

RF Wireless Text Messaging System

Final Project Report
December 8, 2000

E155

Braden Pellett and Steve Yan

Abstract:

One of the hot topics in modern computing is wireless communication. WAP and Bluetooth technologies
are poised to revolutionize the way that electronic devices and the humans who use them will interact in
the future. In the spirit of such up and coming technology, the objective of this project is to design and
implement a wireless communication system using RF wireless transceivers. The system incorporates a
multi-layered communication protocol with packet recognition and simple handshaking. Each transceiver
station consists of a 4x4 matrix keypad for input, LCD for text display, half-duplex transceiver, FPGA
board, and M68HC11EVB. On user input or incoming data, the FPGA alerts the HC11 via external
interrupt signals. The HC11 controls an LCD display menu system and writes data to memory. The
menu system allows the user to input a message for transmission or to view the past six received
messages.

 2

I. Introduction

This project is an experimental foray into wireless communication, a facet of the high technology
industry that is currently experiencing rapid growth. As this technology is a lock for becoming the
standard in the future, it begs the question of how difficult it is to implement such a system and what
kinds of problems are inherent in wireless technology.
 To answer this very question, this project implements a multi-layered communications protocol.
This protocol forms the basis for a wireless text messaging system that allows for sending and receiving
of text messages via half-duplex RF transceivers operating in the 900 MHz range. The protocol is robust
enough to allow the messaging system to differentiate between transceiver noise and actual data.
Furthermore, the system allows for a simple handshaking protocol that allows a sender to confirm the
reception of his/her message.

Design Overview
 The overall design consists of two transceiver stations, each with identical hardware (see block
diagram). The FPGA and M68HC11 tasks are divided cleanly based on the protocol layers. The FPGA
handles the lowest layers of the protocol. Its task is only to send or receive data but not interpret this data
in any way. The FPGA listens to incoming data on the transceiver and based on the protocol criteria (see
FPGA Design) discards the data as noise or recognizes a message header followed by data. Should the
latter occur, the FPGA alerts the HC11 of incoming data via external interrupt signals (see
Microcontroller Design). The transceiver is controlled exclusively by the FPGA. The FPGA takes input
from the HC11 to select transfer or receive mode for the transceiver. Furthermore, the FPGA takes data
from the keypad and interrupts the HC11 to capture the keypad press.
 The HC11 is interrupt-driven. The HC11 will spin waiting for a keypad press or interrupt signals
from the FPGA. The HC11 handles the higher layers of the protocol. That is, it will not be interrupted
unless real data is received by the transceivers or if the user manipulates it via keypad press. Based on
which interrupt signal the HC11 receives, it will either send out a byte of data, setup for receiving data,
receive a byte of data, or read from the keypad.
 The system interface uses a 16x2 LCD character display. The HC11 drives a menu system on the
LCD that allows the user to enter and send a message, alerts the user of an incoming message, or allows
the user to view a message history of up to six previous messages. The LCD is driven exclusively by the
HC11.

FPGA M68HC11
EVB

Transceiver Station

RF

transceiver

LCD module

3

4x4 matrix
keypad

8

8 3

2

4

keypad data port
(PORTE [7:0])

8

transceiver data port
(PORTC [7:0])

8

LCD data
(PORT B [7:0])

LCD control
(PORTA [5:3])

txen, rxen,
txdata

rxdata

external interrupts
(PORTA [2:0], STRA)

transceiver enable,
direction select
(PORTA [7:6])

Figure 1. System Block Diagram.

 3

II. New Hardware

 This text messaging system uses two new types of hardware: an LM016 16x2 LCD character
display and a Linx Technologies SC-PA Series RF transceiver module.

LM016 16x2 LCD Character Display (LM016)
 This LCD includes an on-board driver that handles functionality such as recognizing characters,
writing characters to the display, and moving the cursor. Therefore using the LCD is simply a matter of
issuing the correct series of commands to the LCD. This LCD display is controlled via 14 pins (see
Schematics). The first three pins (GND, Vcc, Ve) control power to the LCD. An external potentiometer is
tied to these three pins to control the intensity of the LCD display.

The next three pins (RS, R/W, E) are used as control pins. Writing to these pins and then issuing
specific commands to the data pins will cause different functionality on the LCD. Pin 4 (Register Select)
should be high when writing characters to the display and low when writing to control registers. Pin 5
(Read/Write) allows a user to either write data to the display or read from its on-board memory. The read
functionality was not used in this project. Pin 6 (Enable) should be strobed low after setting up the data
pins. The data on pins 7-14 are latched on the falling edge of this signal.

Pins 7-14 (DATA0 through DATA7) are used for data I/O. They are used either to write actual
data to the screen or issue certain control commands to the LCD.
 Most displays of this type have similar programming. A full reference of LCD commands can be
found at: http://www.repairfaq.org/filipg/LINK/F_LCD_progr.html#LCDPROGR_002

Linx Technologies SC-PA Series RF Transceiver Module (TR-916-SC-PA)
 The SC-Series modules are single-channel, half-duplex digital/analog transceivers designed for
wireless applications for up to 500 feet outdoors and 200 feet indoors. The SC-PA transceiver module
operates in the 900 MHz range and transfers data at a rate of up to 33.6 KBps. An on-board voltage
regulator regulates the transceiver’s internal Vcc to 3.0V. The transceiver can operate over an input
voltage range of 2.7V to 16V.
 These transceivers were chosen for their easy interface. The antenna connector came pre-
connected and the pinout, as seen below, is simple. However, these transceivers have some subtle
aberrations that should be noted. On startup of the transmitter there is a 4-5 msec period of time during
which the transmitter should be allowed to stabilize before sending data. Similarly for the receiver, a 7-
10 msec delay is needed. Finally, on transfer/receive switching a fair amount of noise is generated on the
transceivers, which, if not accounted for, will be interpreted as data by the communications protocol. The
protocol used in the text messaging system compensated for both of these problems.

Table 1. RF Transceiver Pinout
Pin # Pin Title Description
1, 11, 13, 15-
20

Ground Module Grounds
Tie to Common Groundplane

2 RXDATA Recovered Data Output
3 AUDIO Recovered Analog Output
4 RSSI Received Signal Strength Indicator
5 PDN Logic Low Powers Down The Transceiver
6 N/C Not Implemented Do Not Connect
7 RXEN Receiver Enable Pin | Active High | Pull Low When in TX
8 TXEN Transmitter Enable Pin | Active High | Pull Low When in RX
9 TXDATA Analog or Digital Content to be Transmitted
10 VIN 2.7-16VDC Supply
12 ANT 50Ω Antenna Port | TX/RX Switched Inside Module
14 PWR LEV Do Not Connect! Not Used on PA Version

 4

III. Schematics

1 GND
2 RX DATA
3 AUDIO
4 RSSI
5 PDN
6 N/C
7 RXEN
8 TXEN
9 TXDATA
10 VIN

GND 20
GND 19
GND 18
GND 17
GND 16
GND 15

PWRLEV 14
13

ANT 12
11+5VDC

FP8
FP9

FP18

Transceiver

Matrix Keypad

COL3
COL2
COL1
COL0

ROW0
ROW1
ROW2
ROW3

P28
P29
P35
P36
P38
P39
P40
P44

1K 1K 1K 1K

+5VDC

+5VDC

FP23 (red LED)

FP24 (yellow LED)

FP25 (green LED)

DATA7 L14
DATA6 L13
DATA5 L12
DATA4 L11
DATA3 L10
DATA2 L9
DATA1 L8
DATA0 L7
 E L6
R/W L5
RS L4

Ve

L3
Vcc

L2

GND

L1

H35 (PB7)
H36 (PB6)
H37 (PB5)
H38 (PB4)
H39 (PB3)
H40 (PB2)
H41 (PB1)
H42 (PB0)
H30 (PA4)
H29 (PA5)
H28 (PA6)

+5VDC

LCD Display Module

+5VDC

47K

P19

Reset switch

L = LCD Display
F = FPGA Board
H = M68HC11

FP84
FP83
FP82
FP81
FP80
FP79
FP78
FP77
FP72

FP70/LED1
FP69/LED2
FP68/LED3
FP67/LED4
FP66/LED5
FP65/LED6
FP62/LED7
FP61/LED8

FP59
FP58
FP57
FP56
FP45

(PC0)
(PC1)
(PC2)
(PC3)
(PC4)
(PC5)
(PC6)
(PC7)
(PA0)
(PE0)
(PE1)
(PE2)
(PE3)
(PE4)
(PE5)
(PE6)
(PE7)
H4 (STRA)
(PA1)
(PA6)
(PA7)
(PA2)

FPGA/HC11 Interface

 5

IV. Microcontroller Design

The M68HC11 handles controlling the LCD-displayed menu system, storing received messages,
and allowing for input and transmission of a text message. All 68HC11 functionality is either polling or
interrupt-driven. Table 2 shows the various input and output signals accepted and generated by the
HC11:

Table 2. Microcontroller I/O
Inputs Outputs
Transceiver Data Port (PORTC)
Keypad Data Port (PORTE)
Receiver Incoming Transmission IRQ (PA2)
Receiver Data Ready IRQ (STRA)
Transmitter Data Request IRQ (PA1)
Keypad Data Ready (Polling) (PA0)

Transceiver Data Port (PORTC)
Transceiver Direction Select (PA7)
Transmitter Enable (PA6)
LCD Data (PORTB)
LCD Control (PORTA [5:3])

Program Data
 The HC11 tracks a wide variety of program data to help it decide which subroutines to execute
based on incoming interrupt or polling signals. Most notably it remembers which screen is displayed on
the LCD, where in memory data to be transmitted is stored, and where in memory previous messages
have been stored (see Appendix B for a full listing of program data).

Data Structure
 The messages sent and received by each transceiver station expect the following structure for
each message:

1. Control character. This first byte denotes if the message is an actual text message or simply a
handshake.

2. Data. If there is text to be sent, the words of the message (up to 32 characters) immediately
follow the message control character. If this is simply a handshake, no data is sent after the
control character.

Handshaking
 The HC11 controls a simple handshaking protocol that will allow a user to verify if the other
transceiver station correctly received his/her message. If a transceiver station receives what it identifies
as a valid message, it will immediately send out a handshake signal to alert the sender that a message was
received. The sender will then display on the LCD that the transmission was successful. If no such
handshaking signal is received after a certain timeout period (1 msec in this case) then the sending station
displays a failure message.

Transfer/Receive Switching
 The HC11 will be able to send and receive messages by controlling the physical RF transceiver
module via the FPGA. It uses two output signals to accomplish this: Transmitter Enable and Direction
Select. When Direction Select is low, the transceiver is set to transmit. When Direction Select is high,
the transceiver is set to receive. When Transmitter Enable is high, this prompts the FPGA to repeatedly
fire the Transmitter Data Request Interrupt in order to send a message byte by byte from the HC11.
 When sending data, the HC11 cannot switch back to receive mode immediately after sending the
stop byte. Although the HC11 will be finished sending, the FPGA will still be piping data serially to the
RF transceiver. Switching during this period will prematurely terminate the outgoing data. Conversely,
the HC11 should not be allowed to switch to transfer mode until any incoming messages have been
completely sent.

 6

 To fix this problem, the HC11 monitors different input and output signals to determine when it is
safe to switch from receive to transfer and vice-versa. It cannot enter transfer mode until the Receiver
Incoming Transmission Interrupt signal is low. This guarantees that switching will not cut off any
incoming data. Furthermore, the HC11 cannot enter receive mode until the Transmit Enable signal and
Transmitter Data Request Interrupt signals are low. When the latter is low, this signifies that the FPGA
has completely sent out the byte of data that it last read from PORTC.

Polling and Interrupts
 Figure 2 shows a simplified version of the microcontroller’s program flow. Note that the HC11
will only execute its subroutines if either a) a keypress is detected or b) an interrupt signal goes high. In
this sense the HC11 is usually slave to the FPGA except on initializing data transmission, where it will
raise the transfer enable signal to prompt the FPGA to pull data from the HC11 on the Transceiver Data
Port (PORTC).
 The keypress poller spins on the Keypad Data Ready flag (IC3F). When a key is pressed on the
matrix keypad and the FPGA raises this signal, the poller will break from its spin and traverse the rather
lengthy if-then-else keypress logic. The HC11 will call different subroutines based on which screen
(main menu, send screen, or view history) is currently on the LCD and which keys on the keypad are
pressed. The keypress poller was originally made an interrupt, however due to its length and non-time
critical nature, it was downgraded to a polling scheme in order to eliminate the risk of this lengthy routine
from delaying other more time-critical interrupts.
 At any point during the keypress polling routine, an external interrupt signal from the FPGA can
trigger one of three interrupt service routines (ISR) to fire. These three interrupt signals are: Receiver
Incoming Transmission, Receiver Data Ready, and Transmitter Data Request. Each of these signals
prompts the HC11 to setup for incoming messages, send a data word, or receive a data word.

Receiver Incoming Transmission IRQ

This interrupt alerts the HC11 that the FPGA has recognized a valid data packet and that
incoming data is imminent. This signal will stay high for the duration of the message reception. To
prepare for this data, on this interrupt’s positive edge the ISR for Receiver Incoming Transmission raises
a flag that instructs the Receive Data Ready ISR to look for one of the two control characters
corresponding to either an incoming message or a handshake confirmation.

This ISR will also trigger on the negative edge of the interrupt signal. If a handshake was just
received, the ISR need not do anything since this is simply confirmation that the last message it sent out
was properly received. If a message was just received however, the HC11 will nest Transmitter Data
Request interrupts within this ISR in order to send out a handshaking response immediately.

Receiver Data Ready IRQ
 The Receiver Data Ready signal fires every time the FPGA reads in a new byte of incoming data.
When this signal is raised, the ISR will do different things based upon the flags that are set within the
program.
 If the “Expect Control Character” flag is raised, then the ISR attempts to interpret the byte of data
that it reads from PORTC as one of the two control characters. If neither can be matched to the data, the
ISR immediately disregards the entire message. If the data is a message, then the ISR will calibrate a new
position in the history memory block and subsequently treat each successive byte as a byte of an
incoming message, storing it to memory. If the data is a handshake, the ISR disregards any other data
following the handshake control character. This is merely confirmation that the other transceiver station
received the previously sent message. When the Receiver Incoming Transmission Interrupt goes low, this
signifies the end of an incoming message. A stop byte ($00) is used to terminate the string written to
memory.

 7

Transmitter Data Request IRQ
 The Transmitter Data Request signal fires every time the FPGA requests a new piece of data from
the HC11. This signal will only fire if the Transmitter Enable signal is high. The ISR reads a byte of data
from the block of memory that records the message to be transmitted and writes this data to PORTC for
output. When the ISR sees the stop byte ($00), this signifies that the message is finished and the ISR sets
the Transmission Enable signal low. The ISR does not send the stop byte.

Message History
 The text messaging system message history is a circular array of six 33-byte blocks of memory.
This circular setup eliminates the need to shift all the previous messages over in memory when the history
has been filled and a new message has come in. Rather, before a new message comes in the HC11
calculates from the address of the current newest message where the address of the next new message will
be. Should it hit the limit of the memory block devoted to message history, it will wrap to the front of the
history memory block to store the new message.

LCD Display and Control
 Writing to the LCD display is controlled via PORTB and three bits of PORTA. A series of LCD
control subroutines along with subroutines that draw specific screen types (main menu, send screen, view
history) are used to represent to the user the changing state of the text messaging system. The LCD
display will change in response to different keypresses in different areas of the menu system. Since the
LCD display requires a delay on the order of 3-5 msec between writing characters, LCD display writing
subroutines are called from the main program rather than from interrupt service routines to minimize
interrupt delays.

 8

initialize

1. Initialize variables
2. Initialize LCD
3. Clear LCD
4. Activate LCD cursor
5. Display main menu
5. Setup external IRQs
6. Switch to RX mode

keypad poller

Spin on keypress flag

keypressed.
reset keypress flag

main menu history

send

Which screen is
on the LCD display?

If (ENTER)
- Switch to TX mode
- Send message
- display MAINMENU

Else
- Print character to LCD
- Write character to
 memory

If (OPTION_A)
- Display SEND screen

If (OPTION_B)
- Display HISTORY
 screen

On POSEDGE
- Set flag for control character
 check

On NEGEDGE
- If a message was received,
 send out handshaking
- Else data was handshake,
 exit

On POSEDGE
If checking for control character
- If msg control character,
 calibrate memory position for
 incoming message storage.
- If handshake, alert user of
 successful transmission
Else
- Write data to memory

On POSEDGE
If data at current position in TX
data block is $00 (stop byte)
- disable transmission
Else
- Read from current position
 in TX data block
- Write data to PORTC for
 transmission

If (<-)
- Display older message

If (->)
- Display newer message

If (ENTER)
- Display MAINMENU

Return to keypress spin

interrupts

RX incoming transmission RX data ready TX data request

Figure 2. M68HC11 Program Flow Block Diagram | This is a simplified representation of the HC11’s
routines that outlines its main functionality.

 9

V. FPGA Design

The FPGA holds three main components: the keypad decoder, the RF serial data transmitter, and
the RF serial data receiver. All the components use two primary signals: the input clock (clk) and the
global reset (reset_L).

Keypad

The keypad decoder module polls a 4x4 matrix keypad for input (polling on keypad_cols and
watching for input on keypad_rows). It outputs the typed value using an ASCII encoded word on an 8-bit
bus (keypad_data_port), and uses the positive edge of another signal (keypad_data_ready) to indicate new
data is available. As part of the keypad decoding, three keys in the right most column are designated as
shift keys, which change which characters are decoded for the first three columns. There is also 3 outputs
which indicate which shift key, if any, is active (shift_L[0..2]). Refer to appendix C for the keypad
layout.

RF Serial Data Transceiver

Design Description

The other two main components on the FPGA, the RF serial data transmitter and the RF serial
data receiver, handle the lower layers of the designed communication protocol, while the upper layers are
on the 68HC11 microcontroller. What this means is that the FPGA handles all aspects of the
communication of individual words of data, but does not interpret the meaning of the words in any way.
The microcontroller handles the meaning of individual words, but is not concerned with how these words
are communicated. The rest of this section is concerned with the operation of the communication
modules in the FPGA. Refer to the microcontroller section for an explanation of the higher-lever
protocol.
 In figuring out how to send data words over the RF wireless link using the receiver modules, a
few facts needed to be considered. First, the transceiver makes no assumptions about the serial data, and
does not encode it in any way. Secondly, the transceiver module needs to have a square wave that
alternates enough so that its data slicer has some frequency on which to lock. Finally, there is the definite
possibility for noise, which the protocol should handle with some grace.
 In addressing these issues, communication of data words with the FPGA is split up into a header
and the data. In turn, the header is split up into a wake-up preamble and a data word alignment region.
The data section is just a stream of, currently, 8-bit data words. All transmissions have a carrier
frequency which dictate the maximum frequency at which the serial transmission alternates, and is the
rate the transmission tries to stay close to as not to confuse the transceiver module. As of the time of this
report, a 15.6 KHz maximum frequency square wave using a 1 MHz main clock into the FPGA was
employed.
 The header consists of a wake-up preamble and a data word alignment region. Before the
preamble, the serial data is pulled to a constant high. The wakeup preamble consists of an alternating
sequence of 30 “sub-bits” that are transmitted at the base frequency of communication. A “sub-bit” will
be defined as a high or low signal lasting half the carrier period. After the wakeup preamble, a special
sequence of sub-bits is sent (HHLHHLHLLHLL), followed by 12 more alternating sub-bits. After this,
data transmission begins. Data, it should be noted, is encoded using a set of three sub-bits, where a 1 is
HHL and 0 is HLL.
 The wake-up preamble has three purposes: to setup the data-slicer in the transceiver module, to
establish a phase lock between the transmitting and receiving clocks, and to let the receiver know that a
header is beginning. The receiver, in order to establish a phase lock with the transmitting clock, and to try
to average out noise pulses, samples each sub-bit 8 times. When waiting for data, the receiver goes
through the following steps:

 10

Figure 3. Message Header | A series of 32 sub-bits followed by a data word alignment.

1. Compare the sampled serial input to a well-defined positive edge. It will pick up on one of
the wake-up preamble’s pulses, and synchronize itself to the edges of this square wave, so it
knows the alignment of the sub-bits.

2. To make sure that there is actually a preamble being received (and not, say, a noise burst), it

checks to see if there is a high-low-high-low-high-low (HLHLHL) pattern in the serial data.
A “high” or a “low” is determined from the sampled serial input by finding the majority value
of the 8 samples.

3. Now the receiver synchronizes to the data words by searching for the HHLHHLHLLHLL

sub-bit sequence.

4. Finally, it waits for 12 more sub-bits before turning over control to the data word extracting

section in order to synchronize itself with the incoming data words. These sub-bits are placed
in the serial transmission so that the receiver cannot accidentally mistake where the data word
alignment sub-bit sequence really is, since high-low-high-low (HLHL) sub-bit sequences
cannot easily appear in encoded data-bit sequences, even with heavy noise.

Steps 2 and 3 have a timeout timer associated with them that will make the receiver give up

looking for the expected input and return to step 1 after a certain number of candidate sub-bits have
passed by. This is especially important for step 3. Otherwise the receiver might skip the true 4-bit word
(e.g. due to noise) and start looking for it inside the data portion of the transmission, which would cause
all data to be incorrectly aligned. See figure 3 for an example of the header.

Now data words being to be decoded. The transmitter, as mentioned earlier, encodes each data-

bit of the word with three sub-bits (1 = HHL, 0 = HLL). This way, the serial output will not remain at a
single high or low state for very long, and thus there is a base frequency for the transceiver to pick up on.
The data section of the transmission is just a string of bits encoded in the above way. Once data words
begin to be recognized, the receiver outputs them to the 8-bit data but. When the receiver gets a word of
completely invalid encoded bits (most likely because the serial input has returned to its default constant-
high state, which is what the transmitter section will do once it is done sending data), the receiver resets to
searching for a transmission header. See figure 4 for an example of the data transmission.

 11

Operation Description
 Since the RF transceivers are half-duplex, only one bi-directional port is used for data input or
output (transceiver_data_port). Another signal selects whether the FPGA should be in transmit or receive
mode (transceiver_direction_select).

The transmitter module when not communicating just sends out a constant high signal. It uses an
enable signal (transmitter_enable) to start communication. It will sample the data input on an 8-bit bus
(transceiver_data_port). An output signal (transmitter_data_request) indicates on its positive edge that
the transmitter has sampled the input data bus, and so new data may be asserted. When the enable signal
is set low again, the transmitter finishes the word it is on, and resets to its initial state. The data request
signal goes low after the transmitter has been disabled only when the transmitter has finished sending the
last pieces of data and a sufficiently long period of a constant high signal to tell the receiver that the data
has ended.

The receiver module waits for a valid incoming transmission. Once it identifies one, it sets a
signal telling a transmission is arriving (receiver_incoming_transmission). Then it starts decoding the
data words, which are then loaded to an 8-bit bus (transceiver_data_port), and then uses the positive edge
of another signal to indicate data is ready on the bus (receiver_data_ready). This decoding continues until
the serial data stream stops being valid for an entire data word, at which points the receiver resets to its
initial state, and so the incoming transmission signal is also reset.

Figure 4. Message Header followed by data words.

 12

VI. Results

All of our tests of the final product returned favorable results. The lower level protocol
effectively discarded noise and never was falsely triggered by such noise. Further, when sending data, all
the words got through intact if the FPGA successively picked up the incoming signal, which it did almost
all the time (at ranges tested up to the distance across the lab). The upper levels of the protocol also
behaved as expected, and our handshaking implementation was able to determine if the receiver had
picked up the message or not.
 Outside of the protocol, the other features (mostly made up of user-interfaces) also worked as
expected. The keypad and the LCD operated properly. Interface features for the text messaging system
program, namely a menu system, a message history, and a automatic indicator of a new message, all
worked as designed.
 The most challenging portion of the design was the protocol in general. In particular, the lower
levels presented some interesting challenges to overcome, as discussed in the FPGA section. However,
every major portion of the project presented some problem to solve, all of which (no matter how small)
helped to further our understanding of the hardware we were working with.
 Overall, we accomplished the goals set out in our final proposal, and were even able to go a bit
further. The experience we received with the technology should prove useful, or at least make good small
talk at parties. Hopefully the information contained in this document will adequately inform the reader of
the issues and challenges of implementing this or a similar design.

 13

References

[1] http://www.repairfaq.org/filipg/LINK/F_LCD_progr.html#LCDPROGR_002
[2] http://www.fe.uni-lj.si/~tuma/seminarske/senzor/lm016/znaki.htm
[3] "Digital Alarm Clock", Jason Fong, Fernando Mattos

http://www3.hmc.edu/~harris/class/e155/projects99/alarmclock1.pdf
[4] http://www.linxtechnologies.com/lpdfs/scpamanual.pdf
[5] http://www.linxtechnologies.com/lpdfs/scpadata.pdf

Parts List

Listing of all the components used other than standard resistors, capacitors, and parts available in the MicroP’s lab.

Part Source Vendor Part # Quantity Price
Linx Half-Duplex RF Transceiver RF Digital

http://www.rfdigital.com
TR-916-SC-PA 2 $96.60

10 Pin Terminal Strips Mar-Vac Electronics 510AG91F10ES 2 $4.18
40 Pin Header Mar-Vac Electronics - 2 $1.98
Two Row 60 Pin Header Mar-Vac Electronics - 2 $2.98
16x2 LCD Char. Display Stock Room LM016
Breadboard Radio Shack - 2 $9.98
 TOTAL: $115.72

 14

Appendix A | Verilog HDL Modules

TOP
//
// top.v
//
// Authors: Braden Pellett (bpellett@hmc.edu)
// Steven Yan (syan@hmc.edu)
//
// Last updated: 12-7-00
//
// The top level of our FPGA logic design, which incorperates a keypad
// decoder and RF transceiver interface for converting data between
// straight parallel data and serial data suitable for output over a
// wireless link.
//

module top(clk, reset_L,
 keypad_rows, keypad_cols, keypad_data_port, shift_L, keypad_data_ready,
 transceiver_direction_select,
 transmitter_enable, transmitter_data_request,
 receiver_incoming_transmission, receiver_data_ready,
 transceiver_data_port,
 SC_rxdata, SC_txdata, SC_txen, SC_rxen,
 tmp_bit, tmp_cnt, tmp_state, receiver_clk);

 input clk; // The main clock signal
 input reset_L; // The main reset signal (tied to GSR)
 input transceiver_direction_select; // 0 = transmit, 1 = receive
 input SC_rxdata; // From the rxdata pin on the SC
 input transmitter_enable; // Start sending data
 input [3:0] keypad_rows; // Read from the keypad

 output SC_txdata; // To the txdata pin on the SC
 output SC_txen; // To the txen pin on the SC
 output SC_rxen; // To the rxen pin on the SC
 output keypad_data_ready; // Keypress interrupt pin
 output transmitter_data_request; // Data request interrupt pin
 // (FPGA is sending, wants more
 // data from HC11)
 output receiver_incoming_transmission;
 // Incoming transmission interrupt
 // (FPGA is receiving, and a packet
 // of data is being read)
 output receiver_data_ready; // Incoming data interrupt pin
 // (FPGA is receiving, has a data
 // word on the output)
 output [2:0] shift_L; // Indicates which shift key is set
 // on the keypad.
 // (active low for use with LEDs)
 output [3:0] keypad_cols; // Poll the keypad
 output [7:0] keypad_data_port; // Decoded data from the keypad

 inout [7:0] transceiver_data_port; // The decoded trasceiver I/O

 //
 // Diagnostic signals
 //
 output receiver_clk;
 output tmp_bit;
 output tmp_cnt;
 output [2:0] tmp_state;

 wire keypad_clk;
 wire receiver_clk;

 15

 wire transmitter_clk;
 wire [2:0] shift;
 wire transmitter_enable;
 wire keypad_data_ready;
 wire transmitter_data_request;
 wire receiver_data_ready;
 wire [7:0] receiver_data_word;
 wire [7:0] keypad_data_port;
 wire [7:0] transceiver_data_port;

 //
 // Create the clocks for the keypad poller, the transmitter,
 // and the reciever.
 //
 make_slow_clk msk(clk, ~reset_L,
 keypad_clk, transmitter_clk, receiver_clk);

 //
 // Poll the keypad to see what the user is typing, and output
 // this information as a ASCII character and a signal saying
 // there is new data to be read.
 //
 keypad_decoder kd(keypad_clk, ~reset_L, keypad_rows,
 keypad_cols, shift, keypad_data_ready, keypad_data_port);

 //
 // Sample the serial signal from the RF transceiver module and
 // decode any incoming data. Output said data, indicate that
 // a transmission is coming in, and output a signal each time
 // a new word is available to be read.
 //
 receiver rx(receiver_clk, ~reset_L, SC_rxdata,
 receiver_incoming_transmission, receiver_data_ready, receiver_data_word,
 tmp_bit, tmp_cnt, tmp_state);

 //
 // The transmitter translates the parallel input into an encoded serial
 // output with a special header suitable for input into the RF transceiver.
 // When enabled, reads in data words and provides a signal indicating when
 // it is read for another word. Disabling causes the transmitter to stop
 // sending after the last word. When the data request signal goes low
 // after the transmitter has been disabled, this is an indication that
 // the transmission is complete.
 //
 transmitter tx(transmitter_clk, ~reset_L, transmitter_enable, transceiver_data_port,
 transmitter_data_request, SC_txdata);

 //
 // A tristate buffer that allows the same pins on the FPGA to be used both for
 // data to be transmitted, and data received from the RF module. This is used
 // because the RF module is half-duplex in nature.
 //
 tristate buffer(receiver_data_word, transceiver_direction_select, transceiver_data_port);

 assign SC_txen = ~transceiver_direction_select;
 assign SC_rxen = transceiver_direction_select;

 assign shift_L = ~shift;

endmodule

//
// make_slow_clk
//
// Create the clocks for the keypad poller, the transmitter,

 16

// and the reciever.
//
module make_slow_clk(clk, reset,
 keypad_clk, transmitter_clk, receiver_clk);
 input clk;
 input reset;
 output keypad_clk;
 output transmitter_clk;
 output receiver_clk;

 reg [11:0] count;

 always @(posedge clk or posedge reset)
 if (reset) count = 0;
 else count = count + 1;

 assign keypad_clk = count[11];
 assign transmitter_clk = count[4];
 assign receiver_clk = count[1];

endmodule

//
// tristate
//
// A tristate buffer that allows for 8 bits of bidirectional
// data. This simply takes in the data for output, and if
// enabled, will output the data. If it is not enabled,
// then the output enters a high-Z state.
//
module tristate(data_in, en, data_out);
 input [7:0] data_in;
 input en;
 output [7:0] data_out;

 assign data_out = en ? data_in : 8'bzzzzzzzz;
endmodule

TRANSMITTER
//
// transmitter.v
//
// Authors: Braden Pellett (bpellett@hmc.edu)
// Steven Yan (syan@hmc.edu)
//
// Last updated: 12-7-00
//
// The transmitter translates the parallel input into an encoded serial
// output with a special header suitable for input into the RF transceiver.
// When enabled, reads in data words and provides a signal indicating when
// it is read for another word. Disabling causes the transmitter to stop
// sending after the last word. When the data request signal goes low
// after the transmitter has been disabled, this is an indication that
// the transmission is complete.
//

module transmitter(clk, reset, enable, next_word,
 next_read, serial_out);

 input clk; // Transmitter's clock signal
 input reset; // GSR signal
 input enable; // Transmitter enable
 input [7:0] next_word; // Word to be stored and sent
 output next_read; // Signal that word has been stored
 // Final negedge indicated end of transmission
 output serial_out; // The resultant encoded serial output

 17

 reg [2:0] state;
 reg [7:0] current_word;
 reg next_read;
 reg [5:0] counter;
 reg serial_out;

 reg [11:0] word_sync_sub_bit_header;

 //
 // Transmitting FSM
 //
 always @(posedge clk or posedge reset)
 if (reset) begin
 state <= 'd0;
 current_word <= 8'b0;
 next_read <= 0;
 serial_out <= 1;
 counter <= 'd1;
 word_sync_sub_bit_header <= 12'b110110100100;
 //
 // Wait to be enabled.
 //
 end else if (state == 'd0) begin
 next_read <= 0;
 serial_out <= 1;
 counter <= 'd1;
 word_sync_sub_bit_header <= 12'b110110100100;
 if (enable) state <= 'd1; // Start transmission
 //
 // When enabled, load in the first word, and start transmit
 // the header.
 //
 end else if (state == 'd1) begin
 //
 // The end of the header, so get ready to start sending
 // the encoded data.
 //
 if (counter == 'd55) begin
 serial_out <= 0;
 current_word <= next_word;
 counter[1:0] <= 'd0;
 counter[4:2] <= 'd1;
 state <= 'd2;
 //
 // After sending 30 low-high signals, send the word sync portion
 // of the header so the receiver knows what the word alignment
 // should be.
 //
 end else if (counter[5]) begin
 counter <= counter + 1;
 serial_out <= word_sync_sub_bit_header[11];
 word_sync_sub_bit_header <= {word_sync_sub_bit_header[10:0], ~counter[0]};
 //
 // Start by sending low-high signals so that the receiver can
 // get in phase with the transmitter clock.
 //
 end else begin
 counter <= counter + 1;
 serial_out <= ~serial_out;
 end
 //
 // Send the serial encoded data.
 //
 end else if (state == 'd2) begin
 //
 // A sub-FSM to encode each bit of the data word
 //
 case (counter[1:0])
 'd0: begin // Sub-bit 0: 1

 18

 serial_out <= 1;
 next_read <= 1;
 counter[1:0] <= 'd1;
 end
 'd1: begin // Sub-bit 1: data bit value
 serial_out <= current_word[7];
 counter[1:0] <= 'd2;
 end
 'd2: begin // Sub-bit 2: 0
 serial_out <= 0;
 //
 // We're at the end of this word, so
 // deside if and what we need to transmit.
 //
 if (counter[4:2] == 'd0) begin
 //
 // If we are no longer enabled, stop the transmission
 //
 if (~enable) begin
 counter <= 'd0;
 state <= 'd4;
 //
 // Otherwise, read in the next piece of data, and indicate
 // that we are doing so.
 //
 end else begin
 counter[1:0] <= 'd0;
 counter[4:2] <= counter[4:2] + 1;
 next_read <= 0;
 current_word <= next_word;
 end
 //
 // Not at the end of the word, so move on to the next bit
 //
 end else begin
 counter[1:0] <= 'd0;
 counter[4:2] <= counter[4:2] + 1;
 current_word <= {current_word[6:0], 1'b0};
 end
 end
 endcase
 //
 // Send a sufficiently long tail of "high" to ensure the receiver knows
 // the transmission has ended before resetting "next_read" so that the
 // user knows when the transmitter has finished sending this tail.
 //
 end else if (state == 'd4) begin
 serial_out <= 1;
 if (counter == 'd24) state <= 'd0;
 counter <= counter + 1;
 end

endmodule

RECEIVER
//
// receiver.v
//
// Authors: Braden Pellett (bpellett@hmc.edu)
// Steven Yan (syan@hmc.edu)
//
// Last updated: 12-7-00
//
// Sample the serial signal input and decode any incoming data. Output said
// data, indicate that a transmission is coming in, and output a signal each
// time a new word is available to be read. On the negitive edge of the
// incoming transition signal, the packet of data is either complete or
// ceased to be readable.
// Note: We couldn't seem to get the "incoming_transmission" signal to output

 19

// correctly, so for now just use the state[2] diagnostic output instead.
// They really should be the same, but for some reason they aren't.
// Note: Right now, because of some failed trickery, there are two large
// registers (storage and sub_bit_register) that are never actually
// used at the same time. This might cause the synthesized layout to
// be larger than it needs to, or Xilinx may optimize it out, but either
// way we were still able to fit the whole thing onto the FPGA, so we didn't
// spend the time to come back and clean it up.
//

module receiver(clk, reset, serial_in,
 incoming_transmission, data_ready, data_word,
 tmp_bit, tmp_cnt, state);

 input clk; // Receiver clock (should sample
 // each sub-bit 8 times)
 input reset; // GSR signal.
 input serial_in; // Serial input

 output incoming_transmission; // Indicates an incoming packet
 output data_ready; // Indicates data_word is ready to be read
 output [7:0] data_word; // Decoded data word

 //
 // Diagnostic data
 //
 output tmp_bit;
 reg tmp_bit;
 output tmp_cnt;
 reg tmp_cnt;
 output [2:0] state;

 reg data_ready;
 reg set_data_ready;
 reg [7:0] data_word;

 reg [2:0] state;

 reg [17:0] storage; // Store samples
 reg [11:0] sub_bit_register; // Store sub-bits
 reg [7:0] bit_register; // Store bits

 reg [3:0] majority_count; // Keep track of the number of 1 samples
 reg [2:0] sample_count; // Number of samples taken
 reg [3:0] bit_count; // Number of bits decoded
 reg [5:0] timeout_timer; // General use timer

 reg is_invalid;

 wire phase_lock;
 wire word_lock;
 wire preamble;
 wire majority;
 wire valid_bit_value;

 //
 // Receiver FSM
 //
 always @(posedge clk or posedge reset)
 if (reset) begin
 tmp_cnt <= 0;
 tmp_bit <= 1;
 state <= 'd0;
 data_ready <= 0;
 set_data_ready <= 0;
 data_word <= 8'b0;
 storage <= 18'b111111111111111111;
 majority_count <= 'b0;

 20

 sample_count <= 'b0;
 timeout_timer <= 'b0;
 bit_count <= 'b0;
 sub_bit_register <= 'b0;
 bit_register <= 'b0;
 is_invalid <= 1;
 end else begin
 //
 // This is just stuff for the diagnostic output...
 // It doesn't have to exist for proper operation.
 //
 tmp_cnt <= ~tmp_cnt;
 tmp_bit <= serial_in;
 //
 // In the first state, we just keep looking for a phase lock,
 // as defined at the bottom of this file.
 //
 if (state == 'd0) begin
 if (phase_lock) begin
 state <= 'd1;
 majority_count <= serial_in;
 sample_count <= 'd2;
 timeout_timer <= 'd0;
 end else
 storage <= {storage[16:0], serial_in};
 //
 // Get preamble lock, as defined at the end of this file.
 //
 end else if (state == 'd1) begin
 //
 // We have gotten 8 samples, so record the majority
 // as the sub-bit received.
 //
 if (sample_count == 'd0) begin
 sub_bit_register <= {sub_bit_register[11:0], majority};
 timeout_timer <= timeout_timer + 1;
 sample_count <= sample_count + 1;
 majority_count <= serial_in;
 //
 // If our series of sub-bits shows a proper preamble,
 // move on.
 //
 end else if (preamble) begin
 state <= 'd2;
 timeout_timer <= 'd0;
 //
 // If we timeout before we see a preamble, return to the
 // first state and try to resync on a posedge.
 //
 end else if (timeout_timer == 'd10) begin
 state <= 'd0;
 storage <= 18'b111111111111111111;
 majority_count <= majority_count + serial_in;
 sample_count <= sample_count + 1;
 //
 // Otherwise, just keep track of how many samples we've
 // taken since the last sub-bit, and keep track of the
 // majority.
 //
 end else begin
 majority_count <= majority_count + serial_in;
 sample_count <= sample_count + 1;
 end
 //
 // Get sync byte lock, as defined at the end of this file.
 //
 end else if (state == 'd2) begin
 //
 // We have gotten 8 samples, so record the majority
 // as the sub-bit received.
 //

 21

 if (sample_count == 'd0) begin
 sub_bit_register <= {sub_bit_register[11:0], majority};
 timeout_timer <= timeout_timer + 1;
 sample_count <= sample_count + 1;
 majority_count <= serial_in;
 //
 // If our series of sub-bits shows a proper sync byte,
 // lock, move on.
 //
 end else if (word_lock) begin
 state <= 'd3;
 timeout_timer <= 'd0;
 is_invalid <= 1;
 sample_count <= sample_count + 1;
 majority_count <= majority_count + serial_in;
 //
 // If we timeout before we see the byte sync sequence, return
 // to the first state and try to resync on a posedge.
 //
 end else if (timeout_timer == 'd36) begin
 state <= 'd0;
 storage <= 18'b111111111111111111;
 sample_count <= sample_count + 1;
 majority_count <= majority_count + serial_in;
 //
 // Otherwise, just keep track of how many samples we've
 // taken since the last sub-bit, and keep track of the
 // majority.
 //
 end else begin
 sample_count <= sample_count + 1;
 majority_count <= majority_count + serial_in;
 end
 //
 // We've seen the sync sequence, so now wait for the start of data.
 // (This is a pre-determined number of sub-bits after the sync
 // sequence.)
 //
 end else if (state == 'd3) begin
 //
 // We have gotten 8 samples, so one more sub-bit has passed.
 //
 if (sample_count == 'd0) begin
 timeout_timer <= timeout_timer + 1;
 sample_count <= sample_count + 1;
 majority_count <= serial_in;
 //
 // We've waited long enough, so move to decode data.
 //
 end else if (timeout_timer == 'd12) begin
 state <= 'd4;
 timeout_timer <= 'd0;
 bit_count <= 'd0;
 sample_count <= sample_count + 1;
 majority_count <= majority_count + serial_in;
 //
 // Still waiting, so keep track of the number of samples since
 // the last sub-bit.
 //
 end else begin
 sample_count <= sample_count + 1;
 end
 //
 // Segment and read the data
 //
 end else if (state == 'd4) begin
 //
 // We have gotten 8 samples, so record the majority
 // as the sub-bit received.
 //
 if (sample_count == 'd0) begin

 22

 sub_bit_register[2:0] <= {sub_bit_register[1:0], majority};
 timeout_timer <= timeout_timer + 1;
 sample_count <= sample_count + 1;
 majority_count <= serial_in;
 //
 // We have gotten 3 sub-bits, so form these into a
 // single data-bit, and keep track if we have received
 // any valid data-bits for this word.
 //
 end else if (timeout_timer == 'd3) begin
 if (set_data_ready) data_ready <= 1;
 is_invalid <= is_invalid & ~valid_bit_value;
 set_data_ready <= 0;
 timeout_timer <= 'd0;
 sample_count <= sample_count + 1;
 majority_count <= majority_count + serial_in;
 bit_count <= bit_count + 1;
 bit_register <= {bit_register[7:0], sub_bit_register[1]};
 //
 // We have stored 8 data bits (i.e. a full data word), so
 // now we need to do something with it.
 //
 end else if (bit_count == 'd8) begin
 //
 // The entire data word is invalid, so declare this
 // data packet as over and return to the first state.
 //
 if (is_invalid) begin
 state <= 'd0;
 data_ready <= 0;
 set_data_ready <= 0;
 data_word <= 8'b0;
 storage <= 18'b111111111111111111;
 majority_count <= 'b0;
 sample_count <= 'b0;
 timeout_timer <= 'b0;
 bit_count <= 'b0;
 sub_bit_register <= 'b0;
 bit_register <= 'b0;
 is_invalid <= 1;
 //
 // We have a at least partially valid word, so output
 // it in parallel and indicate that a new word
 // has arrived.
 //
 end else begin
 is_invalid <= 1;
 data_word <= bit_register;
 data_ready <= 0;
 set_data_ready <= 1;
 bit_count <= 'd0;
 sample_count <= sample_count + 1;
 majority_count <= majority_count + serial_in;
 end
 //
 // Otherwise, just keep sampling the input and keeping track
 // of the majority since the last sub-bit.
 //
 end else begin
 sample_count <= sample_count + 1;
 majority_count <= majority_count + serial_in;
 end
 end
 end

 //
 // A phase lock is when we find a sufficient well defined positive edge
 // in the sample data. (The old version, commented out right below the
 // new version, originally looked for a whole square pulse of the proper

 23

 // width, but this was impractical because it was taking too long for
 // the data slicer in the RF transceiver module to make properly squared
 // waves on the output)
 //
 assign phase_lock = &(~(storage[13:3] ^ 11'b00000111111));
 // assign phase_lock = &(~(storage ^ 18'b100000000111111110));
 //
 // A preamble is the intial low-high transmission
 //
 assign preamble = &(~(sub_bit_register[6:0] ^ 7'b0101010));
 //
 // The word lock is used to let the receiver figure out the word alignment.
 // It consists of sub-bits forming data-bits, namely 1100.
 //
 assign word_lock = &(~(sub_bit_register[11:0] ^ 12'b110110100100));
 //
 // The indicator of was the majority is in the 8 samples
 // of the input: high or low
 //
 assign majority = majority_count[3] | majority_count[2];
 //
 // Is the sequence of three sub-bits in the sub-bit register a valid data-bit?
 //
 assign valid_bit_value = sub_bit_register[2] & ~sub_bit_register[0];
 //
 // This doesn't work for some reason... we aren't sure why. Just use the state[2]
 // diagnostic output instead.
 //
 assign incoming_transmission = state[2];

endmodule

KEYPAD DECODER
//
// keypad_decoder.v
//
// Authors: Braden Pellett (bpellett@hmc.edu)
// Steven Yan (syan@hmc.edu)
//
// Last updated: 12-7-00
//
// Poll the keypad to see what the user is typing, and output
// this information as a ASCII character and a signal saying
// there is new data to be read. Refer to the technical report
// for how the keypad is arranged and connected. Basically, it is
// a 4x4 keypad, where the three top keys on the last column are
// shift keys, that allow the first three columns to be selectable
// between different ASCII characters. The lower right hand
// cell is alway "enter" (value 10).
//

module keypad_decoder(slowclk, reset_full, rows,
 cols, shift, read, data);

 input slowclk; // The clocks for scanning
 input reset_full; // GSR signal
 input [3:0] rows; // Read results of polling
 output [3:0] cols; // Polling outputs
 output [2:0] shift; // Indicator for shift keys
 output read; // Indicate for new data
 output [7:0] data; // Decoded data

 reg [1:0] state;
 reg [3:0] cols;
 reg [6:0] data;
 reg [6:0] key;
 reg read;

 24

 reg [2:0] shift;
 reg [2:0] shift_key;

 //
 // Scanning FSM (derived from the solution
 // to Lab 4 by Prof. David Harris)
 //
 always @(posedge slowclk or posedge reset_full)
 if (reset_full) begin
 state <= 'd0;
 cols <= 4'b0111;
 data <= 'd0;
 read <= 0;
 shift <= 3'b0;
 end else if (&rows) begin
 // no key pressed on this column, so keep scanning
 state <= 'd0;
 cols <= {cols[0], cols[3:1]}; // shift cols right
 end else if (state == 'd0) begin
 // A key has been pressed...
 if (|shift_key) begin
 // If the key was a shift, activate only this most
 // recently pressed shift key, or deactivate it if
 // it turns out that the user hit the shift key
 // that was active.
 state <= 'd2;
 shift <= (shift & shift_key) ^ shift_key;
 end else begin
 // If the key was not a shift, output the new key,
 // and indicate the key output is changing.
 state <= 'd1;
 read <= 0;
 data <= key;
 end
 end else if (state == 'd1) begin
 // Create a posedge signal showing that new key information
 // is available.
 state <= 'd2;
 read <= 1;
 end
 // otherwise wait until all keys are released before continuing

 //
 // Keypad conversion logic
 //
 always @(rows or cols or shift)
 if (~cols[3]) begin
 if (~rows[0]) key <= 'd10; // <return>
 else key <= 'd00;
 // Handle shift key press indication
 case (rows)
 4'b0111: shift_key <= 3'b100;
 4'b1011: shift_key <= 3'b010;
 4'b1101: shift_key <= 3'b001;
 default: shift_key <= 3'b000;
 endcase
 end else begin
 shift_key <= 3'b000;
 // Based upon which shift key, if any, is active, decide
 // what a given row and column decode to in ASCII.
 case (shift)
 3'b100: case ({rows, cols})
 8'b0111_1110: key <= 'd77; // M
 8'b1011_1110: key <= 'd80; // P
 8'b1101_1110: key <= 'd83; // S
 8'b1110_1110: key <= 'd86; // V
 8'b0111_1101: key <= 'd78; // N
 8'b1011_1101: key <= 'd81; // Q
 8'b1101_1101: key <= 'd84; // T
 8'b1110_1101: key <= 'd87; // W

 25

 8'b0111_1011: key <= 'd79; // O
 8'b1011_1011: key <= 'd82; // R
 8'b1101_1011: key <= 'd85; // U
 8'b1110_1011: key <= 'd88; // X
 default: key <= 'd0;
 endcase
 3'b010: case ({rows, cols})
 8'b0111_1110: key <= 'd89; // Y
 8'b1011_1110: key <= 'd49; // 1
 8'b1101_1110: key <= 'd52; // 4
 8'b1110_1110: key <= 'd55; // 7
 8'b0111_1101: key <= 'd90; // Z
 8'b1011_1101: key <= 'd50; // 2
 8'b1101_1101: key <= 'd53; // 5
 8'b1110_1101: key <= 'd56; // 8
 8'b0111_1011: key <= 'd48; // 0
 8'b1011_1011: key <= 'd51; // 3
 8'b1101_1011: key <= 'd54; // 6
 8'b1110_1011: key <= 'd57; // 9
 default: key <= 'd0;
 endcase
 3'b001: case ({rows, cols})
 8'b0111_1110: key <= 'd46; // .
 8'b1011_1110: key <= 'd64; // @
 8'b1101_1110: key <= 'd37; // %
 8'b1110_1110: key <= 'd38; // &
 8'b0111_1101: key <= 'd63; // ?
 8'b1011_1101: key <= 'd35; // #
 8'b1101_1101: key <= 'd94; // ^
 8'b1110_1101: key <= 'd40; // (
 8'b0111_1011: key <= 'd33; // !
 8'b1011_1011: key <= 'd36; // $
 8'b1101_1011: key <= 'd32; // <space>
 8'b1110_1011: key <= 'd41; //)
 default: key <= 'd0;
 endcase
 default: case ({rows, cols})
 8'b0111_1110: key <= 'd65; // A
 8'b1011_1110: key <= 'd68; // D
 8'b1101_1110: key <= 'd71; // G
 8'b1110_1110: key <= 'd74; // J
 8'b0111_1101: key <= 'd66; // B
 8'b1011_1101: key <= 'd69; // E
 8'b1101_1101: key <= 'd72; // H
 8'b1110_1101: key <= 'd75; // K
 8'b0111_1011: key <= 'd67; // C
 8'b1011_1011: key <= 'd70; // F
 8'b1101_1011: key <= 'd73; // I
 8'b1110_1011: key <= 'd76; // L
 default: key <= 'd0;
 endcase
 endcase
 end

endmodule

 26

Appendix B | HC11 Assembly Code

* Authors: Steve Yan (syan@hmc.edu)
* Braden Pellett (bpellett@hmc.edu)
* Created: November 14, 2000
* Modified: December 7, 2000
*
* Motorola 68HC11 code for RF Wireless text messaging system interface
* and LCD module LM016 control. The HC11 is controlled via external
* interrupts.
*
* External Interrupts:
* Incoming Data ISR (STRA pin)
* Incoming Transmission ISR (IC1I pin (PA2))
* Data Request ISR (IC2I pin (PA1))
* Keypress ISR (IC3I pin (PA0))

* Set port and register addresses. *

REGS EQU $1000 * Base address
PORTA EQU $1000 * Output for LCD Control
PORTA_I EQU $00 * Output for LCD Control
PORTB EQU $1004 * Output for LCD data
PORTC EQU $1003 * Bidirectional Port (I/O between HC11 and FPGA)
PORTCL EQU $1005 * Latched input for Port C
PORTE EQU $100A * Keypad input
PIOC EQU $02 * Parallel I/O Control Register (Port C)
DDRC EQU $07 * Data Direction register for Port C
TCNT EQU $0E * 16-bit built in timer
TOC5 EQU $1E * Timer Output Compare 5 (16-bit)
TCTL2 EQU $21 * Interrupt signal edge detection
TMSK1 EQU $22 * OCxI flags (enables output compare interrupts)
TFLG1 EQU $23 * OCxF and ICxF flags (go high after OC match)
PACTL EQU $26 * Pulse accumulator control register

*
* Program data.
*
MODE EQU $09 * $00 = transmit, $01 = receive, $02 = idle
MENU EQU $0A * $00 = main menu, $01 = send msg, $02 = view history
LCDROW EQU $0B * Row position of LCD display cursor.
LCDCOL EQU $0C * Column position of LCD display cursor.
LCDFLG EQU $0D * 1 if max msg size is reached

* 7 = expect ctrl char flag, 6 = handshaking flag, 5 = bad data flag,
* 4 = incoming message flag, 3 = new message flag, 2 = screen update request
IDATFLG EQU $0E

TXT_ST EQU $D006 * Starting address of text.

*
* Message bookkeeping data. (Addresses)
*

 27

NEWMSG EQU $00 * Stores address of newest message.
NUMMSGS EQU $02 * Stores number of messages currently in the history.
HSTINDX EQU $03 * Stores value of Y Index Register for view history.
DATINDX EQU $05 * Stores value of Y Index Register for rx/tx data.
HSTTL EQU $07 * Stores value of last history block.
TXHD EQU $19 * Head position of tx data block.
HSTHD EQU $3A * Address of first message (1st history block).
HSTLMT EQU $00BE * Address of last message (5th history block).

*
* Constants
*
M_MAIN EQU $00
M_MSG EQU $01
M_HIST EQU $02
M_SEND EQU $03

CC_STX EQU $02 * STX (start of text)
CC_ACK EQU $06 * ACK (postive acknoledgement)

*
* Init variables.
*

 ORG MODE
 FCB $02 * Start out idle.
 FCB $00 * Start in main menu.
 FCB $00 * LCDROW = 0
 FCB $00 * LCDCOL = 0
 FCB $00 * LCDFLG = 0

* Interrupt vectors. *

 ORG $00E5 * Jump address for Data Request interrupts (IC2).
 JMP odatisr * Jump to Data Request ISR.

 ORG $00E8 * Jump address for Incoming Transmsn interrupts (IC1).
 JMP itxisr * Jump to Incoming Data ISR.

 ORG $00EE * Jump address for Incoming data interrupts (STRA).
 JMP idatisr * Jump to Incoming data interrupt.

* LCD display text storage. *

 ORG TXT_ST

MMTXT1 FCC "A. Send message"
NULLBLK FCB $00 * Stop character

MMTXT2 FCC "B. View history"
 FCB $00 * Stop character

MMTXT3 FCB $7E

 28

 FCB $7F
 FCB $00 * Stop character

TXTXT FCC "Transmitting..."
 FCB $00 * Stop character

SUCCTXT FCC "Success! :)"
 FCB $00 * Stop character

FAILTXT FCC "Failure! :("
 FCB $00 * Stop character

* Begin program. *

 ORG $D100
 LDX #REGS

LDS #$DFFF
BCLR PORTA_I,X %01000000 * Set transmit enable to 0.
CLRA
STAA NUMMSGS * NUMMSGS = 0
STAA IDATFLG * Set incoming data flags to 0.
JSR initlcd * Initiates LCD.
JSR clrlcd * Clears LCD screen.
JSR cur_on * Activate cursor.
JSR mm_scr * Display main menu screen.
BSET PACTL,X %10000000 * Setup Port A, pin 7 as output (dir sel)
JSR extirq * Setup external interrupts.
JSR rx_mode * Set to receive.
CLI * Unmask global interrupts.

keypol BRCLR TFLG1,X %00000001 keypol * Wait for keypress.

*
* Keypress Poller. (Controlled via IC3I pin (PA0)).
* KeypressPoller()
* {
* if (MENU = "Main Menu")
* if (keypressed = A) { display send menu }
* else if (keypressed = B) { display history }
* else if (MENU = "Send")
* if (keypressed = ENTER) {return to main menu and send data}
* else if (LCDFLG = 0) { write data to LCD display }
* else // must be in "Msg history"
* if (keypressed = #$41) // <- key
* look at older message
* else
* look at newer message
* }
*
 BSET TFLG1,X %00000001 * Reset polling flag.
 LDAA PORTE * Read incoming data on PORTE.
 LDY HSTINDX * Get Y value.
 LDAB MENU * Get menu status.
 CMPB #M_MAIN * are we looking at the main menu?

 29

 BEQ mmenu * If yes, do main menu keypress logic.
 CMPB #M_MSG * If not, are we in the send message screen?
 BEQ write * If so, do send screen keypress logic.
 BRA hst1 * Else, must be viewing history.
mmenu CMPA #$41 * If option A, go to send menu
 BEQ snd
 CMPA #$42 * If option B, go to hist menu
 BEQ hst
 BRA keyend
write CMPA #$0A * Did we press enter? (send key)
 BNE write2 * If not, just write to display and memory.

 CLRA
 STAA 0,Y * Write stop byte ($00) if sending.
 JSR transmit_scr * Display the transmission message
 JSR tx_mode * Go into transmit mode
 LDAA #CC_STX * Get the mesg control chracter
 STAA PORTC * Store the control character for output
 LDY #TXHD * Get where the written message is stored
 STY DATINDX * Store start of rest of data
 BSET PORTA_I,X %01000000 * Enable transmission
 JSR rx_mode
 LDAA #$01
 JSR wait * Timeout waiting.
 CLRA * Give ACCA value of #0
 JSR cur2 * Move to (2,0)
 JSR hsk_hdl * Handle looking for the handshake
 BRA keyend

write2 LDAB LCDFLG
 BNE keyend * If LCD not full, then write to memory, LCD.
 STAA 0,Y
 INY
 STY HSTINDX
 JSR writed * Write to LCD display.
keyend BRA keypol * Return to polling for next keypress.

snd JSR snd_scr
 BRA keyend

hst JSR hst_scr
 BRA keyend

*
* If (keypressed == "<--") // view older msgs.
* if (Y == HSTHD) {
* // wrap to end of history memory block.
* // display new message.
* }
* else {
* // shift left in history memory block.
* // display new message.
* }
*
* Else if (keypressed == "-->") // view newer
* if (Y == HSTTL) {
* // Move to front of history memory block.

 30

* // display new message.
* }
* else {
* // shift right in history memory block.
* // display new message.
* }
* Else { do nothing }
*
hst1 CMPA #$41 * <- key
 BNE hst2
 LDD HSTINDX
 CPD #HSTHD * Are we looking at the first history block?
 BNE mvleft * If not just shift left one history block.
wraptl LDY HSTTL * Wrap to rightmost valid memory block.
 STY HSTINDX
 BRA disphst
mvleft LDD HSTINDX
 SUBD #33 * Each memory block is 32 chars + 1 stop byte
 STD HSTINDX
 LDY HSTINDX
 BRA disphst

hst2 CMPA #$42 * -> key
 BNE gommenu * If -> key not pressed, ignore the input.
 LDD HSTINDX
 CPD HSTTL * Are we looking at the last filled memory block?
 BNE mvright * If not just shift right one history block.
wraphd LDY #HSTHD * Move HSTINDX value to leftmost history block.
 STY HSTINDX
 BRA disphst
mvright LDD HSTINDX
 ADDD #33 * Each memory block is 32 chars + 1 stop byte
 STD HSTINDX
 LDY HSTINDX
 BRA disphst
gommenu CMPA #$0A * Did we press enter?
 BNE keyend
 JSR mm_scr
 BRA keyend
disphst JSR clrlcd
 JSR display

 BRA keyend

* MAIN SUBROUTINES. *

*
* Subroutine: extirq
* Desc: Setup all interupts to trigger on active edge of their
* respective external signals. IC1I also triggers on negative
* edge. Incoming TX (IC1I), Data Request (IC2I),
* and Incoming Data (STRA)
* Input: None
* Output: None

 31

* Reg Mod: A, CCR
*
extirq LDX #REGS
 LDAA #%00010101 * IC1F, IC2F, IC3F active on pos.
 STAA TCTL2,X * Write to Timer Control Register 2.
 LDAA #%00000110 * Enable IC1I, IC2I.
 STAA TMSK1,X * Enable interrupts.
 LDAA #%00000111
 STAA TFLG1,X * Reset flags.
 LDAA PIOC,X
 ORAA #%11000010 * STAF = 1, STAI = 1, EGA = 1 (PIOC)
 STAA PIOC,X * Generate IRQ on active edge of ext. signal
 RTS

*
* Subroutine: txmode
* Desc: Setup for transfer of data.
* Input: X (points to starts of regs)
* Output: None
* Reg Mod: A, CCR
*
* Do not enter tx_mode until Incoming Transmission interrupt is low.
tx_mode BRSET PORTA_I,X %00000100 tx_mode
 BSET DDRC,X $FF * Make PORTC an output.
 CLR MODE * Set mode to transmit.
 BSET PACTL,X %10000000
 BCLR PACTL,X %01000000
 BCLR PORTA_I,X %10000000 * Enable transmitter (clear dir sel)
 LDAA #$05 * Wait for warmup
 JSR wait
 RTS

*
* Subroutine: rxmode
* Desc: Setup for reception of data.
* Input: X (points to start of regs)
* Output: None
* Reg Mod: A, CCR
*
* Continue only if incoming data isr pin is low and enable transmit is low.
rx_mode BRCLR PORTA_I,X %01000010 cont_rx
 BRA rx_mode
cont_rx CLR DDRC,X * Make PORTC an input.
 LDAA #$01 * Set mode to receive
 STAA MODE
 BSET PORTA_I,X %10000000 * Enable receiver (set dir sel)
 LDAA #$05 * Wait for switching.
 JSR wait
exit RTS

* Subtroutine: wait
* Desc: Wait for acc[A] milliseconds
* Input: A
* Output: None
* Reg Mod: A, CCR

 32

*

wait PSHX
wait_spin1 LDX #2000
wait_spin2 DEX
 BNE wait_spin2
 DECA
 BNE wait_spin1
 PULX
 RTS

* INTERRUPT SERVICE ROUTINES (ISR). *

*
* Incoming Data ISR. (Controlled via STRA pin).
*
idatisr LDX #REGS
 LDAA PIOC,X * Reset STAF bit.
 LDAA PORTCL * Read data from latched PORTC data.
 BRSET IDATFLG %00100000 exit8 * If bad data, exit.
 BRSET IDATFLG %10000000 cchr1 * Else if expecting control char,
 BRSET IDATFLG %00010000 hdl_msg * Else if reading message,
 BRA exit8 * Else, exit and ignore the data

* Else do incoming message handling.
hdl_msg LDY DATINDX * Load rx position into Y
 STAA 0,Y * Write data to memory.
 INY
 STY DATINDX * Increment DATINDX, and store in memory
exit8 RTI

cchr1 BCLR IDATFLG %10000000 * Reset control character flag.
 CMPA #CC_STX * If the control character signifies msg,
 BNE cchr2
 JSR calhblk * Calibrate history memory block.
 BSET IDATFLG %00010000 * Set 4th bit high (signifies mesg)
 RTI

cchr2 CMPA #CC_ACK * Else if control character is handshake,
 BNE discard
 BSET IDATFLG %01000000 * Set 6th bit high (signifies handshake)
 RTI

discard BSET IDATFLG %00100000 * Else
 RTI * Set 5th bit high (signifies bad data).

*
* Incoming Transmission ISR. (Controlled via IC1I pin (PA2))
*
* If interrupted on posedge, setup DATINDX to for recording the incoming
* data in the history memory blocks. Also, set PORTC as an input.

 33

*
* If interrupted on negedge, then the transmission is either complete or has
* been interrupted.
*
itxisr LDX #REGS
 LDAA #%00000100 * Want to reset IC1F.
 STAA TFLG1,X * Reset flags.
 LDAA TCTL2,X
 CMPA #%00010101 * Are we current set at neg or posedge?
 BNE negedge

posedge LDAA #%00100101 * Make IC1F active on negedge.
 STAA TCTL2,X
 BSET IDATFLG %10000000 * Expect control character.
 BRA exit3

negedge LDAA #%00010101 * Make IC1F active on posedge again.
 STAA TCTL2,X
 BCLR IDATFLG %00100000 * Reset bad data flag
 BRSET IDATFLG %00010000 tx_hsk * If msg received, need to handshake
 BRA exit3 * Otherwise exit

tx_hsk LDY DATINDX
 CLR 0,Y * Place stop byte at end of mesg.
 BCLR IDATFLG %00010000 * Clear incoming mesg flag
 BSET IDATFLG %00001000 * Set new message flag
 JSR tx_mode * Go into tx mode to send handshake
 LDAA #CC_ACK * Get the handshake control chracter
 STAA PORTC * Store the control character for output
 LDY #NULLBLK * Stored null character
 STY DATINDX * Store start of rest of data
 CLI * Allow for a nested inturrupt
 BSET PORTA_I,X %01000000 * Enable transmission
 LDAB MENU * Get menu status.
 CMPB #M_MAIN * are we looking at the main menu?
 BNE nupd_mm * If not, don't update it.
 JSR mm_scr2 * Update the main menu, if we are there
nupd_mm JSR rx_mode * enter rx mode when tx completes
exit3 RTI

*
* Subroutine: calhblk
* Desc: Finds the next history memory block for storage of
* the incoming message.
* Input: None
* Output: None
* Reg Mod: A, Y, CCR
*
calhblk PSHX
 LDAA NUMMSGS * Check NUMMSGS
 BNE chklmt * If (NUMMSGS == 0)
 INCA * Increment NUMMSGS
 STAA NUMMSGS *
 LDX #HSTHD * Set to write at the first hist. blk.
 STX DATINDX *
 STX HSTTL * Make the tail the head.
 STX NEWMSG

 34

 BRA exit4
chklmt LDD NEWMSG *
 CPD #HSTLMT * Else if (NEWMSG == HSTLMT)
 BNE default *
 LDX #HSTHD * Wrap around to front of history blks.
 STX DATINDX
 STX NEWMSG
 BRA exit4
default LDD NEWMSG * Else
 ADDD #33 * Shift right by one history block.
 STD NEWMSG * Record new position of newest msg.
 STD DATINDX * Record new position.
 LDY #HSTLMT
 CPY HSTTL
 BEQ exit4
 STD HSTTL * Modify tail position.
exit4 PULX
 RTS

*
* Data Request ISR. (Controlled via IC2I pin (PA1)).
*
odatisr LDX #REGS
 LDY DATINDX
 LDAA 0,Y
 BNE cont
disable LDX #REGS
 BCLR PORTA_I,X %01000000 * Disable transmission pin on FPGA
 BRA exit6
cont STAA PORTC
 INY
 STY DATINDX
exit6 BSET TFLG1,X %00000010 * reset IC2F
 RTI

* All LCD control subroutines adapted from *
* "Digital Alarm Clock", Jason Fong, Fernando Mattos. *
* http://www3.hmc.edu/~harris/class/e155/projects99/alarmclock1.pdf *

*
* INITLCD subroutine.
*
initlcd LDAA #$38
 JSR writec
 LDAA #$38
 JSR writec
 LDAA #$38
 JSR writec
 LDAA #$06
 JSR writec
 LDAA #$0C
 JSR writec
 RTS

 35

*
* CLRLCD subroutine.
*
clrlcd LDAA #$01 * Clear the LCD screen.
 JSR writec
 CLR LCDROW * Set LCD coordinates.
 CLR LCDCOL
 CLR LCDFLG * Clear LCDFLG.
 RTS

*
* CURSORON subroutine.
*
cur_on LDAA #$0D * Activate cursor.
 JSR writec
 RTS

*
* CURSOROFF subroutine.
*
cur_off LDAA #$0C
 JSR writec
 RTS

*
* CUR1 subroutine.
* Moves the LCD cursor to a column (designated in ACCA) in row 1.
*
cur1 STAA LCDCOL
 LDAB #1
 STAB LCDROW
 ADDA #$7F
 JSR writec
 RTS

*
* CUR2 subroutine.
* Moves the LCD cursor to a column (designated in ACCA) in row 2.
*
cur2 STAA LCDCOL
 LDAB #2
 STAB LCDROW
 ADDA #$BF
 JSR writec
 RTS

*
* SUBROUTINE TO WRITE INSTRUCTIONS TO THE LCD DISPLAY MODULE.
* Bit 5 -> R/W, Bit 4 -> RS, Bit 3 -> E
*
writec
* * R/W=0, RS=0, E=0
 BCLR PORTA_I,X %00111000
 STAA PORTB * Write controls
* * E=1
 BSET PORTA_I,X %00001000
* * E=0

 36

 BCLR PORTA_I,X %00001000
* * R/W=1
 BSET PORTA_I,X %00100000
 LDAA #10 * Delay for 10 ms
 JSR wait
 RTS

*
* SUBROUTINE TO WRITE DATA TO THE LCD DISPLAY MODULE.
* Writes characters to the lcd screen at the cursor position.
*
writed
* * R/W=0, RS=1, E=0
 BSET PORTA_I,X %00010000
 BCLR PORTA_I,X %00101000
 STAA PORTB * Write character
* * E=1
 BSET PORTA_I,X %00001000
* * E=0
 BCLR PORTA_I,X %00001000
* * R/W=1
 BSET PORTA_I,X %00100000
 LDAA #2 * Delay for 2ms
 JSR wait
 INC LCDCOL * Wrote a char, so increment column position.
 LDAA LCDCOL
 CMPA #$10 * If we see 16, we're at the right boundary.
 BNE exit5
testrow LDAA LCDROW * If row is 2, then we can't write anymore.
 CMPA #$02 * If row is 1, then wrap to (2,0)
 BNE wrap
 LDAA #1 * Set max flag
 STAA LCDFLG
 BRA exit5
wrap CLRA
 JSR cur2
exit5 RTS

* LCD screen subroutines.

*
* DISPLAY subroutine.
* LCD menu options are hard-coded into specific locations in memory.
* Prior to calling the display subroutine, the location for the menu
* option is loaded into Y. Display increments through memory after
* the location in Y until it hits the designated stop character ($00).
*
display
loopd LDAA 0,Y * Grab current character from menu position.
 BEQ dispend * If character is $00 (stop byte), terminate.
 JSR writed
 INY
 BRA display
dispend RTS

 37

mm_scr JSR clrlcd
 JSR cur_off * Hide cursor.
 LDAA #M_MAIN
 STAA MENU * Set menu mode to "main menu" ($00)
 LDY #MMTXT1 * Set Y to start of main menu screen text (line 1).
 JSR display * Display the text.
 CLRA * Give ACCA value of #0
 JSR cur2 * Move to (2,0)
 LDY #MMTXT2 * Set Y to start of main menu screen text (line 2).
 JSR display * Display the text.

mm_scr2 BRCLR IDATFLG %00001000 mm_scr3 * Don't indicate new message
 BCLR IDATFLG %00001000
 LDAA #$03
 JSR cur2
 LDAA #$7E
 JSR writed
 LDAA #$10
 JSR cur2
 LDAA #$7F
 JSR writed

mm_scr3 RTS

snd_scr JSR clrlcd
 JSR cur_on
 LDAA #M_MSG
 STAA MENU * Set menu mode to "send screen" ($01)
 LDY #TXHD * Set Y to increment across TX memory block
 STY HSTINDX * Store Y
 RTS

transmit_scr
 JSR clrlcd
 LDAA #M_SEND
 STAA MENU
 LDY #TXTXT
 JSR display
 JSR cur_off
 RTS

hst_scr LDAB PORTE * Get keypress.
 LDAA NUMMSGS * If no messages in queue, do nothing.
 BEQ exit2
 LDY NEWMSG * Else, load the newest message into the screen.
 STY HSTINDX * display needs to have starting address of data.

 JSR clrlcd
 JSR display

 LDAA #M_HIST * Set MENU to "Message History".
 STAA MENU * The keypress ISR relies on this data to correctly
exit2 RTS * interpret keypresses.

*

 38

* This is here in subroutine form only because we were branching
* out of range in the main key poller.
*
hsk_hdl
 BRSET IDATFLG %01000000 succtx * Check if handshake received.
* * If no handshake received, give failure message.
 LDY #FAILTXT * Set Y to start of fail text.
 JSR display * Display the text.
 JSR cur_off * Hide cursor.
 BRA gomain
succtx
* * If handshake received, give successful message.
 LDY #SUCCTXT * Set Y to start of succeed text.
 JSR display * Display the text.
 BCLR IDATFLG %01000000 * Clear handshake flag
gomain BRCLR TFLG1,X %00000001 gomain * Wait for keypress.
 BSET TFLG1,X %00000001 * Reset polling flag.
 JSR mm_scr
 RTS

 39

Appendix C | Keypad Layout

The keypad layout is able to use more than 16 characters by using a shifting technique to switch between
different sets of characters. The shift keys are the upper three keys on the rightmost column of the
keypad. The dark black dot in the diagrams signify which shift key activates which set of characters.

A B C

D E F

G H I

J K L

M N O

P Q R

S T U

V W X

Y Z 0

1 2 3

4 5 6

7 8 9

. ? !

@ # $

% ^ sp

& ()

 40

Appendix D | FPGA Pinout

Pinout by Pin Name:
+--+-----------+--------------+
| Pin Name | Direction | Pin Number |
+--+-----------+--------------+
SC_rxdata	INPUT	P18
SC_rxen	OUTPUT	P10
SC_txdata	OUTPUT	P8
SC_txen	OUTPUT	P9
clk	INPUT	P13
keypad_cols<0>	OUTPUT	P36
keypad_cols<1>	OUTPUT	P35
keypad_cols<2>	OUTPUT	P29
keypad_cols<3>	OUTPUT	P28
keypad_data_port<0>	OUTPUT	P70
keypad_data_port<1>	OUTPUT	P69
keypad_data_port<2>	OUTPUT	P68
keypad_data_port<3>	OUTPUT	P67
keypad_data_port<4>	OUTPUT	P66
keypad_data_port<5>	OUTPUT	P65
keypad_data_port<6>	OUTPUT	P62
keypad_data_port<7>	OUTPUT	P61
keypad_data_ready	OUTPUT	P72
keypad_rows<0>	INPUT	P38
keypad_rows<1>	INPUT	P39
keypad_rows<2>	INPUT	P40
keypad_rows<3>	INPUT	P44
receiver_clk	OUTPUT	P46
receiver_data_ready	OUTPUT	P59
receiver_incoming_transmission	OUTPUT	P45
reset_L	INPUT	P19
shift_L<0>	OUTPUT	P25
shift_L<1>	OUTPUT	P24
shift_L<2>	OUTPUT	P23
tmp_bit	OUTPUT	P48
tmp_cnt	OUTPUT	P47
tmp_state<0>	OUTPUT	P51
tmp_state<1>	OUTPUT	P50
tmp_state<2>	OUTPUT	P49
transceiver_data_port<0>	BIDIR	P84
transceiver_data_port<1>	BIDIR	P83
transceiver_data_port<2>	BIDIR	P82
transceiver_data_port<3>	BIDIR	P81
transceiver_data_port<4>	BIDIR	P80
transceiver_data_port<5>	BIDIR	P79
transceiver_data_port<6>	BIDIR	P78
transceiver_data_port<7>	BIDIR	P77
transceiver_direction_select	INPUT	P56
transmitter_data_request	OUTPUT	P58
transmitter_enable	INPUT	P57
+--+-----------+--------------+

 41

Appendix E | Final Product

