkkkkx**,*%

The Constanstants

NEXT - A poitner to the next place in the memory table that a record should
be written to

TABLE - Designates the memory location where the user programed sequence of
commands will be kept.

TMSK1 - Timer Interrupt Mask Register 1
TCTL1 - Timer Control Register 1

TCTL2 - Timer Control Register 2

PORTE - Input Port E
PORTB - Output Port B

TRANS - The memory location of the subroutine used
to transmit signalsto the lego SmartBrick

RECORD - The memory location of the subroutine used
to record a user defined program for the rover

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* TFLG1 - Timer Interrupt Flag Register 1
*

*

*

*

*

*

*

*

*

*

*

* SIG - The number used in STATE to identify the transmission
* state, where directional commands are passed directly through
* to therover.

15

b I S . I T R I SRR . S S S R B I I S N .

g
Q
g

L T R R T . T

REC - The number used in STATE to identify the record satet,
where the controller inputs directional commands and durations
into atablein memory.
PLAY - The number used in STATE to identify the play-back state,
where the controller will continually loop through the table
playing back the directional commands for the durations recorded.
INPUT - A memory location that stores a number to identify whether the
controller should expect a number or direction for its next input.
The only time this should change is when the controller isin the
recording state.

NUM - The number used in INPUT which tells the controller it should expect a
anumberical input from the key-pad.

DIR - The number used in INPUT which tells the controller it should expect a
directional input from the key-pad.

STATE - A memory location that stores a number to identify
which state the controller is currently in.

BBAD - A number representing that an improper directional keypress has been

BFORWARD - The signal that will send the lego rover forward
BCCLOCK - The signal that will turn the rover counter clock wise
BSTOP - The signal that will stop the rover

BCLOCK - The signal that will turn the rover clockwise

BREVERSE - The signal that will make the rover go backwards

kkhkkkkhkkhkkhhkkhkkhhkhkkhhkhkhhkhkkhhkkhhkkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhhkkhkkkhkkxk*

NEXT EQU $0

TABLE EQU $D300
TMSK1 EQU $1022
TCTL1 EQU $1020
TCTL2 EQU $1021
TFLG1 EQU $1023
PORTE EQU $100A
PORTB EQU $1004
SIG EQU $1

REC EQU $2

PLAY EQU $3

INPUT EQU $20

NUM EQU $1

16

DIR EQU $0

STATE EQU $10
BBAD EQU $0
BFORWARD EQU $6
BCCLOCK EQU $9
BSTOP EQU $B
BCLOCK EQU $A

BREVERSE EQU $7

kkhkkkkhkkhkkhhkkhkkhhkhkkhhkhkhhkhkkhhkkhhkkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhhkkhkkkhkkx**

* Modify the interrupt vector table.

*

* Use my code at $D100 for the IC1 interrupt response.
kkhkkkkhkkhkkhkkhkkhkkhkkhkkkkkkkkk
ORG $00E8
JMP $D100

kkhkkkkhkkhkkhhkkhkkhhkhkkhhkhkhhkhkkhhkkhhkkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhhkkhkkkhkkxkx*

* The main section of code starts at $D000.

kkhkkkkhkkhkkhhkkhkkhhkhkkhhkhkkhhkhkkhhkkhhkkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhhkkhkkkhkkxk*

ORG $D000

kkhkkkkhkkhkkhhkkhkkhhkhkkhhkhkkhhkhkkhhkkhhkkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhhkkhkkkhkkxkx*

INITIAL SETUP

Iniate the value in $0 - $2 (the NEXT variable) to the

beginning of the TABLE used to store user programs ($D300).

Set the first value in the TABLE to null ($0) to signify that the

Put the controller in the transmit state.

*

*

*

*

*

*

* tableis empty.
*

*

*

* Set the expected input to a direction.
*

*

Set the LegoBrick sync bit on PORTB to high, the idle state.
kkhkkkhkkkhkkhkkhkkhkkhkkkkkkk

LDY #TABLE

LDAA #30

STAA QY * Initiatethe table

STY NEXT * Initiate the table pointer

LDAA #S5IG

STAA STATE* Initiate transmit state

LDAA #DIR

STAA INPUT * Set expected input to directional
LDAA #$10

STAA PORTB * |nitiate the sync bit on port B

kkhkkkhkkhkkhkkhhkkhkkhhkhkhhkhkhhkhkkhhkhkkhhkkhkhkkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhkhkkhkhkkikkx**

* Set up the interrupts

*

* TMSK1 - 00000100

17

OC1I =0, Output compare interrupt 1 is disabled
OC2I =0, Output compare interrupt 2 is disabled
OCa3I =0, Output compare interrupt 3 is disabled
OC4l =0, Output compare interrupt 4 is disabled
OC5I =0, Output compare interrupt 5 is disabled
[C1l =1, Input compare interrupt 1 is enabled
IC2I =0, Input compare interrupt 2 is disabled
IC3I =0, INput compare interrupt 3 is desabled

TCTL1 - 00000100

OM2,0L2 =00, OC2 doesn't effect the pin

OM3,0L3 =00, OC3 doesn't effect the pin

OM4,0L4 =01, Toggle the OC4 pin n Successful compare
OMS5,0L5 =01, OC5 doesn't effect the pin

TCTL2 - 00010000

0, unused

0, unused

EDGI1B,EDGI1A =01, ICL1 - capture rising edges only
EDG2B,EDG2A = 00, IC2 - capture disabled

EDG3B,EDG3A =00, IC3 - capture disabled

LDAA #304 * Configurethefirst Timer Interupt Mask Register.
STAA TMSK1

LDAA #304 * Configurethe first Timer Control Register.
STAA TCTL1

LDAA #3$10 * Configure the second Timer Control Register.
STAA TCTL2

kkhkkkkhkkhkkhhkkkhhkhkhhkhkkhhkhkkhhkhkkhhkhkhkhkkhkhhkhkhhkkhkhhkhkhhkhkkhhkhkkhhkhkkhhkkhkkkrkkxk*

* Enable Interrupts

kkhkkkkhkkhkkhhkkhkkhhkhkhhkhkkhhkhkkhhkhkkhhkhkhkhkkhkhhkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhkhkkhkkkrkkx**

E R T I S R . S N N . N N S S

CLI

kkhkkhkkhkkhkkhhkkkhhkhkhhkhkkhhkhkkhhkhkkhhkhkhkhkkhkhhkhkhhkkhkhhkhkkhhkhkkhhkhkkhhkhkkhhkkhkkkikkxk*

THE MAIN LOOP

The main program loop impliments the controllers play-back
functionality. It busy waitstill the STATE variable designates
that the controller isin play-back mode. Thenit will grab the
section of the TABLE designated by NEXT.

First it checksif the entry is null ($0) designating that the end of the
TABLE has been reached. If itisnull then the NEXT pointer is reset

Then it checks if the duration of the input signal isnull ($0). Ifitis
that signal is skipped and the main loop looks at the next signal that is
in the table.

L I . B R S . . S S N .

Lastly the loop will put the recorded signal out to PORTB and then it

to the begining of the table and it continues looping through the TABLE.

18

* will busy wait for the number of seconds defined by the user in Record mode
* before starting the loop over again.
kkhkkkhkkkhkkhkkhkkhkkkkkkx
STAY: LDAA INPUT

LDY #PORTB * Load Y to perform BSET or BCLR

CMPA #NUM* Check if we are expecting NUM

BNEEDIR * If not, we are expecting DIR
ENUM: BSET 0,Y #5340 * Expecting NUM, set expecting bit on port B

BRA EFIN
EDIR: BCLR OY #5340 * Expecting DIR, clear expecting bit
EFIN: LDAA STATE * Check if we should be in playback state
CMPA #PLAY
BEQ GO2 * |f we are move out of busy waiting

BRA STAY * Loop untill it playback state is entered
kkhkkkhkkhkkhkkhkkhkkhkkkkkk
PlayBack state
GO2: LDX NEXT * Get the pointer to the next entry

LDAA O,X * Get the next entry

CMPA #80 * Check if the entry is null

BNE GO3 * |f not then continue outputting the program
LDX #TABLE* Reset the pointer to the begining of the table
STX NEXT

BRA STAY * Start the playback from the beginning
kkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkkkkkkkk
TABLE hasavalid entry
GO3: LDAA0OX

ANDA #30F * Load the outgoing signal

LDAB #3F0 * Get the control bits for the outgoing signal

ANDB PORTB

ABA * Compose the complete outgoing signal

LDAB 0,X

ANDB #3F0 * Get the duration of the signal

LSRB * Shift the number 4 timesto the right

LSRB * to put the 1 byte number in the lower byte

LSRB * 50 it can be used to determine the number of seconds
LSRB * to busy wait

CMPB #3$0

BNE SKIPME* If thetimeis zero then don't send the signal

LDX NEXT * Look at the next entry in the table

INX

STX NEXT

BRA STAY * Restart the playback loop.
kkhkkkkhkkhkkhkkhkkhkkhkhkhkhkkkkkkk Send
the signal
SKIPME: STAA PORTB * Send the signa

ANDA #%11101111 * Set the sync low

STAA PORTB * Send the sync signal

19

LDX #$4FFF * Number of timesto repeat routine
wloop3: ABA * wait for asmall time to ssmulate a keypress

DEX * this activates an event on the lego brick which will

BNE wloop3 * cause the signal to register and be sent to the rover

LDAA PORTB

ORAA #%00010000 * Set the sync bit high

STAA PORTB
kkhkkkkhkkhkkhkkhkkhkikhkkk** L00kat
the next entry

LDX NEXT * Look at the next part of the table

INX

STX NEXT
kkhkkkkkkhkkkkk*x Busy Waltfor
delay time
check: CMPB #$0

BEQ DONE

LDAA STATE * Thischecksto seeif we

CMPA #PLAY * were stopped in the middle of playing asignal

BNE DONE * sothat we don't wait for avery long signal to end

PSHA * Push all registersinfo onto the stack

PSHB

PSHX

LDX #$EFFO * Number of timesto repeat routine
wloop4: ABA * These ABAs are useless and only provide a set amount of

ABA * delay, allowing the entire loop to waste just about a second

ABA * The defined delay is then called to loop and busy wait

ABA * for an intiger time period between 1 and 15 s

ABA

ABA

ABA

ABA

ABA

ABA

ABA

ABA

DEX

BNE wloop4 * end of busy wait loop

PULX * Restore the registers information

PULB

PULA

DECB

BRA check * For every second loop make sure the state hasn't changed
DONE: JMP STAY
kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkkhkhkhkhkkkkkk
* XLATE - Directional input to IR compatible direction signal translation
* parameter - register A holds signal to be trandated
* return - the trandated signal is availablein register A upon completion
* Old value of register A is clobbered
* Returns null if the valueisn't adirection.

20

Example, you can read asignal in from port E and check if it was valid
LDAA #30F * Load the mask for the key-pad signal
ANDA PORTE * Retrieve the signd
JSR XLATE
CMPA #30
BEQ ERROR
*do whatever you want with the signa

kkhkkkkhkkhkkhhkkhkkhhkhkkhhkhkhhkhkkhhkhkkhhkkhhhkkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhhkkhkhkkhkkk*x*x

b T T R .

XLATE: PSHB * Save our registers information
PSHX
LDX #XLTAB * Load the base of the table
TAB
ABX * Add the signal value as an index into table
LDAA 0,X * Load the trandlated value
PULX * Restore the registers
PULB
RTS
XLTAB: FCB BBAD * The XLTAB stores a trand ation mapping for
FCB BBAD * keypresses when we are expecting a direction.
FCB BFORWARD * Theideaisto usethe current key pressto
FCB BBAD * detrmine what the output signal should be.
FCB BCCLOCK
FCB BSTOP
FCB BCLOCK
FCB BBAD
FCB BREVERSE
FCB BBAD
FCB BBAD
FCB BBAD
FCB BBAD
FCB BBAD
FCB BBAD
FCB BBAD
kkhkkhkkhkkhkkhkkhkkhkkhkkkkkk
* Main Iterrupt response to Input Capture Interrupt:
*
* A signal has been detected from the key-pad and it needs
* to be interpreted and the proper action taken. This
* routine is responsible for passing control to either a
* sub-routine that will transmit the signal out or a
* sub-routine that will record the usersinput in atable.
* A single bit supplied by a Finite state machine will
*

dictate which sub-routine to run.

kkhkkkkhkkhkkhhkkhkkhhkhkkhhkhkhhkhkkhhkhkkhhkkhkhkkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhhkkhkhkkhkkk*x*x

ORG $D100
kkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkkkkkk

LDY #$1000 * Clear the IC flag

BSET TFLG1y $FB

LDAA PORTB * Clear the error LED
ANDA #%11011111
STAA PORTB
CONT: LDAA PORTE
ANDA #$0F
LDAB STATE * Check if we are in Recording state
CMPB #REC
BNE HERE
LDAB INPUT * If the controller is expectin a number input then no
CMPB #NUM * error checking or state change is desired, else we
BNE HERE * determine the new state based on the keypress and check

JMP RECORD * for acorrectly formed directional input.
**inputA
HERE: CMPA #$A * Check if the start recording button was pressed

BNE AHEAD1

LDAA STATE * Check if currently in recording state

CMPA #REC

BNE ON1

JMP ERROR * If so raise error and ignore the input
ON1: CMPA #PLAY * Check if currently in playback state

BNE ON2

JMP ERROR * If so raise error and ignore input
ON2: LDAA #REC * Switch the state from transmit to record

STAA STATE

LDX #TABLE* Reset the table pointer

STX NEXT

LDAA #DIR * Reset the excpecting input variable
STAA INPUT

JMP END * Done

***inputc

AHEAD1l:. CMPA #3C * Check if the start playback button was pressed

BNE AHEAD2

LDAA STATE * Check if currently in playback state

CMPA #PLAY

BNE ON3

JMP ERROR * If so then raise error and ignore input
ON3: CMPA #REC * Check if currently in recording state

BNE ON4

JMP ERROR * If soraise error and ignore input
ON4: LDAA #PLAY * Switch to playback state and ignore input

STAA STATE

LDX #TABLE* Reset the table pointer

STX NEXT

LDAA #DIR * Reset the excpecting input variable

STAA INPUT

JMP END
**inputF
AHEAD2: CMPA #3F * Check if the stop button was pressed

22

BNE AHEAD3

LDAA STATE * Check if in recording state

CMPA #REC

BNE ON5

LDAA #30 * If so change state to transmit, make last entry null, and end

LDY NEXT

STAA QY * null last entry in the table

STAA $15

LDX #TABLE* Reset the table pointer

STX NEXT

LDAA #SIG * Change state to transmit

STAA STATE

LDAA #DIR * Reset the excpecting input variable

STAA INPUT

JMP END
ON5: CMPA #PLAY * Check if in playback state

BNE ON6

LDAA #SIG * If so change state to transmit

STAA STATE

LDX #TABLE* Reset the table pointer

STX NEXT

LDAA #DIR * Reset the excpecting input variable

STAA INPUT

LDAA #BSTOP

STAA PORTB * Transmit stop signal

ANDA #%11101111

STAA PORTB
kkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkhkkhkkkkkkkkx
Delay loop

LDX #$4FFF * Number of timesto repeat routine
wloop: ABA * Waste time

DEX

BNE wloop
kkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkhkkhkkkkkkkkx

LDAA PORTB

ORAA #%00010000

STAA PORTB

JMP END
ON6: JMP ERROR * Raise error and ignore input, because we are in trans. state

AHEADS: LDAB STATE * Get the state

CMPB #SIG

BEQ TRANS * Transmit state

CMPB #REC

BEQ RECORD * Record State
kkhkkhkkkhkhkkhkhkkhkhkhkhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhdhkhkhdhkhkhdhkhkhkhkhhkhkhhkhkhhkhkhkkhkkkikkk,*x*x*%
Errors come here
ERROR: LDAA PORTB

23

ORAA #%00100000
STAA PORTB
* BSET PORTB $40 * Invalid command input, output error and ignore command

kkhkkkhkkhkkkhkkhkkhhkkhkkhhkhkkhhkhkkhhkhkhhkhkkhhkhkkhhhkhkhkkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhkhkkhkkkikkx**%

Finish the interrupt

END: RTI * The sub-routine has finished
kkhkkhkhkkhkkhkhhkkhkkhhkhkhdhhkkhkhhkhkhdhhkhkkhhhkhdhhkhkhhhkhdhhkhkhhhkhdhhkhkhdhhkhdhhkhkhdhhkhdhhkhkhdhdkhkdkhkhdx*x%x
Transfer state

TRANS: LDAA #30F * Load the mask for the key-pad signal
ANDA PORTE * Retrieve the signa

JSR XLATE * Use XLATE to trandate the keypress

CMPA #30 * Check if avalid trasnlation is created.

BNE AHD1 * If itistransmit it

JMP ERROR * Elseraisean error and ignore it.
AHD1:LDAB #$F0 * Load the mask for the output control signals

ANDB PORTB * Retrieve the output control signals

ABA * Compose the output signal

STAA PORTB * Send the signal to the SmartBrick

ANDA #%11101111

STAA PORTB
kkhkkkhkkhkkhkkhkkhkkhkkhkkhkhkkkkkkkkkkx
Delay loop

LDX #$4FFF * Number of timesto repeat routine
wloop: ABA * Waste time

DEX

BNE wloop
kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkkkkkkx

LDAA PORTB * Reset the sync bit high

ORAA #%00010000

STAA PORTB

JMP END * Finnish up
kkhkkkkhkkhkkhkkhkkhkhkkhkkhkhkkhkhkkkkkkk
RECORD

hkkhkkkkhkkhkkhkkhkkhhkkhkkhhkhkkhhkhkkhhkhkkhhkhkhhkhkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkkhkhkkhkkkkx*%

Directional input
RECORD: LDAA INPUT* Determine the type of input that is expected
CMPA #DIR
BNE MOVEL * A number is expected, no error checking to be done
kkhkkhkkhkkkhkkhkkhkhkkhkkhkhkhkkhkhkkhkkkkkkk
LDAA #30F * Load the mask for the key-pad signal
ANDA PORTE * Retrieve the signa

JSR XLATE * Usethe XLATE function to trandate the directional input
CMPA #30
BNE AHD2 * If the trandation creates avalid signa record it
JMP ERROR * Elseraise and error and ignore the input
kkhkkhkkhkkhkkhkkhkkhkkhkkkkkkk
AHD2:LDX NEXT * Get the location of that isto be rcorded to.
24

STAA 0, X * Storethedirection

LDAA #NUM * Change the excpected input to number.
STAA INPUT

JMP END

kkhkkkhkkhkkkhhkkhkkhhkhkhhkhkkhhkhkhhkhkkhhkkhkhkkhkhhkhkhhkkhkhhkkhkhhkhkkhhkhkkhhkhkkhkkkikkk*x*%x NLWnberinpUt

MOVEZ1L; LDX NEXT * Get thelocation of the next record

LDAA PORTE * Get the number input from the user
LSLA * Shift the # left by 4
LSLA
LSLA
LSLA
LDAB O,X * Load the direction from memory
ABA * Combine the number and direction
STAA 0,X * Storethe completed part of the table
INX * Point at the next entry in the table.
STX NEXT
LDAA #DIR * Change the excpected input to direction.
STAA INPUT
JMP END * Finnish up
kkhkkkkkhkkhkkhkkhkkkkkkk
* Port B
* MSB -
* 6 - Expected input
* 5 - Error bit
* 4 - the sync signal for the Lego SmartBrick
* 3,2,1,0 - the bits carying the signal to the SmartBrick
*
* Port E
* MSB -
* 6 -
* 5_
* 4_
*

3,2,1,0 - the signal from the FPGA (number or direction)

kkhkkkhkkhkkhkkhhkkhkkhhkhkkhhkhkhhkhkkhhkkhhkhkhhkkhkhhkhkhhkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhkhkkhkkkk*x*%

kkhkkkkhkkhkkhkkhkkhhkkhkhhkhkhhkhkkhhkhkhhkhkhhkkhhkhkhkhhkhkhkkhkhhkhkhhkhkhhkhkhhkhkkhhkhkhhkhkhhkhkkhkhkkhkkkrkkxk*%

* trandate signals based on expected input

* signa command trandation
* 2 forward 6

* 8 reverse 7

* 4 counterclk 9

* 6 clk 10

* 5 stop 11

kkhkkkhkkhkkhkkhhkkhkkhhkkhkhhkhkkhhkhkkhhkhkkhhkhkhhkhkkhhkhkhkhkkhkhhkkhkhhkhkhhkhkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhkhkkhkkkrkkx**%

B) Verilog

freqdivide.v:
/***\
| freqdivide.v - Frequency division nodul e |
| Provide frequency division through cl ock counting. |
| Copyright(C) 2002 Stephen Friedman

\

***/

nmodul e freqdi vide(clk, reset, divf);

i nput clk;
i nput reset;
out put di vf;
/* The clk input will provide the pul ses to count.
A counter will count these pul ses, and the difv
output will be the MSB of the counter, effectively

di vidi ng the input by 2*(#of bits in counter).
Reset is provided nostly for useful simulation,
the counter doesn't really ever have to be in a
known state.

*/

/* W need to save these values, so reg them */
reg [13:0] count;

/* Directly connect the output to the MSB of the
counter. */
assign divf = count[13];

/* Create a segential counter that counts the
cl ock pul ses by incrementing the counter

on each clock edge. On reset sinply set the counter

to 0 */

al ways@ posedge cl k or posedge reset)
if(reset) count <= 0;
el se count <= count +1

endnodul e

poll _freq.v:
nmodul e poll _freq(clk, reset, divf);

i nput clk;
i nput reset;
out put di vf;
/* The clk input will provide the pul ses to count.
A counter will count these pul ses, and the difv
output will be the MSB of the counter, effectively

di vidi ng the input by 27(#of bits in counter).
Reset is provided nostly for useful simulation,
the counter doesn't really ever have to be in a
known state.

*/

/* W need to save these values, so reg them */
reg [12: 0] count;

/* Directly connect the output to the MSB of the
counter. */
assign divf = count[12];

/* Create a segential counter that counts the
cl ock pul ses by incrementing the counter
on each clock edge. On reset sinply set the counter

26

to 0 */
al ways@ posedge cl k or posedge reset)
if(reset) count <= 0;
el se count <= count +1;
endnodul e

sevenseg. Vv:
nodul e sevenseg(s, seq);
i nput [3:0] s;
out put [6:0] seg;
wire [6:0] seginv;

/* seginv[6] to seginv[0O] represent outputs to control
7-segment LED s A to G respectively

seg[6]
seg[1] I Seg[o]i seg|[5]
seg[2] | i seg[4]
segl3]

The truth table for the outputs is inplenented
in sumof product formto allow the synthesis
tools to optimze the design.

*/

assign seginv[6] = ~s[3] & ~s[2] & ~s[1] & ~s[O]
~s[3] & ~s[2] & s[1] & ~s[O]
~s[3] & ~s[2] & s[1] & s[O]
~s[3] & s[2] & s[1] & ~s[O]
~s[3] & s[2] & ~s[1] & s[O]
~s[3] & s[2] & s[1] & s[O]
s[3] & ~s[2] & ~s[1] & ~s[O]
s[3] & ~s[2] & s[1] & ~s[O]
s[3] & ~s[2] & ~s[1] & s[O]
s[3] & s[2] & ~s[1] & ~s[O]
s[3] & s[2] & s[1] & ~s[O0]
s[3] & s[2] & s[1] & s[O0]

assign seginv[5] = ~s[3] & ~s[2] & ~s[1] & ~s[O]]
~s[3] & ~s[2] & ~s[1] & s[O]]
~s[3] & ~s[2] & s[1] & ~s[O]]
~s[3] & ~s[2] & s[1] & s[O]]
~s[3] & s[2] & ~s[1] & ~s[O]]
~s[3] & s[2] & s[1] & s[O]]
s[3] & ~s[2] & ~s[1] & ~s[O]]
s[3] & ~s[2] & ~s[1] & s[O]]
s[3] & ~s[2] & s[1] & ~s[O0O]]
s[3] & s[2] & ~s[1] & s[O]

assign seginv[4] = ~s[3] & ~s[2] & ~s[1] & ~s[O]
~s[3] & ~s[2] & ~s[1] & s[O]
~s[3] & ~s[2] & s[1] & s[O]
~s[3] & s[2] & ~s[1] & ~s[O]
~s[3] & s[2] & ~s[1] & s[O]
~s[3] & s[2] & s[1] & ~s[O]
~s[3] & s[2] & s[1] & s[O]
s[3] & ~s[2] & ~s[1] & ~s[O]
s[3] & ~s[2] & s[1] & ~s[O]
s[3] & ~s[2] & ~s[1] & s[O]
s[3] & ~s[2] & s[1] & s[O]
s[3] & s[2] & ~s[1] & s[O]

e e e e e e e e e e e e e e e e e e e
DODDODNDDDODODDODNDDDOONDDODON D OO
[l l l | S B B [Ul l l

oF o3 o o o o o oF o o oF oF o o oF o oF oF oF o oF oF o oF oF oF o

1111111111111111111111111111
PO ey g ay Ay Ay gy eo

oF o3 o o o o o oF o o oF oF o o oF o oF oF oF o oF oF o oF oF oF o

1111111111111111111111111111
PO ay gy Ay e ey arayavay ey

oF o3 o o o o o oF o o oF oF o o oF o oF oF oF o oF oF o oF oF oF F

)))) e [[e}) [} e e e e} e} e} [}] e e e} [} e} [}] e} —— ——1

JbJbeJbﬁSSSSSSJDﬁﬁSSSSSSSﬁﬁﬂuﬂuSSS

assign segi nv[3]
assign segi nv[2]
assign segi nv[1]

1111111111]]]]]]
TR Ee e ey Ay av o

o o3 o o o o o oF o oF oF oF oF oF oF oI

—— e e e e e e e e —
SﬂuSSSSﬂuSJDJDSﬂuSﬂuSS

o o3 o o o o o oF o oF oF oF oF oF oF oI

——— e e e e e e e e e e e
ﬁSSSﬁJDSSSﬁﬁJDﬂuSSS

o o3 o oF o o o oF o oF oF oF F oF oF I

1))) e)))] —— —— —— ——1

SSSSn~bn~bn~\un~bn~\uSSSSSSS

assign segi nv[0]

— — — — — —— —

0
1
2
3
4
5
6

[y Sy | S [R | S —

>>>22>22>22>2 2
ccCccCccoccocccCc
DODODDDDO DD
QODLOLOLOLOLOLO
nununnnonoun
| A |

— — — — — —— —

[y S Y S | S [R—] — —

assign seg
assign seg
assign seg
assign seg
assign seg
assign seg
assign seg

endnodul e

——— ~

and display their sumin

Sum and di splay mul tipl exi ng nodul e.

nmuxdi spl ay. v -
Use multiplexing to display two nunbers on two 7-segnent

bi nary on the FPGA board's on board LED s.

Copyri ght (C) 2002 Stephen Friedman

khkkkhhkkkhkhhkhkkhhhkhkhhkhkkhhhhkhhhkkhhhhkhhhkddhhkdhdxkddhxhdhxrdhxhkdhxrdxx*x%
di spl ays using only 1 decoder

khkkkhkhkkhkhkhhkhkhhkhkhhhkhhhkhhhkhhhhhkhhhdhhhhhhdhhkhkhdhkhdkhkrhhkrkhhkhrx*

nmodul e nuxdi spl ay(s1

nmuxdi spl ay. v:

~—

enRl ed) ;

reset, clk, seg, enLled,

s2,

28

i nput [3:0] s1;
i nput [3:0] s2;
i nput reset;
i nput clk;
out put [6:0] seg;
out put enLl ed;
out put enRl ed;

wire [3:0] sdisp;
wire divf;

/* Use a four bit mux with the select input tied
to the signal that controls which display is
on, so that the correspondi ng number will be
read for that display. */
mux_4 i nmux(sl, s2, divf, sdisp);

/* Instantiate a 7-segnment decoder that is attatched to
the 4b mux to di splay the nunbers.*/
sevenseg digit(sdisp, seg);

/* Divide our clock frequency to slow it
down so to a usable frequency for multiplexing
t he display. */
freqdivide fdiv(clk, reset, divf);

/* Use continuous |logic to make the divided
clock signal multiplex the two displays. */
assign enLl ed = divf;
assign enRl ed = ~di vf;

endnodul e

keypol | _fsmv:
/***\
| keypoll _fsmv - FSMto poll a 4x4 matrix keypad, output |
| the keycode, and output a sync signal on key reception.

| Copyright(C) 2002 Stephen Friedman

***/

nmodul e keypol I _fsm(cl k, reset, krow, kcol , scanned_num sync) ;
i nput clk;
i nput reset;

/* Rows and columms of the 4x4 matrix keypad */
i nput [3:0] krow,
out put [3:0] kcol;

/* Qutput of scanned key press */
out put [3:0] scanned_num

/* Sync to signal when keypress is ready to be read */
out put sync;

/* 1/ 0O patterns for reading specific matrix lines */

f
parameter POLL1 = 4'bl1110;
parameter POLL2 = 4'bl1101
parameter POLL3 = 4'bl1011
parameter POLL4 = 4'Db0111

/* Qutput register for driving matrix columms */
reg [3:0] kcol

/* One bit flag to keep track of whether or not
we are currently polling the keypad */
reg polling;

/* Sync signal that is raised for one clock cycle
when a new keypress is detected and decoded */
reg sync;

/* Wre to let us know if a key has been pressed */
Wi re pressed;

/* This decodes the row and colum pattern to a
4-bit binary nunmber */
keydecode keypadl(krow, kcol, scanned_num;

/* Detects when any row is pulled | ow by a keypress */
assign pressed = ~(&krow);

/* FSMwi th async reset driven by clk */
al ways@ posedge cl k or posedge reset)
/* 1f reset, change to the waiting state and reset
the polling pattern. */
i f(reset)
begi n
sync <= 0;
polling <= 1;
kcol <= POLL1;
end
el se
/* 1If a keypress is detected and we are polling,
there is a new keypress ready on the decoder
out put, so raise sync and stop polling */
if (pressed)

i f(polling)

begi n
sync <= 1;
polling <= 0;
end
/* W aren't polling and a key is still pressed
so we stay in the waiting state, and ensure
that our sync is | ow because the decoder out put
i s now considered old */
el se // pressed and ~polling
begi n
sync <= 0;
polling <= 0;
end
/* W are in the polling state and nothing is currently
detected on the keypad, so remain polling and cycle
to the next output pattern to check the next colum.*/

el se
if(polling) //~pressed and polling
begi n
sync <= 0;

polling <= 1;
case(kcol)
POLL1: kcol <= POLLZ;
POLL2: kcol <= POLL3;
POLL3: kcol <= POLL4;
POLL4: kcol <= POLLZ1;
default: kcol <= POLL1
endcase
end
/* The key press was rel eased, so we
can return to the polling state from
the waiting state. */
el se // ~pressed and ~polling
begi n
sync <= 0;
polling <= 1;
end
endnodul e

keydecode. v:
/***\
| keydecode.v - Maps the keypad matrix | ocations using one

| hot encoding to their binary counterparts.

| Copyright(C) 2002 Stephen Friedman

***/

nodul e keydecode(krow, kcol ,y);
input [3:0] krow;, /* Row inputs of matrix */

i nput [3:0] kcol; /* Columm outputs of matrix */
output [3:0] vy; /* Binary output */
reg [3:0] v;

/* One-hot encoding of matrix | ocations */
par amet er POLL1 4' b1110;

parameter POLL2 = 4'bl1101
parameter POLL3 = 4'bl1011
parameter POLL4 = 4'b0111

/* Binary output equivalents */

par amet er ZERO = 4' b0000;
par amet er ONE = 4' b0001
par ameter TWO = 4' b0010;
parameter THREE = 4'b0011
par amet er FOUR = 4' b0100;

31

[*Map

di agram

*/

par anmet er
par anmet er
par anmet er
par anmet er
par anmet er
par anmet er
par anmet er
par anmet er
par anmet er
par anmet er
par anmet er

FI VE
SI X
SEVEN
El GHT
NI NE
HEXA
HEXB
HEXC
HEXD
HEXE
HEXF

4' b0101;
= 4' p0110;
4' b0111;
4' b1000;
4' b1001;
4' b1010;
= 4' p1011;
4' b1100;
= 4' p1101;
4' b1110;
4' b1111;

matrix locations to binary values according to follow ng

row

ol
234

PNWRARO
>~ P
oouN
WO ow
mmaooO

al ways@ krow or kcol)
case({krow, kcol })

endnodul e

{POLL1, POLL1}:
{POLL1, POLL2}:
{POLL1, POLL3}:
{POLL1, POLL4}:
{POLL2, POLL1}:
{POLL2, POLL2}:
{POLL2, POLL3}:
{POLL2, POLL4}:
{POLL3, POLL1}:
{POLL3, POLL2}:
{POLL3, POLL3}:
{POLL3, POLL4}:
{POLL4, POLL1}:
{POLL4, POLL2}:
{POLL4, POLL3}:
{POLL4, POLL4}:

default: y <=

endcase

<= HEXA,
<= ZERQG
<= HEXB;
<= HEXF;
<= SEVEN,
<= El GHT;
<= NI NE;
<= HEXE;
FOUR;
<= FI VE;
<= SI X;

<= HEXD;
<= ONE;

<= TWO

<= THREE;
<= HEXC,

MKk K KKK KKK
A
1

N

32

C) Lego RCX code
Microps Rover .Isc:

/*

/OLOGBOOK

0

*/

program test {
#include <RCX2.h>
#include <RCX2MLT.h>
#include <RCX2Sounds.h>
#include <RCX2Def.h>
varmsg =0

event range_messageEventRange when message is 1..6

main {
ext InterfaceType “kFreestyle”
rex_ClearTimers
bbs_GlobaReset([A B C])

try {
power [A 18
power[C |14
direction[ABC][]
} retry on fail
try {
forever {
repeat {
float[ABC]
if msg=10{
direction[A][]
on[A]
off [C]
}
else
{
}
if msg = 20{
direction[1[A]
on[A]
off [C]
}
else
{

if msg=30{
direction[A][C]

on[AC]

}

else

{

}

if msg =40{
direction[C] [A]
on[AC]

}

else

{

}

if msg =50{
off [ABC]

}

else

{

}

} until range_messageEventRange
msg = (message* 10)
clear message
display msg:1
}
} retry on fail

mp controller.lsc:
program test {

#include <RCX2.h>

#include <RCX2MLT.h>

#include <RCX2Sounds.h>

#include <RCX2Def.h>

var bit1=0

var bet2=0

var bit2=0

Sensor temperature2 on 2

temperature2 is temperature as fahrenheit

event tRange_temperature2EventRange when temperature? is -40..450

event tRange_temperature2EventRange0 when temperature2 is 500..1300

event tRange_temperature2EventRangel when temperature2 is 1330..1580

sensor temperature3 on 3
temperature3 is temperature as fahrenheit
event tRange_temperature3EventRange when temperature3 is -40..490

event tRange_temperature3EventRange0 when temperature3 is 500..1300
event tRange_temperature3EventRangel when temperature3 is 1350..1580

sensor touchl on 1
touchl is switch as boolean
event tClick_touchlEventClick when touchl.click

main {
ext InterfaceType "kFreestyle"
rex_ClearTimers
bbs_GlobalReset([A B C])
trigger tClick_touchlEventClick
start TemperatureWatcherO
start TemperatureWatcherl
start TemperatureWatcher2
start TemperatureWatcher3
start TemperatureWatcher4
start TemperatureWatchers
rcx_Priority(8)
trigger tRange_temperature2EventRange
trigger tRange_temperature2EventRange0
trigger tRange_temperature2EventRangel
trigger tRange_temperature3EventRange
trigger tRange_temperature3EventRange0
trigger tRange_temperature3EventRangel

try {
forever {
wait until tClick_touchlEventClick
counterl = bitl
counterl += bit2
send (counter1/10)
}
} retry on fail

watcher TemperatureWatcherO monitor tRange_temperature2EventRange

{
rcx_Priority(5)

35

try {
bitl =20
} restart on fail
} restart on event
watcher TemperatureWatcherl monitor tRange_temperature2EventRange0
{
rcx_Priority(5)
try {
bitl =10
} restart on fail
} restart on event
watcher TemperatureWatcher2 monitor tRange_temperature2EventRangel
{
rcx_Priority(5)
try {
bitl1=0
} restart on fail
} restart on event
watcher TemperatureWatcher3 monitor tRange_temperature3EventRange
{
rcx_Priority(5)
try {
bit2 =60
} restart on fail
} restart on event
watcher TemperatureWatcher4 monitor tRange_temperature3EventRange0
{
rcx_Priority(5)
try {
bit2 =30
} restart on fail
} restart on event
watcher TemperatureWatcher5 monitor tRange_temperature3EventRangel
{
rcx_Priority(5)
try {
bit2=0
} restart on fail
} restart on event

36

D) Lego Implementation Photos
Picture of the Gearing on the Rover

37

Picture of the Custom Connection piece used on the RCX

Picture of the connection betweent he RCX controller and the Rover

38

