
1

TamaMudder!

Final Project Report
December 8, 2000

E155

Tina Wang and Carrie Chung

Abstract:
The TamaMudder is a virtual pet whose life is based on the life of a Mudder. The goal is to survive long
enough to get to graduation. The owner of the TamaMudder must see that the TamaMudder gets adequate
amounts of Food, Sleep and maintains a healthy amount of Tan and Happiness. They do so by making the
TamaMudder do various activities by pushing the different activity buttons on the game board. The health
of the TamaMudder is displayed on a grid of LED’s. Another set of LED’s will indicate which, if any,
activity is currently being executed. The game is controlled and executed by a microcontroller. The
microcontroller receives inputs from the game board and outputs display data to an FPGA. The FPGA
decodes the data and outputs it to the LED display.

2

Table of Contents

Introduction... 4
Schematics .. 5
Microcontroller Design ... 7
FPGA Design.. 9
Results .. 11
Appendix A – HC11 assembly code .. 12
Appendix B-Verilog.. 18

3

Figures and Tables

Figure 1: Overall System Block Diagram .. 4
Figure 2: FPGA Interface .. 5
Figure 3: Breadboard Schematic.. 5
Figure 4:Printed Circuit Board and HC11 Schematics Pin Assignments 6
Figure 5:Shift Register .. 9
Table 1: Inputs and outputs of HC11 ... 7
Table 2: Game Parameters – Initial Settings .. 7
Table 3: Inputs and Outputs of FPGA.. 9
Table 4: Information Bits Used ... 10

4

Introduction

In looking at the many of the other projects and ideas, all seemed interesting but few of them were cute. So
we thought a Tamagotchi-style game would be a cute contrast to the many gadgets and games that we saw
in both this year and last year’s reports.

The TamaMudder is a game based on the Tamagotchi virtual pets. The basic premise is that the player
needs to take care of the virtual pet, as they would a real pet, and gets to watch it grow and evolve. For the
TamaMudder, the player will help the TamaMudder survive long enough to reach graduation. As with the
Tamagotchi pets, the TamaMudder will die if the player neglects to take care of it. For example, if the
player never sends the TamaMudder to Platt, it will starve to death.

In the TamaMudder world, each hour lasts ½ second in the real world and it only takes 4 weeks to reach
graduation, as opposed to 4 years in the real world. Like a real Mudder, it must sleep, eat, do homework,
and maintain a decent tan in order to survive to reach graduation.

The game hardware consists of a Motorola HC11 controller, a Xilinx Spartan FPGA, toggle switches and
several LED’s assembled together on a protoboard. The HC11 controller polls for user input, keeps track of
which activity is running and the different health levels of the TamaMudder as well as the overall life/grade
level. The FPGA decodes data from the HC11 controller and controls the LED display.

Figure 1: Overall System Block Diagram

User Key Press

LED’s - level

LED’s – grade
(on FPGA board)

LED’s - activity

HC11
Controller

FPGA

Serial data transfer

4

20

4

4

5

Schematics

We tried to keep the game design as simple as possible. Therefore all the LED’s connected
directly to a signal pin on the FPGA instead of having the LED’s multiplexed. We were worried that we
were going to run out of pins, but our design was small enough to allow us the luxury of controlling the
LED’s directly. Since the HC11 controls the user input, we connected the user input switches and activity
display LED’s directly to the HC11 controller, bypassing the FPGA which would have acted as a wire
anyway.

Figure 2: FPGA Interface

The HC11 outputs data to be decoded in the FPGA through both the serial port and a parallel port pin. The
serial port sends all the LED display data to the FPGA in groups of 5 8-bit numbers. The parallel port sends
the TamaClk signal to the FPGA which acts as a wire to display the pulse on the 8th LED of the FPGA
board.

Figure 3: Breadboard Schematic

Serial input
PD 3

Serial clock
PD 4

spconvert bindec

bindec

bindec

bindec

bindec

3

3

3

3

3

TamaClock
PC 7

LED 8
Tamaclk

5

5

5

5

5
Hunger

Happiness

Sleep

Tan

LED1-5
Progress

status Protoboard

PCB
FPGA

HC11

PWR GND

GND P7

GND P8

GND P9

GND P10

GND P14

All resistors are 330?
All diodes represent LED’s

GND P18

GND P19

GND P20

GND P23

GND P24

GND P25

GND P26

GND P27

GND P28

GND P29

GND P36

GND P38

GND P39

GND P40

GND P44

Hunger Happiness Sleep Tan

GND PB3 GND PB2 GND PB1 GND PB0

GND

PWR

PC3

GND

PWR

PC2

GND

PWR

PC1

GND

PWR

PC0

Platt Homework Hum Reading Hike Baldy

Display Grid

Activity Input and Display

6

Figure 4:Printed Circuit Board and HC11 Schematics Pin Assignments

FPGA
P7
P8
P9
P10
P14

P18
P19
P20
P23
P24

P25
P26
P27
P28
P29

P36
P38
P39
P40
P44

PD4 P35

P79 PD3

P78 PC7

HC11

PC0

GND P66

GND P67

GND P68

GND P69

GND P70

PC1

PC2

PC3

PC7

PD3 PD4

PB2 PB3

PB0 PB1

Slide 3

7

Microcontroller Design

Please refer to Final2.asm in Appendix A when reading this section.

As previously stated, the HC11 takes in a 4-bit, one-hot, parallel user input and outputs a 4-bit, one-hot,
parallel display showing which, if any, activity is currently being played. The HC11 will also output the
current health levels and grade at every TamaClk tick, which means the display will refresh every half
second. The display output is sent serially to the FPGA. The TamaClk is sent via a single output parallel
pin to the FPGA where is it displayed on an LED on the FPGA board.

INPUT OUTPUT
Parallel port C – Activity/User Input (PC 0-3) Serial port, Serial clk (PD 3,4)

Parallel port B – activity output (PB 0-3)
Parallel port C – TamaClk (PC 7)

Table 1: Inputs and outputs of HC11

Variables

The HC11 assembly code mainly consists of a series of counters with different events occurring at different
times and different dependencies on other counters. There is a life counter (LIFE), that counts by the hour
up to 1 week and then the life week (LIFEWK) counter will increment while the life counter resets. Each
health level has it’s own counter because they increment and decrement at different rates. Those counters
are stored in Game Parameters table stored in memory. When an activity starts, it also depends on a counter
to keep track of the Activity until it reaches the set Duration. These counters are also stored in the Game
Parameters table. While an activity is being played, an internal flag (AFLG) is toggled to prevent any
further key presses from registering until the activity is done with. When the activity is done, it will
increment the associated health Level up to the Max Level. The user input is always stored in a temporary
memory location (TPORTC) and if an activity is being played, the program will bypass scanning for a user
input and just read from the temporary memory location, in effect, freezing the user input until the activity
is finished.

Status: Hunger Happiness Sleep Tan
Max Level CONST 5 5 5 5
Level VAR 5 5 5 5
Lcount VAR 0 0 0 0
Time2Drop CONST 8 24 24 48
Activity: Platt Homework Hum Reading Hike Baldy
Duration CONST 1 4 8 6
Activity VAR 0 0 0 0

Table 2: Game Parameters – Initial Settings

Program Structure:

Initialization:
- Store Game Parameters into memory
- Clear all variables (LIFE, LIKEWK, AFLG, TPORTC, TAMACLK)
- Initialize parallel port outputs

Main Program Loop
- Poll for user input if Activity Flag != 0
- Call activity subroutine if valid key press detected. If not a valid key press, TPORTC = 0.
- Toggle TamaClk
- Call Main2 subroutine.
- Output TPORTC to activity LED display.

8

- Call sec subroutine for ½ second delay

Main2 subroutine – (computes the 5 8-bit serial outputs for the LED display, 4 levels + 1 grade)
- Starts the beginning of the Game Parameter table. For each category, calls level to compute the

current level and increment the counter. Then calls increm to increment the pointer stored in
accumulator X to the next category.

- Call grade subroutine to compute current grade.

Grade subroutine
- If LIFE counter = 168 hours (= 24 hours x 7 days), reset LIFE to 0 and increment LIFEWK.
- Else LIFE = LIFE+1
- Send LIFEWK to serial output by calling serial
- If LIFEWK = 5, then call win

Serial subroutine
- Outputs data stored at 0,X to serial port

Activity subroutine – (is only called when an activity is occurring)
- Uses the category parameters stored starting at 0,X
- If Activity variable < Duration constant, increment Activity and toggle Activity Flag on.
- Else if Activity variable >= Duration constant, activity is finished, reset parameters and flag,

increment corresponding health level by one unless already at Max Level.

Level subroutine -
- Uses the category parameters stored starting at 0,X.
- Checks if Level Counter (LCount) is equal to Time2Drop. If equal, the decrement Level and reset

Level Counter. Else increment Level Counter by one.
- If the TamaMudder stays at Level 1 for 24 hours, then call die subroutine.
- Send Level to serial output by calling serial

9

FPGA Design

*Please refer to Appendix B when reading this section.

The main functions of the FPGA board are

? Conversion of the serial input from HC11 into 5 8-bit binary numbers.
? Decoding the binary input from HC11 and output 4 5-bit decimal display.

Table 3: Inputs and Outputs of FPGA

To perform these functions, the following modules were created in verilog.

1. spconvert.v: input: serial data, serial clock
output: 40-bit data

spconvert takes in groups of 5-8 bit serial data and converts them into 40-bit data using a series of shift
registers and a serial clock (from HC11).

Figure 5:Shift Register

2. bindec.v: input: 3-bit binary
output: 5-bit decimal representation

This module takes in a 3-bit binary number and converts into a 5-bit decimal display. For example,
inputs 011, 101 are converted into 00111,11111, respectively.

3. status.v: input: serial data, serial clk, tamaclk
output: 4 5-bit Status, 1 5-bit Progress, 1-bit tamaclk.

This is the top-level module of the FPGA where the previous modules, spconvert and bindec, are
called and used for all the inputs and outputs on Table3.
First, status takes in serial data from the HC11 serial port (PD3). This data and Serial clk (PD 4) go
into spconvert, and become 40-bit (5 8-bit data). Then, bindec takes the least significant 3 bits of each
group of 8 to control 4 5-level Status displays and a 5-level Progress display. For example, Bits 0,1,2
from the first eight of the 40 bits (7:0), and Bits 8,9,10 from the second 8 bits (15:7) are used to control
Progress and Tan, respectively. The table below shows the bits used for Status and Progress displays.
Also, Tamaclk, which is used to display the time in TamaMudder world,

INPUT OUTPUT
Serial port, Serial clk(PD3,4) 4 5-LED Level Display (to protoboard)

Parallel port C-TamaClk(PC 7) 5-LED Progress Display (PCB LED1-5)
TamaCLk (PCB LED8)

…

Serial clk

Serial
input

Out[39]Out[3]Out[2]Out[1]Out[0] …

10

BIT NUMBER OUTPUT
34:32 Hunger
26:24 Happiness
18:16 Sleep
10:8 Tan
 2:0 Progress

Table 4: Information Bits Used

11

Results

TamaMudder was successfully built as planned and meets all the requirements stated in our
proposal. However, while testing the system, we realized that the initial game specifications were not
sufficient to make the game as challenging as we expected.. Fortunately the game parameters are easy to
change. In order to increase the level of difficulty, all one needs to do is modify the numbers stored into
memory.(See Appendix A) For example, one could make the TamaMudder deteriorate faster, or have
activities take longer to complete, to make it more interesting.

One deviation from the proposal is the usage of the FPGA board. Initially, we planned to have the
FPGA freeze the activity control input from the breadboard upon detecting a valid user input, then releasing
it when the HC11 signaled the completion of the activity. Eventually it turned out that we were trying to
design an asynchronous circuit. We decided that it was less complicated to delegate the activity/user input
detection to the HC11 board.

Another minor change we made is time scaling. Our proposal stated that 1 second in the real
world would equal 1 hour in the TamaMudder world. This turned out to be too long to keep the player
engaged in the game. Thus we modified the game parameter so that 1 TamaMudder hour equals ½ second
in real time. We also switched to toggle switches instead of push-buttons to accept user inputs on the
breadboard. This was done so that we could easily tie the input to Vdd or GND. We could have still used
the toggle switch if we had added resistors to the outputs.
`

12

Appendix A – HC11 assembly code

**
* Final2.asm
**
* Tina Wang
* 11/19/00
* MicroP's Final Project: TamaMudder!
* A game where you take care of a Virtual Mudder.
*
* This portion is the assembly code that programs the Motorola HC11
* controller. The controller contains the control logic of the
* game. It interfaces with the FPGA board which contains the display
* logic.
* In theory, each delay time unit should be equivalent to an hour
* but for practical purposes, each delay will only be 1/2 sec. real time.
*
* Interfaces
* - serial output to FPGA for satisfaction display
* - 4-pin parallel input from user keypress for activity input,
* used 1-hot encoding
* - 4-pin parallel output to LED display for current activity
* - 1-pin parallel output to FPGA for TamaClk, equivalent to slowclk,
* ticks on and off for every hour in the TamaMudder world (~ 1/2 sec)
*
* HC11 Pin Assignments
* - serial port, serial clk (PD3, PD4)
* - parallel port C, activity input (PC 0-3), TamaClk (PC7)
* - parallel port B, activity LED output (PB 0-3)
*
* Subroutines
* - main2: Calls Level for each catagory and then grade.
* - grade: Increments Life counter and computes & displays grade.
* Calls win when user has won the game
* - win: Blinks display in an infinite loop
* - sec: Creates a 1/2-sec delay
* - increm: Increments X by 6
* - serial: sends 8-bit output number of data found in 0,X
* - activity: computes duration of an activity, increments level
* when done
* - level: computes level, drops at appropriate times
* - dead: Clears entire display, infinite loop
*
**
* Assign Register locations

DDRD EQU $1009 * Data direction control for Port D
SPCR EQU $1028 * SPI Control Register
SPSR EQU $1029 * SPI Status Register
SPDR EQU $102A * SPI Data Register
TOF EQU %10000000 * Timer Overflow Flag mask
TFLG2 EQU $1025
PORTC EQU $1003 * port C, 8-bit bidirectional parallel port
DDRC EQU $1007 * Data direction control for Port C
PORTB EQU $1004 * port B, 8-bit output port

* Assign Variable locations
LIFE EQU $0021 * Holds overall life counter
LIFEWK EQU $0022 * Holds life week counter
AFLG EQU $0023 * Holds internal flag for activity duration
TPORTC EQU $0024 * Temporary storage for Port C input
TAMACLK EQU $0025 * Holds TamaClock counter

**
* Game Level Table (in Hex)
* (also Table 1 in Status Report)
* ==
* | Status: | Hunger | Happiness | Sleep | Tan |
* --
* | Max Level | 05 | 05 | 05 | 05 |
* --
* | Level | 05 | 05 | 05 | 05 |
* --
* | LCount | 00 | 00 | 00 | 00 |
* --
* | Time2Drop | 08 | 18 | 18 | 30 |
* ==
* | Activity: | Platt | Homework | Hum Reading | Hike Baldy |

13

* --
* | Duration | 01 | 04 | 08 | 06 |
* --
* | Activity | 00 | 00 | 00 | 00 |
* ==
*
* Max Level: CONST, corresponds to maximum level of health
* Level: VAR, corresponds to TamaMudder's current level of health
* LCount: VAR, corresponds to amount of time that TamaMudder has
* been at current level
* Time2Drop: CONST, except at Level 1, if Drop Time = Time2Drop, then
* Level = Level-1
* Duration: CONST, corresponds to the time it takes to complete
* activity
* Activity: VAR, counter corresponding the the time spent on an
* activity
* All CONST remain constant throughout the program. VAR's are
* initiallized to the values in the table.

* Store table into memory starting at $0000, reading down (columns)
 ORG $0000
 FCB #$05 * Column 1 - Hunger
 FCB #$05
 FCB #$00
 FCB #$08
 FCB #$01
 FCB #$00

 FCB #$05 * Column 2 - Happiness
 FCB #$05
 FCB #$00
 FCB #$18
 FCB #$04
 FCB #$00

 FCB #$05 * Column 3 - Sleep
 FCB #$05
 FCB #$00
 FCB #$18
 FCB #$08
 FCB #$00

 FCB #$05 * Column 4 - Tan
 FCB #$05
 FCB #$00
 FCB #$30
 FCB #$06
 FCB #$00

 FCB #$00 * Holds life display

**
* Memory pointer X at location $0000
* Start program at $D000

 ORG $D000
 LDAA #$00 * Initialize Life Counter to 0
 STAA LIFE

 LDAA #$01 * Initialize LifeWeek Counter to 0
 STAA LIFEWK

 LDAA #$00 * Initialize ActivityFlag to 0
 STAA AFLG

 LDAA #$00 * Initialize TemporaryPortC to 0
 STAA TPORTC

 LDAA #$00 * Initialize TamaClk to 0
 STAA TAMACLK
 LDAA #$80 * Set data direction for parallel port
 STAA DDRC * 1=output, 0=input
 LDAA TAMACLK
 STAA PORTC * Intialize PortC output bit 7 = 0

 LDAA #$00 * Initialize PortB output to 00
 STAA PORTB

**
* Main program, start by reading parallel port

14

main: LDX #$0000 * Start with X pointing to $0000

 LDAA TPORTC * Output TemporaryPortC to PortB
 STAA PORTB
 LDAA AFLG
 CMPA #$00
 BNE food * If ActivityFlag=0 (no activity now)

 LDAA #$80 * Set data direction for parallel port
 STAA DDRC * 1=output, 0=input
 LDAA PORTC * Load data from parallel port C
 STAA TPORTC * Store user input in TemporaryPortC

food: LDAA TPORTC * Load data from memory
 ANDA #%00001111 * Mask A to read bottom 4 bits only
 CMPA #%00001000
 BNE hw * If not food keypress, check next
 JSR activity
 BRA none

hw: JSR increm
 LDAA TPORTC * Load data from memory
 ANDA #%00001111 * Mask A to read bottom 4 bits only
 CMPA #%00000100
 BNE read * If not hw keypress, check next
 JSR activity
 BRA none

read: JSR increm
 LDAA TPORTC * Load data from memory
 ANDA #%00001111 * Mask A to read bottom 4 bits only
 CMPA #%00000010
 BNE hike * If not read keypress, check next
 JSR activity
 BRA none

hike: JSR increm
 LDAA TPORTC * Load data from memory
 ANDA #%00001111 * Mask A to read bottom 4 bits only
 CMPA #%00000001
 BNE invalid * If not hike keypress, then invalid
 JSR activity
 BRA none

invalid: LDAA #$00
 STAA TPORTC

none: LDAA TAMACLK * Increment TamaClk
 ADDA #$80
 STAA TAMACLK
 LDAA #$80 * Set data direction for parallel port
 STAA DDRC * 1=output, 0=input
 LDAA TAMACLK
 STAA PORTC * Output TamaClk to LEDs

 JSR main2

 LDAA TPORTC * Output TemporaryPortC to PortB
 STAA PORTB

 JSR sec
 BRA main

**
* Main2 SUBROUTINE
*
* Keeps track of category levels and displays levels to user
*

main2: LDX #$0000
 JSR level * Level - Hunger
 JSR increm * Increment to next category
 JSR level * Level - Happiness
 JSR increm * Increment to next category
 JSR level * Level - Sleep
 JSR increm * Increment to next category
 JSR level * Level - Tan
 JSR increm
 JSR grade * Life status
 RTS

15

**

activity: JSR act0
 RTS

**
* Grade subroutine
*
* This increments and displays the life counter

grade: LDAA LIFE
 LDAB #$A8 * 24 hours x 7 days = 168 hours = A8
 CBA * If equal to 1 week (if LIFE < A8)
 BNE weekup
 LDAA LIFEWK * Week = Week+1
 ADDA #$01
 STAA LIFEWK
 LDAA #$00 * Life = 0
 STAA LIFE
 BRA grade1

weekup: LDAA LIFE * Else Add one to life counter
 ADDA #$01
 STAA LIFE

grade1: LDAA LIFEWK * Load current grade
 STAA 0,X *
 JSR serial * Send to display

 LDAB LIFEWK
 LDAA #$05 * If week=5
 CBA
 BEQ win * Jump to WIN

 RTS * Else return from subroutine

**
* Win subroutine
*
* Blinks the display on and off when user has won the game
* Infinite loop until manual reset

win: LDAA #$00 * Clear activity display
 STAA PORTB

 LDX #$0000 * Blink display when game over
 LDAA #$05 * infinate loop
 STAA 0,X
 STAA 1,X
 STAA 2,X
 STAA 3,X
 STAA 4,X
 JSR win2

 LDX #$0000
 LDAA #$00
 STAA 0,X
 STAA 1,X
 STAA 2,X
 STAA 3,X
 STAA 4,X
 JSR win2

 BRA win

win2: LDX #$0000
 JSR serial
 INX
 JSR serial
 INX
 JSR serial
 INX
 JSR serial
 INX
 JSR serial
 JSR sec
 RTS

**
* 1/2-sec delay subroutine

16

*
sec: LDAB #15 * Load B=number of times to repeat for 1 sec.
sdelay: LDAA #TOF * Clear TOF
 STAA TFLG2
sspin: TST TFLG2 * test if flag is all 0's
 BPL sspin * branch on plus, spin until overflow
 DECB * B=B-1
 BNE sdelay * if B!=0, repeat
 RTS * else B=0, return from subroutine

**
* increm
* increment X by 6 subroutine
increm: INX
 INX
 INX
 INX
 INX
 INX
 RTS

**

level: JSR level1
 RTS

**
* Serial Port - LED display
*
* Sends data at 0,X to serial port

serial: LDAA #%00111000 * Set data direction for serial port
 STAA DDRD
 LDAA #%01011100 * Set serial port control
 STAA SPCR

 LDAB SPSR * Check SPSR, will clear SPIF (7th) bit

 LDAB 0,X * Load current level
 STAB SPDR * Send data to serial port
 RTS

**
* Activity subroutine
*
* Keeps track of the duration of an activity
* Increments activity counter, compares it to activity duration
* Increments level when counter=duration
* Toggles flag on through the cycle of an activity
* Toggles flag off at the end of an activity
*
* 0,X Max Level
* 1,X Level
* 2,X LCount
* 3,X Time2Drop
* 4,X Duration
* 5,X Activity
*
*

act0: LDAB 5,X * Load activity counter
 LDAA 4,X * Load duration time
 SBA
 BLE act1 * If activity < duration

 LDAA 5,X * Activity+1
 ADDA #$01
 STAA 5,X
 LDAA #$01 * ActivityFlag=1
 STAA AFLG
 RTS * and Return

act1: LDAA #$00 * Else activity >= duration
 STAA 5,X * Activity=0
 LDAA #$00 * ActivityFlag=0
 STAA AFLG
 LDAA #$00 * LCount=0
 STAA 2,X *

 LDAB 1,X * Load Level
 LDAA 0,X * Load Max Level

17

 SBA
 BLE act2 * If Level < Max Level

 LDAA 1,X
 ADDA #$01 * Level+1
 STAA 1,X
 RTS

act2: LDAA 0,X * Else
 STAA 1,X * Level=MaxLevel
 RTS

**
* Leveling Subroutine
*
* Keeps track of the amount of time a user has been at a
* certain level.
* If a user is at Level 1 of any category for 24 hours
* then TamaMudder dies.
* Level drops when LCount=Time2Drop
* LCount starts counting up from 0 whenever there is a
* level change
*
* 0,X Max Level
* 1,X Level
* 2,X LCount
* 3,X Time2Drop
* 4,X Duration
* 5,X Activity
*
* If LCount < Time2Drop
* increment LCount
* Else if Level = 1
* if LCount < 24
* increment LCount
* else DEAD
* Else (LCount >= Time2Drop) and (Level != 1)
* Level = Level - 1
* LCount = 0
level1: LDAB 2,X * Load LCount into B
 LDAA 3,X * Load Time2Drop in A
 SBA * Subtract LCount from Time2Drop
 BLE level2 * If LCount < Time2Drop
 LDAA 2,X * Load LCount into A
 ADDA #$01 * LCount+1
 STAA 2,X * Store back into table
 BRA endl * Skip to next catagory
level2: LDAA 1,X * Load Level into A
 CMPA #$01 * If Level = 1
 BNE level3
 LDAA 2,X * If LCount = 24 (hours in a day)
 CMPA #$18
 BEQ dead * Then DEAD
 LDAA 2,X
 ADDA #$01 * Else LCount+1
 STAA 2,X
 BRA endl * Skip to next catagory
level3: LDAA 1,X * Load Level into A
 SUBA #$01 * Level-1
 STAA 1,X
 LDAA #$00 * LCount=0
 STAA 2,X

endl: INX
 JSR serial * Send to display
 DEX
 RTS

**
* Dead subroutine
*
* Blanks out entire display and holds in an infinite loop
* until manual reset.

dead: LDAA #$00 * Clear display if dead
 STAA 0,X * infinate loop
 JSR serial
 LDAA #$00 * Clear activity display
 STAA PORTB
 BRA dead

18

Appendix B-Verilog

Status.v

//This module takes serial clock, serial output from the HC11 board
//and outputs LED display control

module status (clk,hc_sin,sloclk,tamaclk,satled0,satled1,satled2,satled3,progled) ;

input clk ;
input hc_sin;
input sloclk;

output tamaclk;
output [4:0]satled0;
output [4:0]satled1;
output [4:0]satled2;
output [4:0]satled3;
output [4:0]progled;

reg [39:0] out1;
reg [4:0] eat;
reg [4:0] sleep;
reg [4:0] hw;
reg [4:0] tan;
reg [4:0] prog;

spconvert sp0(clk,hc_sin,out1);
bindec decode0(out1[34:32],eat);
bindec decode1(out1[26:24],sleep);
bindec decode2(out1[18:16],hw);
bindec decode3(out1[10:8],tan);
bindec decode4(out1[2:0],prog);

assign satled3=eat;
assign satled2=sleep;
assign satled1=hw;
assign satled0=tan;
assign progled=prog;
assign tamaclk=sloclk;

endmodule

19

Bindec.v
// This module takes a 3-bit binary input from and turns it into 5-bit
// decimal representation.

module bindec (fromhc,toled) ;

input [2:0] fromhc;
output [4:0]toled;

reg [4:0]toled;

parameter ONE = 3'b001;
parameter TWO = 3'b010;
parameter THREE = 3'b011;
parameter FOUR = 3'b100;
parameter FIVE = 3'b101;

always @(fromhc)
case(fromhc)
 ONE: toled<=5'b00001;
 TWO: toled<=5'b00011;
 THREE: toled<=5'b00111;
 FOUR: toled<=5'b01111;
 FIVE: toled<=5'b11111;
 default: toled<=5'b00000;
endcase
 endmodule

spconvert.v

//takes serial data and converts it so that it could be used as parallel data.
module spconvert (clk,sin,pout) ;

input clk ;
input sin;
output [39:0] pout;
reg [39:0] shiftreg;

always @(posedge clk)
 shiftreg<={shiftreg[38:0],sin};

assign pout=shiftreg;

endmodule

