RF Wireless Text Messaging System

Final Project Report
December 8, 2000
E155

Braden Pellett and Steve Yan

Abstract:

One of the hot topics in modern computing is wireless communication. WAP and Bluetooth technol ogies
are poised to revolutionize the way that electronic devices and the humans who use them will interact in
the future. In the spirit of such up and coming technology, the objective of this project isto design and
implement awireless communication system using RF wireless transceivers. The system incorporates a
multi-layered communication protocol with packet recognition and simple handshaking. Each transceiver
station consists of a4x4 matrix keypad for input, LCD for text display, half-duplex transceiver, FPGA
board, and M68HC11EVB. On user input or incoming data, the FPGA aerts the HC11 via external
interrupt signals. The HC11 controls an LCD display menu system and writes data to memory. The
menu system allows the user to input a message for transmission or to view the past six received
messages.

|. Introduction

This project is an experimental foray into wireless communication, afacet of the high technology
industry that is currently experiencing rapid growth. Asthistechnology isalock for becoming the
standard in the future, it begs the question of how difficult it is to implement such a system and what
kinds of problems are inherent in wireless technology.

To answer this very question, this project implements a multi-layered communications protocol.
This protocol forms the basis for a wireless text messaging system that allows for sending and receiving
of text messages via half-duplex RF transceivers operating in the 900 MHz range. The protocol is robust
enough to alow the messaging system to differentiate between transceiver noise and actual data.
Furthermore, the system allows for a smple handshaking protocol that allows a sender to confirm the
reception of his/her message.

. transceiver enable,
4x4 matrix direction select
PORTA [7:6
keypad (L7:eD |LCD moduIeI

2

transceiver 18 LCD dat 4 4 LeDb control
txen, rxen, keypad data port ata 8t 3} contro
((« I 1)) b e g v X “GomErro)) (oRTE 70D (PORTA [5:3])

Ay

\

3 8
o L. // >
RF ' 4 EPGA 8 M68HC11
rxdata < > > EVB
_ transceiver data port _

< (PORTC [7:0])
4

external interrupts
(PORTA [2:0], STRA)

Transceiver Station

Figure1l. System Block Diagram.

Design Overview

The overall design consists of two transceiver stations, each with identical hardware (see block
diagram). The FPGA and M68HC11 tasks are divided cleanly based on the protocol layers. The FPGA
handles the lowest layers of the protocol. Itstask is only to send or receive data but not interpret this data
inany way. The FPGA listens to incoming data on the transceiver and based on the protocol criteria (see
FPGA Design) discards the data as noise or recognizes a message header followed by data. Should the
latter occur, the FPGA alerts the HC11 of incoming data via external interrupt signals (see
Microcontroller Design). The transceiver is controlled exclusively by the FPGA. The FPGA takes input
from the HC11 to select transfer or recelve mode for the transceiver. Furthermore, the FPGA takes data
from the keypad and interrupts the HC11 to capture the keypad press.

The HC11 isinterrupt-driven. The HC11 will spin waiting for a keypad press or interrupt signals
from the FPGA. The HC11 handles the higher layers of the protocol. That is, it will not be interrupted
unless real dataisreceived by the transceivers or if the user manipulatesit via keypad press. Based on
which interrupt signal the HC11 receives, it will either send out a byte of data, setup for receiving data,
receive a byte of data, or read from the keypad.

The system interface uses a 16x2 LCD character display. The HC11 drives a menu system on the
LCD that alows the user to enter and send a message, aerts the user of an incoming message, or alows
the user to view a message history of up to six previous messages. The LCD is driven exclusively by the
HC11.

[I. New Hardware

This text messaging system uses two new types of hardware: an LM016 16x2 LCD character
display and a Linx Technologies SC-PA Series RF transceiver module.

LMO016 16x2 LCD Character Display (LM016)

This LCD includes an on-board driver that handles functionality such as recognizing characters,
writing characters to the display, and moving the cursor. Therefore using the LCD is simply a matter of
issuing the correct series of commandsto the LCD. ThisLCD display is controlled via 14 pins (see
Schematics). Thefirst three pins (GND, V., Ve) control power to the LCD. An external potentiometer is
tied to these three pins to control the intensity of the LCD display.

The next three pins (RS, R/W, E) are used as control pins. Writing to these pins and then issuing
specific commands to the data pins will cause different functionality on the LCD. Pin 4 (Register Select)
should be high when writing characters to the display and low when writing to control registers. Pin5
(Read/Write) allows a user to either write data to the display or read from its on-board memory. The read
functionality was not used in this project. Pin 6 (Enable) should be strobed low after setting up the data
pins. The dataon pins 7-14 are latched on the falling edge of this signal.

Pins 7-14 (DATAO through DATAY) are used for data |/O. They are used either to write actual
data to the screen or issue certain control commands to the LCD.

Most displays of this type have similar programming. A full reference of LCD commands can be
found at: http://www.repairfag.org/filipg/LINK/F_LCD_progr.html#L. CDPROGR_002

Linx Technologies SC-PA Series RF Transceiver Module (TR-916-SC-PA)

The SC-Series modules are single-channel, half-duplex digital/analog transceivers designed for
wireless applications for up to 500 feet outdoors and 200 feet indoors. The SC-PA transceiver module
operates in the 900 MHz range and transfers data at a rate of up to 33.6 KBps. An on-board voltage
regulator regulates the transceiver’ sinternal V. to 3.0V. The transceiver can operate over an input
voltage range of 2.7V to 16V.

These transceivers were chosen for their easy interface. The antenna connector came pre-
connected and the pinout, as seen below, issimple. However, these transceivers have some subtle
aberrations that should be noted. On startup of the transmitter there is a 4-5 msec period of time during
which the transmitter should be allowed to stabilize before sending data. Similarly for the receiver, a 7-
10 msec delay is needed. Finaly, on transfer/receive switching afair amount of noise is generated on the
transceivers, which, if not accounted for, will be interpreted as data by the communications protocol. The
protocol used in the text messaging system compensated for both of these problems.

Table1l. RF Transceiver Pinout

Pin # Pin Title Description

1,11, 13, 15 Ground Module Grounds

20 Tie to Common Groundplane

2 RXDATA | Recovered Data Output

3 AUDIO Recovered Analog Output

4 RSSI Received Signal Strength Indicator

5 PDN Logic Low Powers Down The Transceiver

6 N/C Not Implemented Do Not Connect

7 RXEN Receiver Enable Pin | Active High | Pull Low Whenin TX
8 TXEN Transmitter Enable Pin | Active High | Pull Low Whenin RX
9 TXDATA | Anaog or Digital Content to be Transmitted

10 VIN 2.7-16VDC Supply

12 ANT 50W Antenna Port | TX/RX Switched Inside Module

14 PWR LEV | Do Not Connect! Not Used on PA Version

[Il. Schematics

"————1 GND
FP18 2 RXDATA
»3 AUDIO
4 RSSI
5 PDN
»6 N/C
FP10 7 RXEN
FP9 8 TXEN
FP8 9 TXDATA
+5VvVDC 10 VIN

+5VDC

GND
GND
GND
GND
GND
GND
PWRLEV

ANT

ig L = LCD Display
18 F = FPGA Board
17 H = M68HC11
16

15

14 ¢

:—@"— FP23 (red LED)

Transceiver

FP24 (yellow LED)

FP25 (green LED)

COLS3 ¢ P28
COL2 § P29
COL1 ¢ P35
COLO ¢ P36
ROWO P38
ROW1 P39
ROW2 P40
ROW3 94— P44
1IK>S1IK>S1K>1
+5VDC
Matrix Keypad
FP84 @&———————— @ (PCO)

FP83
FP82
FP81
FP80
FP79
FP78
FP77
FP72
FP70/LED1
FP69/LED2
FP68/LED3
FP67/LED4
FP66/LEDS
FP65/LED6
FP62/LED7
FP61/LED8
FP59
FP58
FP57
FP56
FP45

e e (PC))
— o (PC2)
e e (PC3)
————® (PC4)
e————® (PC5)
e————® (PCo)
e e (PC7)
e———@ (PAD)
e————@ (PEO)
&———o (Pt1)
o——o (PE2)
oe——o (PE3)
&——o (PE4)
oe———o (PE5)
e————o (PE6)
oe——e (FE7)

&———@ H4 (STRA)

e o (PA)
e— @ (PAG)
— o (PAY)
— o (PA2)

FPGA/HC11 Interface

DATA7
DATA6
DATAS
DATA4
DATA3
DATA2
DATAL
DATAO

L14
L13
L12

¢—— H35 (PBY7)
¢—— H36 (PB6)
———— H37 (PB5)

L11 $——— H38 (PB4)
L10 $———— H39 (PB3)
L9 —— H40 (PB2)
L8 $—— H41 (PB1)
L7 $———— H42 (PBO)
¢ H30 (PA4)
¢ H29 (PAS5)

<

RS p—————— H28 (PAG)

Ve

L4
L3

+5VDC
T

Vece L2

L

GND L1 9

LCD Display Module

+5VDC

47K

<o

P19

Reset switch

V. Microcontroller Design

The M68HC11 handles controlling the L CD-displayed menu system, storing received messages,
and allowing for input and transmission of atext message. All 6BHC11 functionality is either polling or
interrupt-driven. Table 2 shows the various input and output signals accepted and generated by the
HC11:

Table 2. Microcontroller I/O

Outputs
Transceiver Data Port (PORTC) Transceiver Data Port (PORTC)
Keypad Data Port (PORTE) Transceiver Direction Select (PA7)
Receiver Incoming Transmission IRQ (PA2) Transmitter Enable (PA6)
Receiver Data Ready IRQ (STRA) LCD Data (PORTB)
Transmitter Data Request IRQ (PA1) LCD Control (PORTA [5:3])

Keypad Data Ready (Polling) (PAQ)

Program Data

The HC11 tracks awide variety of program datato help it decide which subroutines to execute
based on incoming interrupt or polling signals. Most notably it remembers which screen is displayed on
the LCD, where in memory data to be transmitted is stored, and where in memory previous messages
have been stored (see Appendix B for afull listing of program data).

Data Structure
The messages sent and received by each transceiver station expect the following structure for
each message:
1. Control character. Thisfirst byte denotesif the message is an actual text message or simply a
handshake.
2. Data If thereistext to be sent, the words of the message (up to 32 characters) immediately
follow the message control character. If thisis smply a handshake, no datais sent after the
control character.

Handshaking

The HC11 controls a simple handshaking protocol that will allow a user to verify if the other
transceiver station correctly received his’her message. If atransceiver station receives what it identifies
asavalid message, it will immediately send out a handshake signal to aert the sender that a message was
received. The sender will then display on the LCD that the transmission was successful. If no such
handshaking signal is received after a certain timeout period (1 msec in this case) then the sending station

displays afailure message.

Transfer/Receive Switching

The HC11 will be able to send and receive messages by controlling the physical RF transceiver
module viathe FPGA. It uses two output signals to accomplish this: Transmitter Enable and Direction
Select. When Direction Select islow, the transceiver is set to transmit. When Direction Select is high,
the transceiver is set to receive. When Transmitter Enable is high, this prompts the FPGA to repeatedly
fire the Transmitter Data Request Interrupt in order to send a message byte by byte from the HC11.

When sending data, the HC11 cannot switch back to receive mode immediately after sending the
stop byte. Although the HC11 will be finished sending, the FPGA will still be piping data serialy to the
RF transceiver. Switching during this period will prematurely terminate the outgoing data. Conversely,
the HC11 should not be allowed to switch to transfer mode until any incoming messages have been
completely sent.

To fix this problem, the HC11 monitors different input and output signals to determine when it is
safe to switch from receive to transfer and vice-versa. It cannot enter transfer mode until the Receiver
Incoming Transmission Interrupt signal islow. This guarantees that switching will not cut off any
incoming data. Furthermore, the HC11 cannot enter receive mode until the Transmit Enable signal and
Transmitter Data Request Interrupt signals are low. When the latter islow, this signifies that the FPGA
has completely sent out the byte of datathat it last read from PORTC.

Palling and I nterrupts

Figure 2 shows a simplified version of the microcontroller’s program flow. Note that the HC11
will only execute its subroutines if either a) a keypressis detected or b) an interrupt signal goes high. In
this sense the HC11 isusually dave to the FPGA except on initializing data transmission, where it will
raise the transfer enable signal to prompt the FPGA to pull datafrom the HC11 on the Transceiver Data
Port (PORTC).

The keypress poller spins on the Keypad Data Ready flag (IC3F). When akey is pressed on the
matrix keypad and the FPGA raises this signal, the poller will break from its spin and traverse the rather
lengthy if-then-else keypresslogic. The HC11 will call different subroutines based on which screen
(main menu, send screen, or view history) is currently on the LCD and which keys on the keypad are
pressed. The keypress poller was originally made an interrupt, however due to its length and non-time
critical nature, it was downgraded to a polling scheme in order to eliminate the risk of this lengthy routine
from delaying other more time-critical interrupts.

At any point during the keypress polling routine, an external interrupt signal from the FPGA can
trigger one of three interrupt service routines (ISR) to fire. These three interrupt signals are: Receiver
Incoming Transmission, Receiver Data Ready, and Transmitter Data Request. Each of these signals
prompts the HC11 to setup for incoming messages, send a data word, or receive a data word.

Receiver Incoming Transmission |RQ

This interrupt alerts the HC11 that the FPGA has recognized avalid data packet and that
incoming dataisimminent. Thissignal will stay high for the duration of the message reception. To
prepare for this data, on this interrupt’ s positive edge the ISR for Receiver Incoming Transmission raises
aflag that instructs the Receive Data Ready ISR to ook for one of the two control characters
corresponding to either an incoming message or a handshake confirmation.

This ISR will aso trigger on the negative edge of the interrupt signal. If a handshake was just
received, the ISR need not do anything since thisis simply confirmation that the last message it sent out
was properly received. If amessage was just received however, the HC11 will nest Transmitter Data
Reguest interrupts within this ISR in order to send out a handshaking response immediately.

Receiver Data Ready IRQ

The Receiver Data Ready signal fires every time the FPGA reads in a new byte of incoming data.
When this signal israised, the ISR will do different things based upon the flags that are set within the
program.

If the “Expect Control Character” flag is raised, then the ISR attempts to interpret the byte of data
that it reads from PORTC as one of the two control characters. If neither can be matched to the data, the
ISR immediately disregards the entire message. If the data is a message, then the ISR will calibrate a new
position in the history memory block and subsequently treat each successive byte as a byte of an
incoming message, storing it to memory. |f the datais a handshake, the ISR disregards any other data
following the handshake control character. Thisis merely confirmation that the other transceiver station
received the previoudy sent message. When the Receiver Incoming Transmission Interrupt goes low, this
signifies the end of an incoming message. A stop byte ($00) is used to terminate the string written to
memory.

Transmitter Data Request | RQ

The Transmitter Data Request signal fires every time the FPGA requests a new piece of data from
the HC11. Thissignal will only fireif the Transmitter Enable signal is high. The ISR reads a byte of data
from the block of memory that records the message to be transmitted and writes this datato PORTC for
output. When the ISR sees the stop byte ($00), this signifies that the message is finished and the ISR sets
the Transmission Enable signal low. The ISR does not send the stop byte.

Message History

The text messaging system message history isacircular array of six 33-byte blocks of memory.
This circular setup eliminates the need to shift all the previous messages over in memory when the history
has been filled and a new message has come in. Rather, before a new message comesin the HC11
calculates from the address of the current newest message where the address of the next new message will
be. Should it hit the limit of the memory block devoted to message history, it will wrap to the front of the
history memory block to store the new message.

LCD Display and Control

Writing to the LCD display is controlled via PORTB and three bits of PORTA. A seriesof LCD
control subroutines along with subroutines that draw specific screen types (main menu, send screen, view
history) are used to represent to the user the changing state of the text messaging system. The LCD
display will change in response to different keypresses in different areas of the menu system. Since the
LCD display requires a delay on the order of 3-5 msec between writing characters, LCD display writing
subroutines are called from the main program rather than from interrupt service routines to minimize
interrupt delays.

Figure2. M68HC11 Program Flow Block Diagram | Thisis asimplified representation of the HC11's
routines that outlines its main functionality.

(initialize

. Initialize variables

. Initialize LCD

. Clear LCD

. Activate LCD cursor

. Display main menu

. Setup external IRQs

. Switch to RX mode }

4

ﬂeypad poller \

OUTOTh WNPEP

[L4

[Spin on keypress flag] \
keypressed.
reset keypress flag
main menu Which screen is history
on the LCD display?
- N A/
If (OPTION_A) (1f (ENTER) A [1f (<)]
- Display SEND screen - Switch to TX mode - Display older message
- Send message
If (OPTION_B) - display MAINMENU If (->)
- Display HISTORY - Display newer message
screen Else
- Print character to LCD If (ENTER)
- Write character to - Display MAINMENU
\, > _nemory + > " _J
Return to keypress spin]
" i "
L]
J interrupts S \ *. K
|-----------------------'--‘--------------------------
: » \ <
Y cswu - =\ ~ ~ - ~
: | RXincoming transmission RX data ready TX data request
= | On POSEDGE On POSEDGE On POSEDGE
- Set flag for control character If checking for control character If data at current position in TX
: check - If msg control character, data block is $00 (stop byte)
calibrate memory position for - disable transmission
On NEGEDGE incoming message storage. Else
: - If a message was received, - If handshake, alert user of - Read from current position
send out handshaking successful transmission in TX data block
: | - Else data was handshake, Else - Write data to PORTC for
exit - Write data to memory transmission
A\ _J . _ o _

®tsmsmsEEsEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

*>
& 4N R RN EEEEEE AN AN AN NN NN N EE I NN EEEEEEA NN AN ENA I NN NN NENANEENEENNEEEEEEEEEEEEEEEEEEEEEEEEEsEsEmmsmenmnnnn®®

V. FPGA Design

The FPGA holds three main components: the keypad decoder, the RF seria data transmitter, and
the RF serial datareceiver. All the components use two primary signals: the input clock (clk) and the
global reset (reset_L).

Keypad

The keypad decoder module polls a 4x4 matrix keypad for input (polling on keypad cols and
watching for input on keypad_rows). It outputs the typed value using an ASCII encoded word on an 8-bit
bus (keypad_data_port), and uses the positive edge of another signal (keypad_data_ready) to indicate new
dataisavailable. As part of the keypad decoding, three keysin the right most column are designated as
shift keys, which change which characters are decoded for the first three columns. Thereis also 3 outputs
which indicate which shift key, if any, is active (shift_L[0..2]). Refer to appendix C for the keypad
layout.

RF Serial Data Transceiver

Design Description

The other two main components on the FPGA, the RF serial data transmitter and the RF serial
data receiver, handle the lower layers of the designed communication protocol, while the upper layers are
on the 6BHC11 microcontroller. What this meansis that the FPGA handles all aspects of the
communication of individual words of data, but does not interpret the meaning of the wordsin any way.
The microcontroller handles the meaning of individual words, but is not concerned with how these words
are communicated. Therest of this section is concerned with the operation of the communication
modulesin the FPGA. Refer to the microcontroller section for an explanation of the higher-lever
protocol.

In figuring out how to send data words over the RF wireless link using the receiver modules, a
few facts needed to be considered. First, the transceiver makes no assumptions about the serial data, and
does not encode it in any way. Secondly, the transceiver module needs to have a square wave that
alternates enough so that its data slicer has some frequency on which to lock. Finally, there is the definite
possibility for noise, which the protocol should handle with some grace.

In addressing these issues, communication of data words with the FPGA is split up into a header
and the data. In turn, the header is split up into a wake-up preamble and a data word alignment region.
The data section is just a stream of, currently, 8-bit datawords. All transmissions have a carrier
frequency which dictate the maximum frequency at which the serial transmission aternates, and is the
rate the transmission tries to stay close to as not to confuse the transceiver module. As of the time of this
report, a 15.6 KHz maximum frequency square wave using a1 MHz main clock into the FPGA was
employed.

The header consists of awake-up preamble and a data word alignment region. Before the
preamble, the serial datais pulled to a constant high. The wakeup preamble consists of an alternating
sequence of 30 “sub-hits’ that are transmitted at the base frequency of communication. A *sub-bit” will
be defined as a high or low signal lasting half the carrier period. After the wakeup preamble, a special
sequence of sub-bitsis sent (HHLHHLHLLHLL), followed by 12 more aternating sub-bits. After this,
data transmission begins. Data, it should be noted, is encoded using a set of three sub-bits, wherea lis
HHL and O isHLL.

The wake-up preamble has three purposes: to setup the data-dlicer in the transceiver module, to
establish a phase lock between the transmitting and receiving clocks, and to let the receiver know that a
header is beginning. The receiver, in order to establish a phase lock with the transmitting clock, and to try
to average out noise pulses, samples each sub-bit 8 times. When waiting for data, the receiver goes
through the following steps:

Compare the sampled serial input to awell-defined positive edge. It will pick up on one of
the wake-up preamble’s pulses, and synchronize itself to the edges of this square wave, so it
knows the alignment of the sub-bits.

To make sure that there is actually a preamble being received (and not, say, a noise burst), it
checksto seeif there is a high-low-high-low-high-low (HLHLHL) pattern in the serial data.
A “high” or a“low” is determined from the sampled seria input by finding the majority value
of the 8 samples.

Now the receiver synchronizes to the data words by searching for the HHLHHLHLLHLL
sub-bit sequence.

Finally, it waits for 12 more sub-bits before turning over control to the data word extracting
section in order to synchronize itself with the incoming data words. These sub-bits are placed
in the serial transmission so that the receiver cannot accidentally mistake where the data word
alignment sub-bit sequence really is, since high-low-high-low (HLHL) sub-bit sequences
cannot easily appear in encoded data-bit sequences, even with heavy noise.

Steps 2 and 3 have a timeout timer associated with them that will make the receiver give up
looking for the expected input and return to step 1 after a certain number of candidate sub-bits have
passed by. Thisis especially important for step 3. Otherwise the receiver might skip the true 4-bit word
(e.g. dueto noise) and start looking for it inside the data portion of the transmission, which would cause
all datato be incorrectly aligned. Seefigure 3 for an example of the header.

s T e 4 T | T Yis - |
£ -9322 2002/ Stop £z TIL

Figure 3. Message Header | A series of 32 sub-bits followed by a data word alignment.

Now data words being to be decoded. The transmitter, as mentioned earlier, encodes each data-
bit of the word with three sub-bits (1 = HHL, 0 = HLL). Thisway, the serial output will not remain a a
single high or low state for very long, and thus there is a base frequency for the transceiver to pick up on.
The data section of the transmission is just a string of bits encoded in the above way. Once data words
begin to be recognized, the receiver outputs them to the 8-bit data but. When the receiver gets aword of
completely invalid encoded bits (most likely because the serial input has returned to its default constant-
high state, which is what the transmitter section will do once it is done sending data), the receiver resetsto
searching for atransmission header. See figure 4 for an example of the data transmission.

10

Figure 4. Message Header followed by data words.

Operation Description

Since the RF transceivers are half-duplex, only one bi-directional port is used for data input or
output (transceiver_data_port). Another signal selects whether the FPGA should be in transmit or receive
mode (transceiver_direction_select).

The transmitter module when not communicating just sends out a constant high signal. It uses an
enable signal (transmitter_enable) to start communication. It will sample the data input on an 8-bit bus
(transceiver_data_port). An output signal (transmitter_data request) indicates on its positive edge that
the transmitter has sampled the input data bus, and so new data may be asserted. When the enable signal
is set low again, the transmitter finishes the word it ison, and resetsto itsinitial state. The data request
signal goes low after the transmitter has been disabled only when the transmitter has finished sending the
last pieces of data and a sufficiently long period of a constant high signal to tell the receiver that the data
has ended.

The receiver module waits for avalid incoming transmission. Once it identifies one, it setsa
signal telling atransmission is arriving (receiver_incoming_transmission). Then it starts decoding the
data words, which are then loaded to an 8-bit bus (transceiver_data port), and then uses the positive edge
of another signal to indicate data is ready on the bus (receiver_data ready). This decoding continues until
the serial data stream stops being valid for an entire data word, at which points the receiver resets to its
initial state, and so the incoming transmission signal is also reset.

11

V1. Results

All of our tests of the final product returned favorable results. The lower level protocol
effectively discarded noise and never was falsely triggered by such noise. Further, when sending data, all
the words got through intact if the FPGA successively picked up the incoming signal, which it did almost
all the time (at ranges tested up to the distance across the lab). The upper levels of the protocol aso
behaved as expected, and our handshaking implementation was able to determine if the receiver had
picked up the message or not.

Outside of the protocol, the other features (mostly made up of user-interfaces) also worked as
expected. The keypad and the LCD operated properly. Interface features for the text messaging system
program, namely a menu system, a message history, and a automatic indicator of a new message, all
worked as designed.

The most challenging portion of the design was the protocol in general. In particular, the lower
levels presented some interesting challenges to overcome, as discussed in the FPGA section. However,
every major portion of the project presented some problem to solve, all of which (no matter how small)
helped to further our understanding of the hardware we were working with.

Overall, we accomplished the goals set out in our fina proposal, and were even able to go a bit
further. The experience we received with the technology should prove useful, or at least make good small
talk at parties. Hopefully the information contained in this document will adequately inform the reader of
the issues and challenges of implementing this or a similar design.

12

References

[1] http://www.repairfag.org/filipg/LINK/F LCD_progr.html#L CDPROGR 002

[2] http://www.fe.uni-lj.si/~tuma/seminarske/senzor/Im016/znaki.htm

[3] "Digital Alarm Clock”, Jason Fong, Fernando Mattos
http://www3.hmc.edu/~harris/class/e155/projects99/al armcl ock1. pdf

[4] http://www.linxtechnol ogies.com/I pdfs/scpamanual . pdf

[5] http://www.linxtechnol ogies.com/Il pdfs/'scpadata. pdf

Parts List
Listing of all the components used other than standard resistors, capacitors, and parts available in the MicroP s lab.
Part Sour ce Vendor Part # | Quantity | Price
Linx Half-Duplex RF Transceiver | RF Digital TR-916-SC-PA 2 $96.60
http://www.rfdigital.com
10 Pin Terminal Strips Mar-V ac Electronics 510AG91F10ES 2 $4.18
40 Pin Header Mar-Vac Electronics - 2 $1.98
Two Row 60 Pin Header Mar-Vac Electronics - 2 $2.98
16x2 LCD Char. Display Stock Room LMO016
Breadboard Radio Shack - 2 $9.98
TOTAL: | $115.72

13

TOP
top.v

Aut hor s:

The top
decoder

modul e top(clk,

i nput
i nput
i nput
i nput
i nput
i nput
out put
out put
out put
out put
out put

out put

out put
out put

out put
out put

i nout

/1

strai ght parallel
wirel ess |ink.

Appendix A | Verilog HDL Modules

Braden Pellett (bpellett@nt. edu)
Steven Yan (syan@nt. edu)

Last updated: 12-7-00

| evel of our FPGA | ogic design,
and RF transceiver
data and seri al

reset _L,

keypad_rows, keypad_col s,
transcei ver_direction_sel ect,
transmtter_enable,
receiver_incom ng_transm ssion,
transcei ver_data_port,

keypad_dat a_port,

whi ch incorperates a keypad
interface for converting data between
data suitable for

out put over a

shift_L, keypad_data_ready,

transmtter_data_request,
recei ver_dat a_r eady,

SC rxdata, SC txdata, SC txen, SC_rxen,
tnp_bit, tnp_cnt, tnp_state, receiver_clk);
cl k; /1 The main clock signal
reset _L; /1 The main reset signal (tied to GSR)
transceiver_direction_select; // O =transmt, 1 = receive
SC_rxdat a; /1l Fromthe rxdata pin on the SC
transm tter_enable; /1 Start sending data
[3:0] keypad_rows; /! Read fromthe keypad
SC_t xdat a; /1 To the txdata pin on the SC
SC_t xen; /1 To the txen pin on the SC
SC_rxen; /1 To the rxen pin on the SC
keypad_dat a_r eady; /] Keypress interrupt pin
transmtter_data_request; /] Data request interrupt pin
/1 (FPGA i s sending, wants nore
/1 data from HC11)
receiver_incom ng_transm ssion;
/1 lncom ng transm ssion interrupt
/1 (FPGA i s receiving, and a packet
/1 of data is being read)
recei ver_dat a_r eady; /1 lIncom ng data interrupt pin
/1 (FPGA is receiving, has a data
/1 word on the output)
[2:0] shift_L; /'l 1ndicates which shift key is set
/1 on the keypad.
/1 (active low for use with LEDs)
[3:0] keypad_cols; /1 Poll the keypad
[7: 0] keypad_data_port; /1 Decoded data fromthe keypad
[7:0] transceiver_data_port; /1 The decoded trasceiver I/0

/1 Diagnostic signals

11

out put
out put
out put
out put

wre
wre

recei ver_clk;
tnp_bit;
tmp_cnt;

[2:0] tnp_state;

keypad_cl k;
recei ver_clk;

14

wire transmtter_clk;

wire [2:0] shift;

wire transm tter_enable;

wire keypad_dat a_r eady;

wire transmtter_data_request;
wire recei ver_dat a_r eady;

wire [7:0] receiver_data_word;

wire [7: 0] keypad_data_port;

wire [7:0] transceiver_data_port;

/1
/] Create the clocks for the keypad poller, the transmtter,
/'l and the reciever.
/1
make_sl ow_cl k msk(cl k, ~reset_L,
keypad_cl k, transmitter_clk, receiver_clk);

/1

/1 Poll the keypad to see what the user is typing, and output
/1 this infornmation as a ASCI| character and a signal saying
/l there is new data to be read.

/1

keypad_decoder kd(keypad_clk, ~reset_L, keypad_rows,

keypad_col s, shift, keypad_data_ready, keypad_data_port);

/1
/1 Sample the serial signal fromthe RF transceiver nodul e and
/1 decode any incom ng data. Qutput said data, indicate that
// a transmission is comng in, and output a signal each tine
/1 a new word is available to be read.
/1
receiver rx(receiver_clk, ~reset_L, SC rxdata,
recei ver_incom ng_transni ssion, receiver_data_ready,
tnp_bit, tnp_cnt, tnp_state);

recei ver_data_word,

/1 The transmitter translates the parallel input into an encoded seri al

/1 output with a special header suitable for input into the RF transceiver.
/1 When enabl ed, reads in data words and provides a signal indicating when
/1 it is read for another word. Disabling causes the transnitter to stop

/1 sending after the last word. When the data request signal goes |ow

/] after the transmitter has been disabled, this is an indication that

/1 the transmission is conplete.

transmtter tx(transmtter_clk, ~reset_L, transnmitter_enable, transceiver_data_port,

transmtter_data_request, SC txdata);

/1

/Il Atristate buffer that allows the sane pins on the FPGA to be used both for

/] data to be transmitted, and data received fromthe RF nodul e.
/1 because the RF nodule is half-duplex in nature.

/1

tristate buffer(receiver_data_word, transceiver_direction_select,

assign SC_txen
assign SC_rxen

~transcei ver_direction_sel ect;
transcei ver_direction_sel ect;

assign shift_L = ~shift;
endnodul e
/1
/1 make_sl ow_cl k
/1
/] Create the clocks for the keypad poller, the transnmtter,

15

This is used

transcei ver_data_port);

/'l and the reciever.
/1
modul e make_sl ow_cl k(cl k, reset,
keypad_cl k, transmitter_clk, receiver_clk);

i nput cl k;

i nput reset;

out put keypad_cl k;

out put transmtter_clk;
out put recei ver_clk;

reg [11: 0] count;
al ways @ posedge clk or posedge reset)
if (reset) count = 0;
el se count = count + 1;
assign keypad_cl k = count[11];
assign transmtter_clk = count[4];
assign receiver_clk = count[1];

endnodul e

/] tristate

/Il Atristate buffer that allows for 8 bits of bidirectional
/1 data. This sinply takes in the data for output, and if

/1 enabled, will output the data. |If it is not enabl ed,
/1 then the output enters a high-Z state.
/1

modul e tristate(data_in, en, data_out);
i nput [7:0] data_in;
i nput en;
out put [7:0] data_out;

assign data_out = en ? data_in : 8 bzzzzzzzz;

endnodul e

TRANSM TTER

/1

/] transmitter.v

/1

/1 Authors: Braden Pellett (bpellett@nt.edu)
/1 Steven Yan (syan@nt. edu)

/1

/] Last updated: 12-7-00

/1

/1 The transmitter translates the parallel input into an encoded seri al

/1 output with a special header suitable for input into the RF transceiver.
/1 When enabl ed, reads in data words and provides a signal indicating when
/1 it is read for another word. Disabling causes the transnitter to stop

/1 sending after the last word. When the data request signal goes |ow

/1 after the transmtter

has been di sabl ed,

/1 the transmission is conplete.

modul e transmitter(clk, reset,

next _read, serial_out);
i nput cl k; /1l Transnmitter's clock signal
i nput reset; /1 GSR signal
i nput enabl e; /1 Transmitter enable
input [7:0] next_word; /1l Word to be stored and sent
out put next _read; /1 Signal that word has been stored

/1 Fi nal negedge indicated end of transm ssion

out put serial _out; /1 The resul tant encoded serial output

enabl e, next_word,

16

this is an indication that

reg
reg
reg
reg
reg

reg

/1

[2:0] state;
[7:0] current_word;

next _read;

[5:0] counter;

serial _out;

[11: 0] word_sync_sub_bit_header;

/1 Transmitting FSM

/1

al ways @ posedge clk or posedge reset)

if (reset) begin
state <= 'dO;
current_word <= 8' b0;
next _read <= 0;
serial _out <= 1;
counter <= 'di;
wor d_sync_sub_bit_header <= 12'b110110100100;

/1
/1 Wit to be enabl ed.
/1
end else if (state == 'd0) begin
next _read <= 0;
serial _out <= 1;
counter <= 'di;
wor d_sync_sub_bit_header <= 12'b110110100100;
if (enable) state <= 'di; /] Start transm ssion
/1

/1 \When enabled, load in the first word, and start transmt
/'l the header.
/1
end else if (state == 'd1) begin
/1
/1 The end of the header, so get ready to start sending
/1 the encoded data.
/1
if (counter == 'd55) begin
serial _out <= 0;
current _word <= next_word;
counter[1:0] <= 'dO;
counter[4:2] <= 'di;
state <= 'd2;

/1 After sending 30 | ow high signals, send the word sync portion
/1 of the header so the receiver knows what the word alignnent
/1 should be.

end else if (counter[5]) begin
counter <= counter + 1;
serial _out <= word_sync_sub_bit_header[11];
wor d_sync_sub_bit_header <= {word_sync_sub_bit_header[10: 0],
I
/1 Start by sending |ow high signals so that the receiver can
/1 get in phase with the transmtter clock.
I
end el se begin
counter <= counter + 1;
serial _out <= ~serial _out;
end
I
/1 Send the serial encoded data.
I
end else if (state == 'd2) begin
I
/1 A sub-FSMto encode each bit of the data word
I
case (counter[1:0])
'd0: begin /1 Sub-bit 0: 1

17

~counter[0]};

serial _out <=1
next _read <=1
counter[1:0] <= 'dl

end
'd1l: begin /] Sub-bit 1: data bit val ue
serial _out <= current_word[7];
counter[1:0] <= 'd2
end
'd2: begin /1 Sub-bit 2: 0
serial _out <=0
/1
/'l We're at the end of this word, so
/'l deside if and what we need to transmt.
/1
if (counter[4:2] == 'd0) begin
/1
/1 1f we are no |longer enabled, stop the transnission
/1
if (~enable) begin
counter <= 'dO
state <= 'd4
/1
/1 Otherwise, read in the next piece of data, and indicate
/1 that we are doing so
/1
end el se begin
counter[1:0] <= 'dO
counter[4:2] <= counter[4:2] + 1
next _read <= 0
current _word <= next_word;
end
/1
/1 Not at the end of the word, so nove on to the next bit
/1
end el se begin
counter[1:0] <= 'dO
counter[4:2] <= counter[4:2] + 1
current _word <= {current_word[6:0], 1'b0}
end
end

endcase
/1
/1 Send a sufficiently long tail of "high" to ensure the receiver knows
/1 the transm ssion has ended before resetting "next_read" so that the
/'l user knows when the transmitter has finished sending this tail

I/
end else if (state == 'd4) begin
serial _out <=1
if (counter == 'd24) state <= 'dO
counter <= counter + 1
end
endnodul e
RECEI VER
I
/'l receiver.v
I
/1 Authors: Braden Pellett (bpellett@nt.edu)
/1 Steven Yan (syan@nt. edu)
I
/] Last updated: 12-7-00
I

/1 Sample the serial signal input and decode any inconm ng data. CQutput said
/1 data, indicate that a transm ssion is comng in, and output a signal each
/]l time a new word is available to be read. On the negitive edge of the

/1 incoming transition signal, the packet of data is either conplete or

/'l ceased to be readable

/1 Note: We couldn't seemto get the "incom ng_transm ssion" signal to output

18

/1 correctly, so for now just use the state[2] diagnostic output instead.

/1 They really should be the sane, but for sone reason they aren't.

/1 Note: Right now, because of sone failed trickery, there are two |arge

/1 registers (storage and sub_bit_register) that are never actually

/1 used at the sanme tinme. This might cause the synthesized | ayout to

/1 be larger than it needs to, or Xilinx nay optimze it out, but either

/1 way we were still able to fit the whole thing onto the FPGA, so we didn't
/1 spend the tinme to come back and clean it up.

/1

modul e receiver(clk, reset, serial_in,
i ncom ng_transm ssion, data_ready, data_word,
tnp_bit, tnp_cnt, state);

i nput cl k; /'l Receiver clock (should sanple
/1 each sub-bit 8 tines)

i nput reset; /1 GSR signal .

i nput serial _in; /1 Serial input

out put incom ng_transm ssion; // Indicates an incom ng packet

out put dat a_r eady; /1 Indicates data_word is ready to be read

output [7:0] data_word; /| Decoded data word

I

/1 Diagnostic data

I/

out put tnp_bit;

reg tnp_bit;

out put tnp_cnt;

reg tnp_cnt;

output [2:0] state;

reg dat a_r eady;
reg set _dat a_r eady;
reg [7:0] data_word;

reg [2:0] state;

reg [17: 0] storage; /] Store sanples

reg [11: 0] sub_bit_register; /] Store sub-bits

reg [7:0] bit_register; /] Store bits

reg [3:0] nmmjority_count; /1 Keep track of the nunber of 1 sanples
reg [2:0] sanple_count; /1 Number of sanples taken

reg [3:0] bit_count; /1 Number of bits decoded

reg [5:0] timeout_tinmer; /] General use tiner

reg is_invalid;

wi re phase_| ock;

wire word_| ock;

wire preanbl e;

wire majority;

wire valid_bit_val ue;

I

/'l Receiver FSM

I

al ways @ posedge clk or posedge reset)

if (reset) begin

tnmp_cnt <= 0;
tnp_bit <= 1;
state <= 'dO;
data_ready <= 0;
set _data_ready <= 0;
data_word <= 8' bO;
storage <= 18'b111111111111111111;
maj ority_count <= 'b0;

19

sanpl e_count <= 'b0;

timeout _tiner

<= "' DbO;

bit_count <= 'b0;
sub_bit_register <= "'DbO0;

bit_register

<= "' DbO;

is_invalid <= 1;

end el se begin
/1

/1 This is just stuff for the diagnostic output...
/1 1t doesn't have to exist for proper operation.

/1

tmp_cnt <= ~tnp_cnt;
tnp_bit <= serial_in;

/1

/1 In the first state, we just keep | ooking for a phase | ock,
/'l as defined at the bottomof this file.

/1
if (state 'd0) begin
if (phase_l ock) begin
state <= 'di;
maj ority_count <= serial _in;
sanpl e_count <= 'd2;
timeout _timer <= "'doO;
end el se
storage <= {storage[16:0], serial_in};
/1
/] Get preanble lock, as defined at the end of this file.
/1
end else if (state == 'd1) begin

/1

/1 W have gotten 8 sanples, so record the mpjority
/'l as the sub-bit received.

/1
if (sanple_count == 'd0) begin
sub_bit_register <= {sub_bit_register[11:0], mjority};
timeout _timer <= tineout_tiner + 1;
sanpl e_count <= sanpl e_count + 1;
maj ority_count <= serial _in;
/1
/1 1f our series of sub-bits shows a proper preanble,

/1 nove on.

/1

end else if (preanble) begin

/1
/1

state <= 'd2;
timeout _tinmer <= 'doO;

If we timeout before we see a preanble, return to the

/1 first state and try to resync on a posedge.

/1
end else if (tineout_timer == "'d10) begin
state <= 'dO;
storage <= 18'b111111111111111111;
maj ority_count <= nmjority_count + serial_in;
sanpl e_count <= sanpl e_count + 1;
/1

/1 Otherwi se, just keep track of how many sanples we've
/'l taken since the last sub-bit, and keep track of the
/1l majority.

/1

end el se begin

end

/1

maj ority_count <= nmjority_count + serial_in;
sanpl e_count <= sanpl e_count + 1;

/1 Get sync byte lock, as defined at the end of this file.

/1

end else if (state == 'd2) begin

/1

/1 We have gotten 8 sanples, so record the mpjority
/1 as the sub-bit received.

/1

20

if (sanmple_count == 'd0) begin
sub_bit_register <= {sub_bit_register[11:0], mjority};
timeout _timer <= tineout_tiner + 1;
sanpl e_count <= sanpl e_count + 1;
maj ority_count <= serial _in;
/1
/1 1f our series of sub-bits shows a proper sync byte,
/1 lock, nove on.
/1
end else if (word_|l ock) begin
state <= 'd3;
timeout _tinmer <= 'dO;
is_invalid <= 1;
sanpl e_count <= sanpl e_count + 1;
maj ority_count <= nmjority_count + serial_in;
/1
/1 1f we timeout before we see the byte sync sequence, return
// to the first state and try to resync on a posedge.

/1
end else if (tineout_timer == 'd36) begin

state <= 'dO;

storage <= 18'b111111111111111111;

sanpl e_count <= sanpl e_count + 1;

maj ority_count <= nmjority_count + serial_in;
/1

/1 Otherwi se, just keep track of how many sanples we've
/'l taken since the last sub-bit, and keep track of the
/1l majority.
/1
end el se begin
sanpl e_count <= sanpl e_count + 1;
maj ority_count <= nmjority_count + serial_in;
end
/1
/1 We've seen the sync sequence, so now wait for the start of data.
/1 (This is a pre-determ ned nunber of sub-bits after the sync
/1 sequence.)

/1
end else if (state == 'd3) begin
/1
/1 We have gotten 8 sanples, so one nore sub-bit has passed.
/1
if (sanple_count == 'd0) begin
timeout _timer <= tineout_tiner + 1;
sanpl e_count <= sanpl e_count + 1;
maj ority_count <= serial _in;
/1
/1 We've waited | ong enough, so nove to decode data.
/1
end else if (tineout_timer == "'d12) begin
state <= 'd4;
timeout _tinmer <= 'doO;
bit_count <= 'dO;
sanpl e_count <= sanpl e_count + 1;
maj ority_count <= mmjority_count + serial_in;
/1
/1 Still waiting, so keep track of the nunber of sanples since
/1 the last sub-bit.
/1
end el se begin
sanpl e_count <= sanpl e_count + 1;
end
/1
/'l Segrment and read the data
/1
end else if (state == 'd4) begin
/1

/1 We have gotten 8 sanples, so record the mpjority
/'l as the sub-bit received.

/1

if (sanple_count == 'd0) begin

21

end
end

/1

sub_bit_register[2:0] <= {sub_bit_register[1:0], majority};
timeout _timer <= tineout_tiner + 1;
sanpl e_count <= sanpl e_count + 1;
maj ority_count <= serial _in;
/1
/1 We have gotten 3 sub-bits, so formthese into a
/1 single data-bit, and keep track if we have received
/1 any valid data-bits for this word.
/1
end else if (tineout_tiner == 'd3) begin
if (set_data_ready) data_ready <= 1;
is_invalid <= is_invalid & ~valid_bit_val ue;
set _data_ready <= 0;
timeout _tinmer <= 'dO;
sanpl e_count <= sanpl e_count + 1;
maj ority_count <= nmjority_count + serial_in;
bit_count <= bit_count + 1;
bit_register <= {bit_register[7:0], sub_bit_register[1]};
/1
/1 We have stored 8 data bits (i.e. a full data word), so
/1 now we need to do something with it.

/1
end else if (bit_count == 'd8) begin
/1
/1 The entire data word is invalid, so declare this
/] data packet as over and return to the first state.
/1
if (is_invalid) begin
state <= 'dO;
data_ready <= 0;
set _data_ready <= 0;
data_word <= 8' bO;
storage <= 18'b1111111111111111113;
maj ority_count <= 'b0;
sanpl e_count <= 'b0;
timeout _tinmer <= 'boO;
bit_count <= 'b0;
sub_bit_register <= "'DbO0;
bit_register <= "'DbO0;
is_invalid <= 1;
/1
/1l W& have a at least partially valid word, so output
/1 it in parallel and indicate that a new word
/1 has arrived.
/1
end el se begin
is_invalid <= 1;
data_word <= bit_register;
data_ready <= 0;
set _data_ready <= 1;
bit_count <= 'dO;
sanpl e_count <= sanpl e_count + 1;
maj ority_count <= mmjority_count + serial_in;
end
/1

/1l Otherw se, just keep sanpling the input and keeping track
/1 of the majority since the last sub-bit.
/1
end el se begin
sanpl e_count <= sanpl e_count + 1;
maj ority_count <= nmjority_count + serial_in;
end

/'l A phase lock is when we find a sufficient well defined positive edge

/1 in the sanple data.

(The ol d version, comented out right below the

/'l new version, originally |ooked for a whole square pul se of the proper

22

/1 width, but this was inmpractical because it was taking too |long for
/] the data slicer in the RF transceiver nodul e to make properly squared
/1 waves on the output)
/1
assign phase_l ock = & ~(storage[13:3] ™ 11'b00000111111))
/] assign phase_l ock = & ~(storage ~ 18' b100000000111111110))

/1

/Il A preanble is the intial |ow high transm ssion

/1

assign preanble = & ~(sub_bit_register[6:0] ~ 7'b0101010))
/1

/1 The word lock is used to let the receiver figure out the word alignment.
/1 1t consists of sub-bits formng data-bits, namely 1100

/1

assign word_l ock = & ~(sub_bit_register[11:0] ~ 12'b110110100100))

/1

/1 The indicator of was the majority is in the 8 sanples

/1 of the input: high or |ow

/1

assign mpjority = majority_count[3] | majority_count[2];

/1

Il 1s the sequence of three sub-bits in the sub-bit register a valid data-bit?
/1

assign valid_bit_value = sub_bit_register[2] & ~sub_bit_register[O0];

/1

/1 This doesn't work for sone reason... we aren't sure why. Just use the state[2]
/1 diagnostic output instead
/1

assign incomng_transm ssion = state[2];

endnodul e

KEYPAD DECODER

/1

/'l keypad_decoder. v

/1

/1 Authors: Braden Pellett (bpellett@nt.edu)
/1 Steven Yan (syan@nt. edu)

/1

/] Last updated: 12-7-00

/1

/1 Poll the keypad to see what the user is typing, and output

/1 this information as a ASCI| character and a signal saying

/] there is new data to be read. Refer to the technical report

/1 for how the keypad is arranged and connected. Basically, it is
/1l a 4x4 keypad, where the three top keys on the last colum are
/1 shift keys, that allow the first three colums to be sel ectable
/'l between different ASCII characters. The |lower right hand

/Il cell is alway "enter" (value 10)
/1
modul e keypad_decoder (sl owcl k, reset_full, rows,

cols, shift, read, data)

i nput sl owcl k; /1 The cl ocks for scanning
i nput reset _full; // GSR signa

input [3:0] rows; /!l Read results of polling
output [3:0] cols; /1 Polling outputs

output [2:0] shift; /1 Indicator for shift keys
out put read; /'l Indicate for new data
output [7:0] data; /1 Decoded data

reg [1: 0] state
reg [3:0] cols;
reg [6:0] data
reg [6:0] key;
reg read

23

reg [2:0] shift;
reg [2:0] shift_key;

/1
/1 Scanning FSM (derived fromthe solution
// to Lab 4 by Prof. David Harris)
/1
al ways @ posedge slowcl k or posedge reset_full)
if (reset_full) begin
state <= 'dO
cols <= 4'b0111
data <= 'dO
read <= 0
shift <= 3'b0
end else if (& ows) begin
/1 no key pressed on this colum, so keep scanni ng
state <= 'dO
cols <= {cols[0], cols[3:1]}; // shift cols right
end else if (state == 'd0) begin
/1l A key has been pressed..
if (|shift_key) begin
/1 1f the key was a shift, activate only this npst
/1 recently pressed shift key, or deactivate it if
/1 it turns out that the user hit the shift key
/1 that was active
state <= 'd2
shift <= (shift & shift_key) ” shift_key;
end el se begin
/1 1f the key was not a shift, output the new key,
/1 and indicate the key output is changing
state <= 'd1
read <= 0
data <= key;
end
end else if (state == 'd1) begin
/] Create a posedge signal show ng that new key infornmation
/1 is available
state <= 'd2
read <= 1
end
/1 otherwise wait until all keys are rel eased before continuing

/1
/1 Keypad conversion |logic
/1
al ways @rows or cols or shift)
if (~cols[3]) begin
if (~rows[0]) key <= 'd10; /'l <return>
el se key <= 'd00
/1 Handl e shift key press indication
case (rows)
4' b0111: shift_key <= 3'b100
4' b1011: shift_key <= 3'b010
4' b1101: shift_key <= 3'b001
default: shift_key <= 3' b000
endcase
end el se begin
shift_key <= 3'b000
/1 Based upon which shift key, if any, is active, decide
/1 what a given row and col umm decode to in ASClI
case (shift)
3' b100: case ({rows, cols})
"b0111_1110: key <= 'd77; [/
'b1011_1110: key <= 'd80; //
"b1101_1110: key <= 'd83; //
'b1110_1110: key <= 'd86; //
"b0111_1101: key <= 'd78; //
'b1011_1101: key <= 'd81; //
"b1101_1101: key <= 'd84; //
'b1110_1101: key <= 'd87; //

00 00 00 00 CO 0O CO ™
=sH40z<wnmuZ

24

endnodul e

end

endcase

endcase
3' b010:

endcase
3' b001:

endcase
defaul t:

endcase

8' b0111_1011:
8'b1011_1011:
8'b1101_1011:
8'b1110_1011:
defaul t: key

case ({rows,
8' b0111_1110:
8'b1011_1110:
8'b1101_1110:
8'b1110_1110:
8' b0111_1101:
8'b1011_1101:
8'b1101_1101:
8'b1110_1101:
8' b0111_1011:
8'b1011_1011:
8'b1101_1011:
8'b1110_1011:
defaul t: key

case ({rows,
8' b0111_1110:
8'b1011_1110:
8'b1101_1110:
8'b1110_1110:
8' b0111_1101:
8'b1011_1101:
8'b1101_1101:
8'b1110_1101:
8' b0111_1011:
8'b1011_1011:
8'b1101_1011:
8'b1110_1011:
defaul t: key

case ({rows,
8' b0111_1110:
8'b1011_1110:
8'b1101_1110:
8'b1110_1110:
8' b0111_1101:
8'b1011_1101:
8'b1101_1101:
8'b1110_1101:
8' b0111_1011:
8'b1011_1011:
8'b1101_1011:
8'b1110_1011:
d

key
key
key
key

<=
<=
<=
<=

<= 'do

col s})

key
key
key
key
key
key
key
key
key
key
key
key

<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=

<= 'dO;

col s})

key
key
key
key
key
key
key
key
key
key
key
key

<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=

<= 'dO0;

col s})

key
key
key
key
key
key
key
key
key
key
key
key

<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=

efault: key <= 'dO;

25

' d79;
' d82;
' d85;
' d88;

' d89;
' d49;
' d52;
' d55;
' d9o;
' d50;
' d53;
' d56;
' d48;
' d51;
' d54;
' d57,;

' d46;
' d64;
' d37,;
' d38;
' d63;
' d35;
' d94;
' d40;
' d33;
' d36;
' d32;
' d41;

' d65;
' d68;
'd71;
' d74;
' d66;
' d69;
'd72;
' d75;
' d67,;
' d70;
'd73;
' d76;

OO WOWUINNNDDREL XCxXxO

RO

space>

~ AT > H

CFTTOXIMWE~®O>

Appendix B | HC11 Assembly Code

Aut hors: Steve Yan (syan@nt. edu)

Braden Pellett (bpellett@nt. edu)
Created: Novenber 14, 2000
Modi fi ed: Decenber 7, 2000
Mot orol a 68HC11 code for RF Wrel ess text messagi ng systeminterface
and LCD nodul e LM)16 control. The HCl1ll1l is controlled via external
interrupts.

External Interrupts:
Incom ng Data | SR (STRA pin)
I ncomi ng Transm ssion ISR (1 CLl pin (PA2))
Data Request ISR (1C21 pin (PAl))
Keypress I SR (1 C3l pin (PAQ))

E I T S T T

khkhkkhkhkhhhkhhhkhhhkhhhhhhhhhhhhdhkhdhhrhrx*

* Set port and register addresses. *

EE Rk S I kS R Ik bk S S Rk Ik S S S

REGS EQU $1000 * Base address

PORTA EQU $1000 * Qutput for LCD Control

PORTA | EQU $00 * Qutput for LCD Control

PORTB EQU $1004 * CQutput for LCD data

PORTC EQU $1003 * Bidirectional Port (1/O between HC11l and FPGA)
PORTCL EQU $1005 * Latched input for Port C

PORTE EQU $100A * Keypad i nput

Pl CC EQU $02 * Parallel 1/0 Control Register (Port C

DDRC EQU $07 * Data Direction register for Port C

TCNT EQU $OE * 16-bit built in tiner

TOCS EQU $1E * Timer Qutput Conpare 5 (16-bit)

TCTL2 EQU $21 * Interrupt signal edge detection

TiVBK1 EQU $22 * OCxl flags (enables output conpare interrupts)
TFLGL EQU $23 * OCxF and I CxF flags (go high after OC natch)
PACTL EQU $26 * Pul se accunul ator control register

*

* Program dat a.

*

MODE EQU $09 * $00 = transnmit, $01 = receive, $02 = idle
MVENU EQU $0A * $00 = main nenu, $01 = send nsg, $02 = view history
LCDROW EQU $0B * Row position of LCD display cursor.

LCDCOL EQU $0C * Col umm position of LCD display cursor.

LCDFLG EQU $0D * 1 if max nsg size is reached

* 7 = expect ctrl char flag, 6 = handshaking flag, 5 = bad data fl ag,

* 4 = incom ng nessage flag, 3 = new nessage flag, 2 = screen update request
| DATFLG EQU $0E

TXT_ST EQU $D006 * Starting address of text.

*

* Message bookkeepi ng data. (Addresses)

*

26

NEWWEG EQU $00 * Stores address of newest nessage.

NUMVEGS EQU $02 * Stores nunber of nmessages currently in the history.
HSTI NDX EQU $03 * Stores value of Y Index Register for view history.
DATI NDX EQU $05 * Stores value of Y Index Register for rx/tx data.
HSTTL EQU $07 * Stores value of last history bl ock.

TXHD EQU $19 * Head position of tx data bl ock.

HSTHD EQU $3A * Address of first nmessage (1st history bl ock).
HSTLMI EQU $00BE * Address of |ast message (5th history block).

*

* Constants

*

M MAIN EQU $00

M _MsG EQU $01

MH ST EQ $02

M SEND EQU $03

CC STX EQU $02 * STX (start of text)

CC ACK EQ $06 * ACK (postive acknol edgenent)

* | nit variabl es.

*

OoRG MODE
FCB $02 * Start out idle.
FCB $00 * Start in main nmenu.
FCB $00 * LCDROW= 0
FCB $00 * LCDCOL = 0
FCB $00 * LCDFLG = 0
R S Ik S b S S Rk S S S b S S
* I nterrupt vectors. *
R S Ik S b S S Rk S S S b S S
ORG $00ES5 * Junp address for Data Request interrupts (1C2).
JwP odatisr * Junp to Data Request |ISR
ORG $00ES8 * Junp address for Incomng Transnsn interrupts (ICl1).
JwP itxisr * Junp to Incomng Data | SR
ORG $00EE * Junp address for Incoming data interrupts (STRA).
JwP idatisr * Junp to Incomng data interrupt.

Rk Ik ok b O R R S S R R

* LCD display text storage. *

Rk Ik ok b O R R S S R R

ORG TXT_ST
MVITXT1 FCC "A. Send nessage"
NULLBLK FCB $00 * Stop character
MMIXT2 FCC "B. View history"
FCB $00 * Stop character
MMI'XT3 FCB $7E

27

FCB
FCB

TXTXT FCC
FCB

SUCCTXT FCC
FCB

FAI LTXT FCC
FCB

$7F

$00 * Stop character
"Transmitting..."

$00 * Stop character

"Success!)"
$00 * Stop character

"Failure! :("
$00 * Stop character

Rk Sk b o R R S o R R

* Begi n program

*

Rk ok b o R R S S S

CRG
LDX

LDS
BCLR
CLRA
STAA
STAA
JSR
JSR
JSR
JSR
BSET
JSR
JSR
CL

keypol BRCLR

else if

else //

L I S I T I R R R T T

BSET
LDAA
LDY

LDAB
CvPB

$D100
#REGS

#$DFFF
PORTA |, X 991000000

NUMVBGS

| DATFLG

initlcd

clrlcd

cur_on

nm_scr

PACTL, X 940000000
extirq

rx_node

EE T T I T

TFLGL, X 990000001 keypo

Keypress Poller. (Controlled via |IC3l
KeypressPol | er ()

if (MENU = "Main Menu")

* Set transnmt enable to O.

NUMMVEGS = 0

Set incomng data flags to O.

Initiates LCD
Cl ears LCD screen
Activate cursor.

Di spl ay

Setup Port A, pin 7 as output

Mai N menu Scr een.

Setup external interrupts.
Set to receive
Unmask gl obal interrupts.

* Wait for

pin (PAO)).

if (keypressed = A) { display send nmenu }
else if (keypressed = B) { display history }

(MENU = "Send")

keypress.

(dir sel)

if (keypressed = ENTER) {return to main nmenu and send dat a}
else if (LCOFLG =0) { wite data to LCD display }

must be in "Msg history”
if (keypressed = #%$41) //

<- key

| ook at ol der nessage

el se

| ook at newer nessage

TFLGL, X 990000001 * Reset polling flag.
PORTE * Read i ncom ng data on PORTE.

HSTI NDX * CGet Y val ue.

MENU * Get nenu status.

#M _MAI N * are we | ooking at the main nenu?

28

mmenu

wite

wite2

keyend

snd

hst

E I I S T T R R

BEQ
C\WPB
BEQ
BRA
CVPA
BEQ
CVPA
BEQ
BRA
CVPA
BNE

CLRA
STAA
JSR
JSR
LDAA
STAA
LDY
STY
BSET
JSR
LDAA
JSR
CLRA
JSR
JSR
BRA

LDAB
BNE
STAA
I NY
STY
JSR
BRA

JSR
BRA

JSR
BRA

If (keypressed ==
== HSTHD) {

if (Y

el se {

}

if (Y

nmenu
#M MSG
wite
hst 1
#3$41
snd
#3$42
hst
keyend
#3$0A
wite2

0,Y

transmt_scr

t x_node
#CC_STX
PORTC
#TXHD
DATI NDX

L T

If yes, do main nenu keypress | ogic.

If not, are we in the send nessage screen?
If so, do send screen keypress | ogic.

El se, must be view ng history.

If option A, go to send nenu

If option B, go to hist nenu

* Did we press enter? (send key)

E o T R

*

If not, just wite to display and nenory.

Wite stop byte ($00) if sending.

Di spl ay the transm ssion nessage

Go into transmit node

Get the nmesg control chracter

Store the control character for output
Get where the witten nessage is stored
Store start of rest of data

PORTA |, X 991000000 * Enabl e transni ssion

rx_node
#$01
wai t

cur?2
hsk_hdl
keyend

LCDFLG
keyend
0,Y

HSTI NDX
wited
keypol

snd_scr
keyend

hst _scr
keyend

E o T

Ti meout waiti ng.

G ve ACCA val ue of #0

Move to (2,0)

Handl e | ooki ng for the handshake

If LCD not full, then wite to nenory, LCD

* Wite to LCD display.
* Return to polling for next keypress.

<--") [/ view ol der msgs.

/1 wrap to end of history nenory bl ock
/1 display new nessage.

/1 shift

El se if (keypressed ==
== HSTTL) {

left in history menory bl ock
/1 display new nessage.

a->") T

Vi ew newer

/1l Move to front of history menory bl ock.

29

*

- }

* el se {

* /1 shift

*

- }

* Else { do nothing }

*

hst 1 CVPA #$41
BNE hst 2
LDD HSTI NDX
CPD #HSTHD
BNE nvl ef t

wr apt | LDY HSTTL
STY HSTI NDX
BRA di sphst

nvl ef t LDD HSTI NDX
SUBD #33
STD HSTI NDX
LDY HSTI NDX
BRA di sphst

hst 2 CVPA #$42
BNE gomenu *
LDD HSTI NDX
CPD HSTTL
BNE mvri ght

wr aphd LDY #HSTHD
STY HSTI NDX
BRA di sphst

nvright LDD HSTI NDX
ADDD #33
STD HSTI NDX
LDY HSTI NDX
BRA di sphst

gommenu CMPA #$0A
BNE keyend
JSR mm scr
BRA keyend

di sphst JSR clrlcd
JSR di spl ay
BRA keyend

/1 display new nessage.

right in history menory bl ock

/1 display new nessage.

<- key

* Are we looking at the first history bl ock?

If not just shift left one history bl ock

* Wap to rightnost valid nmenory bl ock

Each nenory block is 32 chars + 1 stop byte

* -> key

If -> key not pressed, ignore the input.

* Are we looking at the last filled menory bl ock?

If not just shift right one history block

* Move HSTINDX value to | eftnost history bl ock.

Each nenory block is 32 chars + 1 stop byte

Did we press enter?

khkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrrdrxdx*x

* MAIN SUBROUTI NES.

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhddhddhrrdrxdx*x

Subr outi ne:
Desc:

EEE I A R

I nput :
Cut put :

*

extirq
Setup all interupts to trigger on active edge of their
respective external signals. |ICll also triggers on negative

edge. Incomng TX (I1Cll), Data Request (IC2l),
and I ncom ng Data (STRA)

None
None

30

Reg Mbd: A, CCR

extirq LDX #REGS
LDAA #%©0010101 * | ClF, | CQF, 1C3F active on pos.
STAA TCTL2, X * Wite to Timer Control Register 2.
LDAA #%©0000110 * Enable ICll, IC2I.
STAA TiBK1, X * Enabl e interrupts.
LDAA #%©0000111

STAA TFLGL, X * Reset fl ags.
LDAA Pl CC, X
ORAA #94.1000010 * STAF = 1, STAl =1, EGA =1 (Pl OO
STAA Pl OC, X * CGenerate I RQ on active edge of ext. signal
RTS
*
* Subroutine: txnode
* Desc: Setup for transfer of data.
* Input: X (points to starts of regs)
* Cut put: None
* Reg Mod: A, CCR
*
* Do not enter tx_node until Incom ng Transmission interrupt is |ow
tx_node BRSET PORTA |, X %90000100 tx_node
BSET DDRC, X $FF * Make PORTC an out put.
CLR MODE * Set node to transmt.
BSET PACTL, X 940000000
BCLR PACTL, X 991000000
BCLR PORTA |, X 940000000 * Enable transmitter (clear dir sel)
LDAA #$05 * Wit for warnup
JSR wai t
RTS
*
* Subroutine: rxnode
* Desc: Setup for reception of data.
* Input: X (points to start of regs)
* CQut put: None
* Reg Mod: A, CCR
*
* Continue only if incomng data isr pinis |low and enable transmt is |ow

rx_mode BRCLR PORTA |, X 991000010 cont r X

BRA rx_node
cont_rx CLR DDRC, X * Make PORTC an input.
LDAA #$01 * Set node to receive
STAA MODE
BSET PORTA |, X 440000000 * Enabl e receiver (set dir sel)
LDAA #$05 * Wait for switching.
JSR wai t
exit RTS

khkkhkkhkhkhkhkhkhkhdhkhrhkrrhkhx*k

Subtroutine: wait
Desc: Wait for acc[A] mlliseconds
I nput: A
CQut put: None
Reg Mbd: A, CCR

* Ok X kX

31

wai t
wai t _spinl
wai t _spin2

PSHX

LDX #2000

DEX

BNE wai t _spin2
DECA

BNE wait _spinl
PULX

RTS

hkhkhkkhkhkhhkhkhhhkhhhhhhkhhhhhhhhhhhdhhhdhhhdhhhdhdhddhkhddhdddhrddrxdx*x

* | NTERRUPT SERVI CE ROUTI NES (1 SR).

hkhkhkkhkhkhhkhkhhhkhhhhhhkhhhhhdhhhhhhdhhhdhhhdhhhdhdhddhdddhdddrddrxdx*x

I ncom ng Data | SR

*

idatisr LDX
LDAA
LDAA
BRSET
BRSET
BRSET
BRA

#REGS

Pl OC, X

PORTCL

| DATFLG 990100000 exit8
| DATFLG 940000000 cchr1l

| DATFLG 990010000 hdl _nsg

exit8

* El se do inconm ng nessage handling.

hdl _nmsg LDY
STAA
I NY
STY

exit8 RTI

cchrl BCLR
CMVPA
BNE
JSR
BSET
RTI

cchr?2 CMVPA
BNE
BSET
RTI

di scard BSET
RTI

* Ok X kX

If interrupted on posedge,
data in the history nenory bl ocks.

DATI NDX
0,Y

DATI NDX *

| DATFLG 940000000
#CC STX

cchr?2

cal hbl k

| DATFLG 990010000

#CC _ACK *
di scard
| DATFLG 991000000 *

| DATFLG %©0100000

I ncomi ng Transm ssion ISR (Controlled

*

(Controlled via STRA pin).

Reset STAF bit.

Read data from | at ched PORTC dat a.
If bad data, exit.

El se if expecting control char

El se if readi ng nessage,

El se, exit and ignore the data

* % F Ok X %

* Load rx position into Y
* Wite data to nenory.

I ncrenent DATINDX, and store in menory

* Reset control character flag.

If the control character signifies nsg,

* Calibrate history nmenory bl ock.
* Set 4th bit high (signifies nesg)

El se if control character is handshake,

Set 6th bit high (signifies handshake)

* El se

Set 5th bit high (signifies bad data).

via I Cll pin (PA2))

setup DATINDX to for recording the incom ng
Al so, set PORTC as an input.

32

E I

itxisr LDX #REGS
LDAA #9%©0000100 *
STAA TFLGL, X *
LDAA TCTL2, X
CVPA #9%©0010101 *
BNE negedge

posedge LDAA #%©0100101 *
STAA TCTL2, X
BSET | DATFLG 940000000 *
BRA exit3

negedge LDAA #9%0©0010101
STAA TCTL2, X
BCLR | DATFLG %%©0100000
BRSET | DATFLG 990010000 tx_hsk
BRA exit3

t x_hsk LDY DATI NDX
CLR 0,Y *
BCLR | DATFLG 990010000 *
BSET | DATFLG %©0001000 *
JSR t x_node *
LDAA #CC_ACK *
STAA PORTC *
LDY #NULLBLK *
STY DATI NDX *
CLI *
BSET PORTA |, X 991000000
LDAB VENU *
CvPB #M_MAI N *
BNE nupd_nm *
JSR nmm scr 2 *

nupd_nmm JSR rx_node *

exit3 RTI

*

* Subroutine: cal hbl k

* Desc: Finds the next

* t he i ncom ng nessage.

* I nput: None

* CQut put: None

* Reg Mod: A, Y, CCR

*

cal hbl k PSHX
LDAA NUMVBGS *
BNE chkl nt *
I NCA *
STAA NUMVBGS *
LDX #HSTHD *
STX DATI NDX *
STX HSTTL *
STX NEWWEBG

If interrupted on negedge,
been interrupted.

then the transnmission is either conplete or

has

want to reset | ClF.

Reset fl ags.

Are we current set at neg or posedge?

Make | C1lF active on negedge.

Expect control character.

* Make | ClF active on posedge again.

* Reset bad data flag
* |f msg received, need to handshake
O herw se exit

*

Pl ace stop byte at end of nesg
Clear incom ng nesg flag
Set new nessage fl ag
Go into tx node to send handshake
Get the handshake control chracter
Store the control character for output
Stored null character
Store start of rest of data
Allow for a nested inturrupt
* Enabl e transm ssion
Get nenu status.
are we | ooking at the main nenu?
If not, don't update it.
Update the main nmenu, if we are there
enter rx node when tx conpletes

hi story menory bl ock for storage of

Check NUMVEGS
I f (NUMVBGS == 0)

I ncrenent NUMVEGS

Set to wite at the first hist. blk.

Make the tail the head.

33

BRA exit4

chkl mt LDD NEVWSG *
CPD #HSTLMT * Else if (NEWWBG == HSTLM)
BNE def aul t *
LDX #HSTHD * Wap around to front of history blks.
STX DATI NDX
STX NEVWSG
BRA exit4
default LDD NEWWEBG * El se
ADDD #33 * Shift right by one history bl ock.
STD NEWEG * Record new position of newest nsg.
STD DATI NDX * Record new position.
LDY #HSTLMT
cPY HSTTL
BEQ exit4
STD HSTTL * Modi fy tail position.
exit4 PULX
RTS

*

* Data Request ISR (Controlled via IC2l pin (PAl)).

*

odatisr LDX #REGS
LDY DATI NDX
LDAA 0,Y
BNE cont
di sabl e LDX #REGS
BCLR PORTA |, X 491000000 * Di sabl e transm ssion pin on FPGA
BRA exit6
cont STAA PORTC
I NY
STY DATI NDX
exit6 BSET TFLGL, X 990000010 * reset | C2F
RTI
khhkkkhhhkkhkhhkhkkhhhhhhhddhhhdhdddhhdhdxddhhdhdxddhddhdxddhddhdxddhddddxdddx*xddx*d,%x*%x
* All LCD control subroutines adapted from *
* "Digital Alarmd ock", Jason Fong, Fernando Mattos. *

* http://ww3. hnt. edu/ ~harri s/ cl ass/ el55/ proj ect s99/ al ar ntl ockl. pdf *

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhddhddhrrdrxdx*x

I NI TLCD subrouti ne.

*
initlcd LDAA #$38

JSR witec
LDAA #3$38
JSR witec
LDAA #3$38
JSR witec
LDAA #3506
JSR witec
LDAA #$0C
JSR witec
RTS

*

* CLRLCD subroutine

*

clrlcd

*

LDAA
JSR
CLR
CLR
CLR
RTS

#3501 * Clear the LCD screen

witec

LCDROW * Set LCD coordi nates.

LCDCCL

LCDFLG * O ear LCDFLG

* CURSORON subrouti ne.

*

cur_on

*

LDAA
JSR
RTS

#$0D * Activate cursor.

witec

* CURSOROFF subrouti ne.

*

cur_off

E I

curl

E I

cur?2

E I I

witec
*

LDAA
JSR
RTS

STAA
LDAB
STAB
ADDA
JSR
RTS

STAA
LDAB
STAB
ADDA
JSR
RTS

BCLR
STAA

BSET

#$0C
witec

CURL subrouti ne.
Moves the LCD cursor to a colum (designated in ACCA) in row 1.

LCDCOL
#1
LCDROW
#STF
witec

CUR2 subrouti ne.
Moves the LCD cursor to a colum (designated in ACCA) in row 2.

LCDCOL
#2
LCDROW
#3$BF
witec

PORTA |, X 990111000
PCRTB

PORTA |, X 990001000

* %k

SUBROUTI NE TO WRI TE | NSTRUCTI ONS TO THE LCD DI SPLAY MODULE.
Bit 5->RW Bit 4->RS, Bit 3->E

R/ W0, RS=0, E=0

Wite controls
E=1

E=0

35

BCLR

BSET
LDAA
JSR
RTS

E I

wited
*

BSET
BCLR
STAA

BSET
BCLR

BSET
LDAA
JSR
I NC
LDAA
CMVPA
BNE
testrow LDAA
CMVPA
BNE
LDAA
STAA
BRA
wr ap CLRA
JSR
exith RTS

PORTA |, X 990001000
* RIWEL
PORTA |, X 990100000
#10 * Delay for 10 ns
wai t

SUBROUTI NE TO WRI TE DATA TO THE LCD DI SPLAY MODULE.
Wites characters to the lcd screen at the cursor position.

* RRW0, RS=1, E=0
PORTA |, X 990010000
PORTA |, X 990101000

PORTB * Wite character
* E=1
PORTA |, X 990001000
* E=0
PORTA |, X 990001000
* RIWEL
PORTA |, X 990100000
#2 * Delay for 2ms
wai t
LCDCCL * Wote a char, so increnent columm position.
LCDCCL
#$10 * If we see 16, we're at the right boundary.
exith
LCDROW *If rowis 2, then we can't wite anynore.
#$02 * |f rowis 1, then wap to (2,0)
wr ap
#1 * Set max flag
LCDFLG
exith
cur?2

hkhkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhhhhdhhhdhdhhddhdddrrdr*x%x

* LCD screen subroutines.
khkhkkhkhkkhkhhkdhhkdhdhdhkhkhkhkdhhkdhkddhdhdhdhkhkdhhkdhkddddddkh*xk*x*%

*
* DI SPLAY subrouti ne.
* LCD nenu options are hard-coded into specific |ocations in nenory.
* Prior to calling the display subroutine, the location for the nenu
* option is loaded into Y. Display increments through nmenory after
* the location in Y until it hits the designated stop character ($00).
*
di spl ay
| oopd LDAA 0,Y * ab current character from nmenu position.
BEQ di spend * |If character is $00 (stop byte), termnate.
JSR wited
I NY
BRA di spl ay
di spend RTS

36

mm scr JSR clrlcd
JSR cur_off
LDAA #M_MAI N

*

Hi de cursor.

STAA MVENU * Set nenu node to "main nenu" ($00)
LDY #MMIXT1 * Set Y to start of main menu screen text (line 1).
JSR display * Display the text.
CLRA * G ve ACCA val ue of #0
JSR cur?2 * Move to (2,0)
LDY #MMIXT2 * Set Y to start of main menu screen text (line 2).
JSR display * Display the text.
mm scr2 BRCLR | DATFLG %©0001000 mm scr3 * Don't indicate new nessage
BCLR | DATFLG 990001000
LDAA #$03
JSR cur?2
LDAA #STE
JSR wited
LDAA #$10
JSR cur?2
LDAA #BTF
JSR wited

mm scr3 RITS

snd_scr JSR clrlcd
JSR cur _on
LDAA #M M5G
STAA MENU * Set menu node to "send screen" ($01)
LDY #TXHD * Set Y to increnent across TX nmenory bl ock
STY HSTINDX * Store Y
RTS

transmt_scr
JSR clrlcd
LDAA #M_SEND
STAA VENU

LDY #TXTXT
JSR di spl ay
JSR cur_off
RTS

hst _scr LDAB PORTE * Get keypress.
LDAA NUWMSGS * |If no nmessages in queue, do not hing.

BEQ exit2

LDY NEWVSG * El se, | oad the newest message into the screen.
STY HSTI NDX * di splay needs to have starting address of data.
JSR clricd

JSR di spl ay

LDAA #M H ST * Set MENU to "Message History".
STAA MENU * The keypress ISRrelies on this data to correctly
exit2 RTS i nterpret keypresses.

*

37

* This is here in subroutine formonly because we were branching

* out of range in the main key poller.
*

hsk_hdl
BRSET | DATFLG 991000000 succt x * Check if handshake received.
* * |f no handshake received, give failure nessage.
LDY #FAI LTXT * Set Y to start of fail text.
JSR di spl ay * Display the text.
JSR cur_off * Hi de cursor.
BRA gomai n
succt x
* * | f handshake received, give successful nessage.
LDY #SUCCTXT * Set Y to start of succeed text.
JSR di spl ay * Display the text.
BCLR | DATFLG 91000000 * (O ear handshake fl ag
gomai n BRCLR TFLGL, X %©0000001 gonai n * Wit for keypress.
*

BSET TFLGL, X 990000001
JSR mm scr
RTS

Reset polling flag.

38

Appendix C | Keypad Layout

The keypad layout is able to use more than 16 characters by using a shifting technique to switch between
different sets of characters. The shift keys are the upper three keys on the rightmost column of the
keypad. The dark black dot in the diagrams signify which shift key activates which set of characters.

Al |B] |C M| |[N| |O| |@
D| [E| [F P| Q] [R
G| |H| | S||T| U
J| K] L] [@ V| w| [X]| |@
Y|1Z]||O 211
1| (2] (3] |@ @| |#| |$
45116 % | ™ sl
7118 19] € El[C[)] |«

39

Appendix D | FPGA Pinout

Pi nout by Pin Name:

o RS R

| Pi n Nane | Direction | Pin Nunber

o RS R
SC rxdat a | NPUT P18
SC rxen QUTPUT P10
SC t xdat a QUTPUT P8
SC t xen QUTPUT P9
cl k | NPUT P13
keypad_col s<0> QUTPUT P36
keypad_col s<1> QUTPUT P35
keypad_col s<2> QUTPUT P29
keypad_col s<3> QUTPUT P28
keypad_dat a_port <0> QUTPUT P70
keypad_dat a_port <1> QUTPUT P69
keypad_dat a_port <2> QUTPUT P68
keypad_dat a_port <3> QUTPUT P67
keypad_dat a_port <4> QUTPUT P66
keypad_dat a_port <5> QUTPUT P65
keypad_dat a_port <6> QUTPUT P62
keypad_dat a_port <7> QUTPUT P61
keypad_dat a_r eady QUTPUT P72
keypad_r ows<0> I NPUT P38
keypad_r ows<1> I NPUT P39
keypad_r ows<2> I NPUT P40
keypad_r ows<3> I NPUT P44

receiver_clk	QUTPUT

recei ver _dat a_r eady QUTPUT P59
recei ver _i nconm ng_transm ssion QUTPUT P45
reset L I NPUT P19
shift_L<0> QUTPUT P25
shift_L<1> QUTPUT P24
shift_L<2> QUTPUT P23
tnp_bit QUTPUT P48
t mp_cnt QUTPUT P47
t mp_st at e<0> QUTPUT P51
t mp_st at e<1> QUTPUT P50
t np_st at e<2> QUTPUT P49
transcei ver _dat a_port <0> BI DI R P84
transcei ver _data_port<1> BI DI R P83
transcei ver _dat a_port <2> BI DI R P82
transcei ver _dat a_port <3> BI DI R P81
transcei ver _dat a_port <4> BI DI R P80
transcei ver _dat a_port <5> BI DI R P79
transcei ver _dat a_port <6> BI DI R P78
transcei ver _data_port <7> BI DI R P77
transcei ver _direction_sel ect I NPUT P56
transmitter_data_request QUTPUT P58
transmtter _enable I NPUT P57
o RS R

40

Appendix E | Final Product

41

