
The Super Happy Fun Game:
A Text-Based Adventure Game

Final Project Report
December 6, 2000

E155

Ari Moradi and Ryan Stuck

Abstract:

An interesting problem that comes up quite often in industry is the problem of interfacing
with a user. This particular design issue, coupled with the fun of a text-based adventure
game, has spawned this project, the Super Happy Fun Game. In this project, we have
created a short, text-based adventure game, which allows users to input desired
commands on a standard 4x4 keypad, and outputs game information onto a 4 line by 20
character liquid crystal display. The game is implemented as a finite state machine on
our Xilinx FPGA, which in turn sends data to an HC11 Evaluation Board that interprets
the state data given from the FPGA and displays appropriate data to the user.

Ari Moradi and Ryan Stuck, December 6, 2000 2

Introduction
We have designed and implemented a text adventure game called “The Super

Happy Fun Game.” The game uses a 68HC11 Evaluation Board (EVB), a Xilinx Spartan
FPGA, a keypad, and a LCD display. All of the parts necessary for our project have been
checked out of the Engineering Stockroom.

The FPGA holds the game data while the HC11 takes as input from the FPGA the
current state of the game and then outputs text to the LCD display.

Detailed descriptions of how the FPGA and the HC11 work follow.

Ari Moradi and Ryan Stuck, December 6, 2000 3

New Hardware
The creation of the Super Happy Fun Game required the use of a dot matrix style

liquid crystal display (LCD). The LCD employed is a 4 line by 20 character display.
Each character is made up of a 5x11 dot matrix. The actual number of dots employed in
displaying a character is configurable, as noted below. The LCD chosen is one of the
smart LCD variety, being that it has its own controller on board, namely a Hitachi
44780XX controller. Thus, one need only send pre-defined commands to the LCD to
operate it. Below can be found notes that may aid future groups in the implementation of
this type of LCD, including a wiring diagram, the fundamental instruction set, and some
trouble shooting tips. Two appendices at the end of this document will include one, code
implementing the LCD with an HC11 Evaluation Board (EVB), and two, timing
diagrams. Now, find below a wiring diagram of the LCD and description of the pin out.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

LCD

P29 (HC11)

P30 (HC11)

P31 (HC11)

P42 (HC11)

P41 (HC11)

P40 (HC11)

P39 (HC11)

P38 (HC11)

P37 (HC11)

P36 (HC11)

P35 (HC11)

+5 V

Figure 1: Wiring Diagram of LCD. Shows contrast
adjustment circuit and pin out to HC11 EVB. A description
of the pins can be found below.

Ari Moradi and Ryan Stuck, December 6, 2000 4

Below is a table describing the pin out of the previous wiring diagram; it contains the pin
number, connection, name and function of each pin on the LCD.

Pin Number Name Function Connection
1 Vss Ground Ground
2 Vdd +5V +5V power supply
3 Vee Contrast Potentiometer
4 RS Register Select P29 HC11 port A, bit 5
5 R/W Read/Write P30 HC11 port A, bit 4
6 E Enable P31 HC11 port A, bit 3
7 D0 Data bit 0 P42 HC11 port B, bit 0
8 D1 Data bit 1 P41 HC11 port B, bit 1
9 D2 Data bit 2 P40 HC11 port B, bit 2
10 D3 Data bit 3 P39 HC11 port B, bit 3
11 D4 Data bit 4 P38 HC11 port B, bit 4
12 D5 Data bit 5 P37 HC11 port B, bit 5
13 D6 Data bit 6 P36 HC11 port B, bit 6
14 D7 Data bit 7 P35 HC11 port B, bit 7

Table 1: Pin out of LCD. Table shows pin number, name, function, and connection to circuit.

On the following page can be found a table describing the fundamental command
set to control the LCD. More commands exist, however they are a bit more exotic, and
not relevant to the functionality of this design. See references to find more resources on
implementing these other instructions. Also, to write an ASCII character to the LCD, the
write data command must be given. Attached is an ASCII character table, giving the
character and which byte is used to denote it. This byte is what is sent along with the
write data command. Also note that R/W was tied high, as no reading from the LCD was
ever necessary.

Command RS Binary
D7 D6 D5 D4 D3 D2 D1 D0

Hex

Clear Display 0 0 0 0 0 0 0 0 1 01
Display and Cursor Home 0 0 0 0 0 0 0 1 X 02 or 03
Character Entry Mode 0 0 0 0 0 0 1 I/D S 04 to 07
Display/Cursor On/Off 0 0 0 0 0 1 D U B 08 to 0F
Display/Cursor Shift 0 0 0 0 1 D/C R/L X X 10 to 1F
Function Set 0 0 0 1 8/4 2/1 10/7 X X 20 to 3F
Set CGRAM Address 0 0 1 A A A A A A 40 to 7F
Set Display Address 0 1 A A A A A A A 80 to FF
Write Data 1 D D D D D D D D 00 to FF
I/D: 1=Increment, 0=Decrement R/L: 1=Right shift, 0=Left Shift
S: 1=Display shift on, 0=Display shift off 8/4: 1=8 bit interface, 0=4 bit interface
D: 1=Display on, 0=Display off 2/1: 1=2 line mode, 0=1 line mode
U: 1=Cursor underline on, 0=off 10/7: 1=5x10 dot format, 0=5x7 dot format
B: 1=Blinking Cursor on, 0=no blinking D/C: 1=Set Display shift, 0=Set Cursor

Table 2: Command control codes. This table lists the commands necessary to operate the LCD.
Setting appropriate bits sends recognizable commands to the LCD on board controller.

Ari Moradi and Ryan Stuck, December 6, 2000 5

The following are some troubleshooting tips that have helped us implement the
LCD with the HC11 EVB. To fully implement the LCD, the RS, E, and R/W signals
must be timed appropriately, through the proper use of delays for setup and hold times.
Attached in an appendix the reader can find the general timing diagrams to implement an
LCD. However, through experimentation, we have found that these timing specs are
inaccurate when applied to the HC11. Thus, in our code, the reader will note that we
have employed considerably longer setup and hold times to actually operate the LCD.
Generally speaking, we have found that delays between instructions should be around 1
to 2 mS, otherwise the display will not act properly. See the assembly code for more
details. For testing the LCD, we found that using a simple protoboard and DIP switches
worked quite well, as we just set the data and set the enable signal when necessary.

Ari Moradi and Ryan Stuck, December 6, 2000 6

Schematics
The breadboard layout of our project is shown below. The HC11 and FPGA

communicate over a 16 bit parallel connection. The FPGA sends data to the HC11. The
HC11 sends no information back to the FPGA. The HC11 communicates to the LCD
using 11 parallel bits. The keypad is connected to the FPGA using eight wires. Four bits
are input; four bits are output. The pin outs of all devices can be seen in appendix C.

Ari Moradi and Ryan Stuck, December 6, 2000 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14

LCD

1 2 3 4 5 6 7 8

 KeyPad

FPGA

 7 8 9 10 18 19 20 23 24 25 26 27 28 29 46 47 48 49 50 51

9
10
11
12
13
14
15
16
29
30
31
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

HC11

EVB

38
39
40
44

Ari Moradi and Ryan Stuck, December 6, 2000 8

Microcontroller Design
The following section will describe the use of the HC11 EVB in our design. The

EVB in our design acted mainly as a LCD control look up table. State information was
sent from the FPGA, and appropriate text was sent to the LCD. Thus, internally, the
HC11 acted as follows. First, the HC11 polled 2 8 bit input ports, namely port C and port
E. Once information was received from the FPGA via these 2 ports, the data received
was assembled as a 16 bit state. The state was interpreted by a routine on the HC11.
Once interpreted, other appropriate routines were called that effectively set a pointer to an
appropriate place in memory. Then, ASCII characters were read from memory and sent
via an 8 bit output port to the LCD, along with the corresponding control bits. The LCD
then displayed the characters sent to it, and the HC11 went back to polling for a new
state. The major subroutines listed above will be discussed in further detail below.

First, the polling routine will be discussed. As mentioned above, port C,
configured as input, and port E were used in tandem to gather 16 bit data from the FPGA.
As shown previously, port C and port E are both hard-wired to output pins on our FPGA
board. The polling routine would store the data coming into these ports, and check them
against the last state processed. If the new data were the same as the old, the routine
would continue to poll port C and E. Once a new state had been received by the polling
routine, the rest of the program would then be executed.

The next large routine is the interpreter. This routine took the 16 bit state data
from the polling routine and operated on it to interpret the state information. For
example, if the top nibble of the top byte of the two was set to 0x0, then the interpreter
would decide it was a story line state, and set the pointer to the appropriate place in
memory to display story line data. Other possible states include death states, search
states, and various error states, such as bad key presses.

Thus, the interpreter would jump to appropriate subroutines based upon what kind
of state was delivered from the FPGA. These subroutines all acted fundamentally the
same, by generally looking at the lower 12 bits of state data and place a pointer at the
place in memory that referenced the text for that particular state. For example, if the
interpreter decided it was a story line state, it would jump to the story line subroutine. In
this routine, the lower 12 bits of state would be interpreted further into which actual story
page was being accessed, then move a pointer to the correct place in memory to send the
correct ASCII characters to the LCD to display this pages story line.

Once the pointer had been set, the write data to LCD routine was accessed. This
routine started at the place in memory where the pointer had been set by the previous
routines, and simply sequentially sent 80 bytes of data to the LCD, corresponding to 80
characters. Thus, a full screen of text was sent to the LCD for every state processed. The
pointer would simply be incremented to the next address, and the byte in memory written
to the LCD via port B. Within this routine, various command signals such as Enable and
Register Select were also sent via port A to the LCD. Please see the new hardware
section for more information on command signals for the LCD.

Ari Moradi and Ryan Stuck, December 6, 2000 9

FPGA Design
The FPGA stores the finite state machine (FSM) data and takes keypad input.

The keypad is the standard 16-button keypad used previously in an E155 lab. The keys
are as follows:

Any buttons that are not labeled are not used. The FPGA de-bounces the keypad
signal and interprets which key has been pressed and then decides the next state. The
FPGA effectively has 3 state machines, the room state machine, the inventory state
machine, and the error state machine. All the state machines depend on the keypad input
and what state the game is in. Each state is 16 bits long. The FPGA sends only one of
the three states at a time. Inventory states all have a leading 1 (i.e. 0x8001). Error states
are 3FFF, 3FFE, and 3FFD. All other outputs denote room states. The logic in the
FPGA determines which state to send to the HC11 depending on current state and user
input. Two bits are saved to tell the FPGA whether it should send the Error State or the
Inventory State. The error message takes precedence. If neither are to be sent, then the
room state is sent. A description of the state machines follow.

Inventory State

The Inventory State saves the items the user has in inventory. The inventory on bit lets
the HC11 know that it is looking at the inventory state. The page designation bits tell the
HC11 which page of inventory to display. The last 12 bits designate what items the
player has. If a bit is on, the user has the item. If it is off, the user does not have the

Ari Moradi and Ryan Stuck, December 6, 2000 10

item. If a user has an item, then it will be listed in inventory. If he does not have it, a
blank line will be shown. As of now the bits in inventory represent the following items:

I0 : Rubber Ducky
I1 : 2.2 kOhm Resistor
I2 : Hamster
I3 : Bra
I4 : Flower
I5 : Sword
I6 : HC11 Reference Manual
I7 : Torch

Error State
The Error State gets sent to the HC11 when the ErrorMessage signal is high. The three
possible error messages are :

3FFF: You cannot use that key.
3FFE: You cannot use that item.
3FFD: You do not have that item.

Room States
The room states are simply encoded starting at 0x0000 and counting up in the

order in which you can encounter them. The room state by default gets sent to the HC11.
Each room state has 80 characters in memory associated with it. Each room state has
another room state associated with it, the searching the room state. The search state is
encoded by a leading 0x4 (i.e. the search state for 0x0005 is 0x4005). Other special room
state encodings are ones with leading 0x2s. These represent game endings. A 0x1 at the
beginning of a room state represents that the user has picked up an item. In such a state
bits 0 – 11 one-hot encode which item was just picked up. The method for choosing
these state encodings is based on making it easy for us to distinguish types of state and to
make it easier to reference locations in memory. The room state machine is given in
Appendix B.

Verilog Implementation
The verilog code that implements the state machines is attached in Appendix B.

Ari Moradi and Ryan Stuck, December 6, 2000 11

Results
We created a fun game. It is in fact super happy fun. The hardest part of the

project was conserving memory. There is limited memory available to the HC11 and to
one FPGA. Trying to make a game that was large enough to be fun required looking
carefully at our resources and how to store data effectively. Overall we think our project
turned out very well for us designing it and for everyone who has played it.

Ari Moradi and Ryan Stuck, December 6, 2000 12

Appendix A: Assembly Code
The following assembly file includes the interpreter and polling routines, as well

as the LCD driver routines.

* MicroP's Final *
* The Super Happy Fun Game *
* November 16, 2000 *
* Authored by: *
* Ari Moradi *
* Ryan Stuck *

** Register Addresses

PORTA EQU $1000
PORTB EQU $1004
PORTC EQU $1003
DDRC EQU $1007
PORTE EQU $100A

** Port direction mask

PCCFG EQU %00000000 *configs port c as input

** Inventory Page Mask

PMASK EQU %01110000 *masks page bits in state data
IMASK EQU %00000111 *masks inventory bits of interest
P3MASK EQU %00000001 *masks bit of interest from top bits

** Constants

CX11 EQU $C4C4 *the CXnn's are compare values
CX12 EQU $C4D8 *to see when to move on to the next
CX13 EQU $C4EC *inventory item. these are used in
CX21 EQU $C500 *set inventory functions
CX22 EQU $C514
CX23 EQU $C528
CX31 EQU $C53C
CX32 EQU $C550
CX33 EQU $C564
CX41 EQU $C578
CX42 EQU $C58C
CX43 EQU $C5A0
CXN EQU $C370

BADK EQU $3FFF *badkey state compare value
BADI EQU $3FFE *cant use item state compare value
DONTI EQU $3FFD *no item state compare value

BKOFF EQU $C370 *all values labeled xxOFF are offsets

Ari Moradi and Ryan Stuck, December 6, 2000 13

BIOFF EQU $C3C0 *to memory locations where text is located
NIOFF EQU $C410
STOFF EQU $C700
SEOFF EQU $D200
ENDOFF EQU $D8E0
INOFF EQU $C5A0
ITOFF1 EQU $C4B0
ITOFF2 EQU $C4EC
ITOFF3 EQU $C528
ITOFF4 EQU $C564
BLOFF EQU $C474
NPOFF EQU $C35C

FSIZE EQU $50 *size for full screen (80 characters) of text
ISIZE EQU $14 *size for 1 line (20 characters) of text

BIADDR EQU $04 *all values labeled xxADDR are offsets on
the
TIADDR EQU $03 *zero page for temporary memory to store
AADDR EQU $05 *values in the accumulators A,B,D, indices
BADDR EQU $06 *X and Y, and inventory bytes
DADDR EQU $07
XADDR EQU $09
LXADDR EQU $0A
YADDR EQU $0B
LYADDR EQU $0C

PAGE1 EQU $C5A0 *PAGEx refers to a page of inventory
PAGE2 EQU $C5F0
PAGE3 EQU $C640
PAGE4 EQU $C690

IT EQU $C460 *Got Item offset in memory
ITWR EQU $C488 *Where to write item received offset

** Ouput Masks
** b5 = register select command=0/data=1
** b4 = read=1/write=0
** b3 = enable=1

WRD EQU %00100000
WRDEN EQU %00101000
WRC EQU %00000000
WRCEN EQU %00001000

** Command Signals

CLEAR EQU $01
HOME EQU $02
ENTRY EQU $06
DISPON EQU $0C
FUNCT EQU $38
SETCUR EQU $14

** Time delays for proper setup

HTIME EQU $02

Ari Moradi and Ryan Stuck, December 6, 2000 14

DTIME EQU $40

** Main Function - calls necessary subroutines

ORG $C000
MAIN JSR INITLCD *Initialize LCD

LDAA #PCCFG *Port C config bits
STAA DDRC *Store config in DDRC
LDD #$0001 *Initialize D register
STD DADDR *Save in memory
LDAA #$00 *Put 0 in AA
STAA TIADDR *Initialize Inventory
STAA BIADDR *to empty

AGAIN LDX #$0000 *Initialize X index
JSR POLL *Poll for new state data
JSR CLEARI *If new game, clear inventory
JSR SETIP1 *Set up inventory page 1
JSR SETIP2 *Set up inventory page 2
JSR SETIP3 *Set up inventory page 3
JSR SETIP4 *Set up inventory page 4
LDD DADDR *Retrieve state from D reg
JSR INTERP *Interpret state data
ADDD #FSIZE *add frame size to D
STAB BADDR *store end of frame in AB
SUBD #FSIZE *subtract frame size

NEXT XGDX *put pointer to frame in index X
LDAB 0,X *load character from mem at X
JSR WRITED *write character to LCD
LDAA #HTIME *load delay time
JSR IDELAY *delay for LCD setup time
INX *increment pointer
XGDX *put X in D
CMPB BADDR *see if at end of frame
BNE NEXT *if not at end of frame, next character
BRA AGAIN *else search for new state
SWI

** Write Data Function

* ORG $C000
WRITED LDAA #WRD *Send write data to LCD

STAA PORTA
JSR STALL *pause for hold time
LDAA #WRDEN *Send enable data to LCD
STAA PORTA
JSR STALL *pause for hold time
STAB PORTB *Load data for LCD
LDAA #WRD *Drop enable signal to LCD
STAA PORTA
RTS

** Write Command Function

* ORG $C100
WRITEC LDAA #WRC *Send write command to LCD

STAA PORTA
JSR STALL *pause for hold time

Ari Moradi and Ryan Stuck, December 6, 2000 15

LDAA #WRCEN *Send enable command to LCD
STAA PORTA
JSR STALL *pause for hold time
STAB PORTB *Load command for LCD
LDAA #WRC *Drop enable signal to LCD
STAA PORTA
RTS

** Stall Function - to account for hold time

* ORG $C050
STALL LDY #$0100
LOOP DEY

CPY #$0000
BNE LOOP
RTS

** Delay Function - to allow instruction completion
** lasts approx. 1 mS
* ORG $C150 *# of cycles
DELAY LDY #$01E8 *1000 loops
MORE DEY *4

NOP *2
NOP *2
NOP *2
NOP *2
CPY #$0000 *5
BNE MORE *3
RTS

** Instruction Delay Function - delays AA mS
** for this instruction

* ORG $C200
IDELAY DECA

JSR DELAY
CMPA #$00
BNE IDELAY
RTS

** Initialization Function - inits LCD to write
** to 4x20 mode, and to increment address counter

* ORG $C220
INITLCD LDAB #DISPON *Turn on display

JSR WRITEC
LDAA #HTIME
JSR IDELAY
LDAB #ENTRY *Set entry mode
JSR WRITEC
LDAA #HTIME
JSR IDELAY
LDAB #FUNCT *Set cursor/shift
JSR WRITEC
LDAA #HTIME
JSR IDELAY
LDAB #CLEAR *Clear screen

Ari Moradi and Ryan Stuck, December 6, 2000 16

JSR WRITEC
LDAA #HTIME
JSR IDELAY
LDAB #HOME *Send cursor home
JSR WRITEC
LDAA #HTIME
JSR IDELAY
RTS

** Polling Function - to poll for input state

* ORG $C300
POLL LDAA PORTC *Load top bits

LDAB PORTE *Load bottom bits
CPD DADDR *Compare to see if changed
BEQ POLL *If no change, continue to poll
STD DADDR *else store in mem and continue
RTS

** Interpret Function - decodes input state

* ORG $C400
INTERP CPD #BADK *check if bad key press

BEQ BADKEY
CPD #BADI *check if wrong item
BEQ BADIT
CPD #DONTI *check if no item yet
BEQ DONTIT
CMPA #$00 *check if story line state
BEQ ST
CMPA #$10 *check if got item state
BEQ GET
CMPA #$20 *check if ending state
BEQ GEND
CMPA #$40 *check if search state
BEQ SE
CMPA #$80 *check if inventory state
BGE IN

BADKEY JSR KEYCHK
BRA BACK

BADIT JSR CANTIT
BRA BACK

DONTIT JSR NOITEM
BRA BACK

ST JSR STORY
BRA BACK

GET JSR GETITEM
BRA BACK

GEND JSR GAMEEND
BRA BACK

SE JSR SEARCH
BRA BACK

IN JSR INVEN
BACK RTS

** The following functions set the pointer in memory
** to an appropriate frame to display the proper message

Ari Moradi and Ryan Stuck, December 6, 2000 17

** Bad Key Function - displays bad key message

* ORG $C450
KEYCHK LDD #BKOFF

RTS

** Can't Item Function - displays cant use item message

* ORG $C610
CANTIT LDD #BIOFF

RTS

** Don't Have Function - displays dont have item message

* ORG $C620
NOITEM LDD #NIOFF

RTS

** Set Inventory Function - sets memory
** to display inventory properly

* ORG $C800
SETIP1 LDAB BIADDR *load bottom inventory bits

ANDB #IMASK *mask for bottom 3 bits
STAB BADDR
LDY #PAGE1 *load inventory page 1 offset
LDX #ITOFF1 *load item 1 offset

NEXTS11 LDAA 0,X *load character from mem at index x
ANDB #$01
CMPB #$01 *if this item is flagged as gotten
BEQ SETI11 *then save it in memory
LDAA BLOFF *else write a blank to memory

SETI11 STAA 0,Y
INY *This actually continues for each item
INX *in the same manner, so no more commenting
CPX #CX11 *for this function or the next three like
BNE NEXTS11 *it will be noted. Just know that they
LDAB BADDR *all act the same, just with different

NEXTS12 LDAA 0,X *offsets and inventory bit checks
ANDB #$02
CMPB #$02
BEQ SETI12
LDAA BLOFF

SETI12 STAA 0,Y
INY
INX
CPX #CX12
BNE NEXTS12
LDAB BADDR

NEXTS13 LDAA 0,X
ANDB #$04
CMPB #$04
BEQ SETI13
LDAA BLOFF

SETI13 STAA 0,Y
INY

Ari Moradi and Ryan Stuck, December 6, 2000 18

INX
CPX #CX13
BNE NEXTS13
LDX #NPOFF *load next/prev line offset

NEXTS14 LDAA 0,X
SETI14 STAA 0,Y *save characters into inventory

INY
INX
CPX #CXN
BNE NEXTS14
RTS

** Set Inventory Function - sets memory
** to display inventory properly

* ORG $C900
SETIP2 LDAB BIADDR

LSRB
LSRB
LSRB
ANDB #IMASK
STAB BADDR
LDY #PAGE2
LDX #ITOFF2

NEXTS21 LDAA 0,X
ANDB #$01
CMPB #$01
BEQ SETI21
LDAA BLOFF

SETI21 STAA 0,Y
INY
INX
CPX #CX21
BNE NEXTS21
LDAB BADDR

NEXTS22 LDAA 0,X
ANDB #$02
CMPB #$02
BEQ SETI22
LDAA BLOFF

SETI22 STAA 0,Y
INY
INX
CPX #CX22
BNE NEXTS22
LDAB BADDR

NEXTS23 LDAA 0,X
ANDB #$04
CMPB #$04
BEQ SETI23
LDAA BLOFF

SETI23 STAA 0,Y
INY
INX
CPX #CX23
BNE NEXTS23
LDX #NPOFF

Ari Moradi and Ryan Stuck, December 6, 2000 19

NEXTS24 LDAA 0,X
SETI24 STAA 0,Y

INY
INX
CPX #CXN
BNE NEXTS24
RTS

** Set Inventory Function - sets memory
** to display inventory properly

* ORG $CA00
SETIP3 LDAB BIADDR

LSRB
LSRB
LSRB
LSRB
LSRB
LSRB
ANDB #IMASK
LDAA TIADDR
ANDA #P3MASK
LSLA
LSLA
STAA AADDR
ORAB AADDR
STAB BADDR
LDY #PAGE3
LDX #ITOFF3

NEXTS31 LDAA 0,X
ANDB #$01
CMPB #$01
BEQ SETI31
LDAA BLOFF

SETI31 STAA 0,Y
INY
INX
CPX #CX31
BNE NEXTS31
LDAB BADDR

NEXTS32 LDAA 0,X
ANDB #$02
CMPB #$02
BEQ SETI32
LDAA BLOFF

SETI32 STAA 0,Y
INY
INX
CPX #CX32
BNE NEXTS32
LDAB BADDR

NEXTS33 LDAA 0,X
ANDB #$04
CMPB #$04
BEQ SETI33
LDAA BLOFF

SETI33 STAA 0,Y

Ari Moradi and Ryan Stuck, December 6, 2000 20

INY
INX
CPX #CX33
BNE NEXTS33
LDX #NPOFF

NEXTS34 LDAA 0,X
SETI34 STAA 0,Y

INY
INX
CPX #CXN
BNE NEXTS34
RTS

** Set Inventory Function - sets memory
** to display inventory properly

* ORG $CB00
SETIP4 LDAB TIADDR

LSRB
ANDB #IMASK
STAB BADDR
LDY #PAGE4
LDX #ITOFF4

NEXTS41 LDAA 0,X
ANDB #$01
CMPB #$01
BEQ SETI41
LDAA BLOFF

SETI41 STAA 0,Y
INY
INX
CPX #CX41
BNE NEXTS41
LDAB BADDR

NEXTS42 LDAA 0,X
ANDB #$02
CMPB #$02
BEQ SETI42
LDAA BLOFF

SETI42 STAA 0,Y
INY
INX
CPX #CX42
BNE NEXTS42
LDAB BADDR

NEXTS43 LDAA 0,X
ANDB #$04
CMPB #$04
BEQ SETI43
LDAA BLOFF

SETI43 STAA 0,Y
INY
INX
CPX #CX43
BNE NEXTS43
LDX #NPOFF

NEXTS44 LDAA 0,X

Ari Moradi and Ryan Stuck, December 6, 2000 21

SETI44 STAA 0,Y
INY
INX
CPX #CXN
BNE NEXTS44
RTS

** Story Function - displays storyline

* ORG $C500
STORY LDAA #FSIZE

MUL
ADDD #STOFF
RTS

** Got Item Function - displays got item message
** This function checks to see which item you received
** then prints out a message saying you received it

* ORG $C550
GETITEM ANDA #$0F

ORAB BIADDR
STAB BIADDR
ORAA TIADDR
STAA TIADDR
LDD DADDR
LDY #$0000
ANDA #$0F

CHECKI CMPB #$01
BEQ DISPI
INY
LSRD
CPY #$000B
BEQ ENDI
BRA CHECKI

DISPI STY YADDR
LDAA LYADDR
LDAB #ISIZE
MUL
ADDD #ITOFF1
XGDY
LDAB #$00
LDX #ITWR

MOREI LDAA 0,Y
CMPB #$02
BGT WRIT
LDAA BLOFF

WRIT STAA 0,X
INX
INY
INCB
CMPB #$14
BNE MOREI
LDD #IT

ENDI RTS

Ari Moradi and Ryan Stuck, December 6, 2000 22

** Game End Function - displays game over message

* ORG $C600
GAMEEND LDAA #FSIZE

MUL
ADDD #ENDOFF
RTS

** Search Function - displays search options

* ORG $C700
SEARCH LDAA #FSIZE

MUL
ADDD #SEOFF
RTS

** Invetory Function - displays current inventory

* ORG $C750
INVEN ANDA #PMASK

LSRA
LSRA
LSRA
LSRA
LDAB #FSIZE
MUL
ADDD #INOFF
RTS

** Clear Inventory Function - if you die, this clears the
** inventory information

ORG $CE00
CLEARI CPD #$0000

BNE ENDCL
LDAA #$00
STAA TIADDR
STAA BIADDR

ENDCL RTS

Ari Moradi and Ryan Stuck, December 6, 2000 23

The following assembly code is the storyboard, which will be written to memory

to be accessed by the assembly file above.

* MicroP's Final *
* Story Line (in ASCII) *
* November 19, 2000 *
* Authored by: *
* Ryan Stuck *
* Ari Moradi *

** Blank to be repeated when necessary
* ORG $DF50
* FCC " "

** Next/Previous page lines

ORG $C35C
FCC "prev next"

** Bad Key Press Message

ORG $C370
FCC "You can't do that "
FCC " "
FCC "here! "
FCC " "

** Wrong Item Press Message

ORG $C3C0
FCC "You can't use that "
FCC " "
FCC "item here ! "
FCC " "

** Don't Have Item Press Message

ORG $C410
FCC "You can't use what "
FCC "Dummy ! "
FCC "you don't have, "
FCC " "

** Item Pick Up screens

ORG $C460

* Any Item
FCC "You got the "
FCC " "
FCC " "
FCC " "

** Total Inventory to be written later

Ari Moradi and Ryan Stuck, December 6, 2000 24

* by proggie in $DD00

ORG $C4B0

FCC "1) Rubber ducky "
FCC "2) 2.2 kOhm Resistor"
FCC "3) Hamster "
FCC "1) Sexy bra "
FCC "2) Flower "
FCC "3) Angry Axe "
FCC "1) HC11 Manual "
FCC "2) Torch "
FCC "3) Item 9 "
FCC "1) Item 10 "
FCC "2) Item 11 "
FCC "3) Item 12 "

** Story screens

ORG $C700

* State 0 c700
FCC " The Super Happy "
FCC " by "
FCC " Fun Game "
FCC " A Moradi & R Stuck "

* State 1 c750
FCC "You wake up in a tub"
FCC "naked. There is a "
FCC "and notice you are "
FCC "door to the east. E"

* State 2 c7a0
FCC "You find yourself "
FCC "break from your "
FCC "enjoying a nice "
FCC "hectic morning. "

* State 3 c7f0
FCC "You find yourself "
FCC "spaceship. "
FCC "on the deck of a "
FCC " W"

* State 4 c640
FCC "You find yourself "
FCC "rhinogooserufulus. "
FCC "confronted by a mad "
FCC " NSEW"

* State 5 c690
FCC "The rhino is happy. "
FCC "empty field. "
FCC "You are now in an "
FCC " NSEW"

* State 6 c6e0
FCC "You find yourself "
FCC " "
FCC "in a cabin. "
FCC " EW"

* State 7 c730

Ari Moradi and Ryan Stuck, December 6, 2000 25

FCC "You are in the "
FCC " "
FCC "cabin's kitchen. "
FCC " W"

* State 8 c780
FCC "You see a bridge. A"
FCC "asks: What is your "
FCC "troll comes out and "
FCC "favorite color? "

* State 9 c7d0
FCC "You find yourself at"
FCC "moat. The way over "
FCC "the foot of a giant "
FCC "is a drawn bridge. N"

* State 10 c820
FCC "You are confronted "
FCC "of a forboding "
FCC "by the giant doors "
FCC "castle. EW"

* State 11 c870
FCC "You are in the main "
FCC "castle. So now "
FCC "hall of an ancient "
FCC "what to do? NS"

* State 12 c8c0
FCC "You find yourself in"
FCC "room surrounded by "
FCC "a medieval weapon's "
FCC "axes and swords. N"

* State 13 c910
FCC "You are now in an "
FCC "of forgotten things "
FCC "old library. Tomes "
FCC "surround you. S"

* State 14 c960
FCC "You find yourself in"
FCC "laboratory. Bottles"
FCC "a magician's "
FCC "are all about. SE"

* State 15 c9b0
FCC "You are now in the "
FCC "You see many flowers"
FCC "castle's courtyard. "
FCC "and benches. N"

* State 16 ca00
FCC "You step into a dark"
FCC "man mumbles insanely"
FCC "dungeon. A crazy "
FCC "in the corner. E"

* State 17 ca50
FCC "You step into a room"
FCC "gears and strange "
FCC "filled with grinding"
FCC "bottles. "

* State 18 caa0
FCC "You enter a tower "
FCC "magician staring at "

Ari Moradi and Ryan Stuck, December 6, 2000 26

FCC "room and find a "
FCC "you angrily. "

* State 19 caf0
FCC "Pieces of the "
FCC "you. You still feel"
FCC "magician lie about "
FCC "uncomfortable. "

* State 20 cb40
FCC "You see before a "
FCC "who seems to have "
FCC "beautiful princess "
FCC "lost her top. "

* State 21 cb90
FCC "The princess, now "
FCC "at you. What should"
FCC "decent, smiles shyly"
FCC "you do now? "

** Search screens

ORG $D200

* Search 0 d200
FCC "You can: "
FCC " ducky "
FCC "1 Pick up a rubber "
FCC "2 Use toilet "

* Search 1 d250
FCC "You can: "
FCC " ducky "
FCC "1 Pick up a rubber "
FCC "2 Use toilet "

* Search 2 d2a0
FCC "You do not find "
FCC " "
FCC "anything. "
FCC " "

* Search 3 d2f0
FCC "You can: "
FCC "2 Push FIRE button "
FCC "1 Push LAND button "
FCC "3 Get 2kOhm Resistor"

* Search 4 d340
FCC "You do not find "
FCC " "
FCC "anything. "
FCC " "

* Search 5 d390
FCC "You do not find "
FCC " "
FCC "anything. "
FCC " "

* Search 6 d3e0
FCC "You can: "
FCC "2 Pick up a sexy bra"
FCC "1 Pick up a hamster "
FCC " "

Ari Moradi and Ryan Stuck, December 6, 2000 27

* Search 7 d430
FCC "You see a microwave."
FCC "tasty, furry thing "
FCC "If only you had some"
FCC "to eat right now. "

* Search 8 d480
FCC "You can answer: "
FCC "2 blue "
FCC "1 yellow "
FCC "3 fart "

* Search 9 d4d0
FCC "You see that the "
FCC "and a hamster wheel "
FCC "drawbridge is broken"
FCC "and plug are nearby."

* Search 10 d520
FCC "You can: "
FCC "2 Knock on the door "
FCC "1 Pick up the flower"
FCC " "

* Search 11 d570
FCC "You can: "
FCC "2 Go downstairs "
FCC "1 Go upstairs "
FCC " "

* Search 12 d5c0
FCC "You can: "
FCC "2 Pick up the sword "
FCC "1 Pick up the axe "
FCC " "

* Search 13 d610
FCC "You can: "
FCC " Reference Manual "
FCC "1 Pick up HC11 "
FCC "2 Pick up SpaceQuest"

* Search 14 d660
FCC "You can: "
FCC " labeled 'Drink Me'"
FCC "1 Drink bottle "
FCC "2 Eat the burrito "

* Search 15 d6b0
FCC "You can: "
FCC "2 Sit on a bench "
FCC "1 Pick up the torch "
FCC " "

* Search 16 d700
FCC "You can: "
FCC "2 Talk to crazy man "
FCC "1 Go back upstairs "
FCC " "

* Search 17 d750
FCC "You see an HC11 on "
FCC "You can: "
FCC "the geared machines."
FCC "1 Press reset button"

* Search 18 d7a0
FCC "You do not find "

Ari Moradi and Ryan Stuck, December 6, 2000 28

FCC " "
FCC "anything. "
FCC " "

* Search 19 d7f0
FCC "You see the magician"
FCC "but you feel he is "
FCC "lying before you, "
FCC "not yet dead. "

* Search 20 d840
FCC "The princess seems "
FCC "standing there with-"
FCC "very embarrassed "
FCC "out a shirt. "

* Search 21 d890
FCC "The princess looks "
FCC "smile on her glowing"
FCC "at you with a happy "
FCC "face. "

** Game Ending screens

ORG $D8E0

* Ending 1 d8e0
FCC "You accidentally "
FCC "Oops. GAME OVER ! "
FCC "blew up the earth ! "
FCC " "

* Ending 2 d930
FCC "You try to run, but "
FCC "pain of a horn "
FCC "you feel the sharp "
FCC "impaling you. "

* Ending 3 d980
FCC "You pass over a hill"
FCC "Candyland. You live"
FCC "and find you are in "
FCC "happily ever after. "

* Ending 4 d9d0
FCC "You wander into the "
FCC "recall you are naked"
FCC "frozen mountains, "
FCC "and freeze and die. "

* Ending 5 dac0
FCC "As you watch the "
FCC "see it expand and "
FCC "hamster cooking, you"
FCC "explode into bits. "

* Ending 5 dac0
FCC "You try to run past"
FCC "catches, kills, and "
FCC "the troll. He "
FCC "eats you. "

* Ending 6 da20
FCC "You answer incorrect"
FCC "to disembowel you. "
FCC "and the troll starts"

Ari Moradi and Ryan Stuck, December 6, 2000 29

FCC "You die painfully. "
* Ending 7 da70

FCC "You place the 2 kohm"
FCC "and feel electricity"
FCC "resistor in the plug"
FCC "cook your brain. "

* Ending 8 db10
FCC "You put the hamster "
FCC "runs, the dawbridge "
FCC "in the wheel. As it"
FCC "begins to drop. "

* Ending 9 db60
FCC "A frenchman leans "
FCC "taunt you in a very "
FCC "out and proceeds to "
FCC "unkind fashion. "

* Ending 10 dbb0
FCC "You reach for the "
FCC "blade slips through "
FCC "sword and slip. The"
FCC "you like butter. "

* Ending 11 dc00
FCC "You drink the bottle"
FCC "You are lucky that "
FCC "and feel a bit sick."
FCC "didn't kill you. "

* Ending 12 dc50
FCC "You scarf down the "
FCC "you need that toilet"
FCC "burrito. Suddenly "
FCC "again and rush back."

* Ending 13 dca0
FCC "You take a seat on a"
FCC "enjoy the scenery "
FCC "nearby bench and "
FCC "around you. "

* Ending 14 dcf0
FCC "You try to navigate "
FCC "dark but slip and "
FCC "the stairs in the "
FCC "smash your skull. "

* Ending 15 dd40
FCC "The old man says: "
FCC "Halitosis Man? I "
FCC "What is it you want,"
FCC "see, Mr. Stinkmouth."

* Ending 16 dd90
FCC "As you press the "
FCC "begin to explode. "
FCC "button, the bottles "
FCC "You die in flames. "

* Ending 17 dde0
FCC "You reference the "
FCC "you think is a bomb "
FCC "manual, defuse what "
FCC "and leave the room. "

* Ending 18 de30

Ari Moradi and Ryan Stuck, December 6, 2000 30

FCC "You wield the torch "
FCC "manage to catch your"
FCC "bravely, but only "
FCC "self on fire and die"

* Ending 19 de80
FCC "As you turn to walk "
FCC "stands up and blasts"
FCC "away, the magician "
FCC "you to pieces. "

* Ending 20 ded0
FCC "The princess smiles!"
FCC "the evil wizard and "
FCC "You have defeated "
FCC "have won the game! "

Ari Moradi and Ryan Stuck, December 6, 2000 31

Appendix B: Verilog Code

// final.v
// top level module for e155 final project
// Ari Moradi and Ryan Stuck

module final (Clk, Reset, LED, Pollout, KeypadIn, ParallelOut) ;

input [3:0] KeypadIn;
input Clk, Reset ;

output [3:0] Pollout;
output [15:0] ParallelOut;
output [7:0] LED;

wire myclk; // myclk signal; clock for all flops
wire NewData; // tells if a new button has been pressed
wire [3:0]data; // keypadin data when newdata
wire [7:0]Count;

assign Count = 8'b10000000; // delay for slowing down clock

// LED's show the bottom 8 bits of parallel data
assign LED = ParallelOut[7:0];

// creates myclk signal; sequential
assignMyClk amc(Clk, Count, myclk, Reset);

// takes myclk and input to do debouncing and stop/continue
// polling; sequential
getInput gi(myclk, Reset, KeypadIn, Pollout, NewData, data);

// interprets data for output to HC11; sequential
assignOuts ao(myclk, Reset, NewData, data, Pollout, ParallelOut);

endmodule

// assignmyclk.v
// slows down clock to help debounce keypad signal
// Ari Moradi and Ryan Stuck

module assignMyClk (Clk, Count, myclk, Reset) ;

input Clk, Reset ;
input [7:0] Count ;
output myclk ;

reg [12:0]myCount;
reg myclk;

// counts up until myCount reaches Count, then toggles myclk to slow
down clock
always@(posedge Clk or posedge Reset)

if(Reset)

Ari Moradi and Ryan Stuck, December 6, 2000 32

begin
myclk <= 0;
myCount <= 0;
end

else if (myCount == {Count[7:0], 5'b00000})
begin
myclk <= ~myclk;
myCount <= 0;
end

else
myCount <= myCount + 1;

endmodule

// getinput.v
// module that debounces and detects the keypad signal
// Ari Moradi and Ryan Stuck

module getInput (myclk, Reset, KeypadIn, PollOut, NewData, Data) ;

input myclk ;
input Reset ;
input [3:0]KeypadIn; // row input from keypad
output [3:0]PollOut; // polling output to keypad
output NewData; // if a new button has been
pressed
output [3:0]Data; // row input on new keypress

reg PollOut;
reg KeepPolling;
reg [3:0]Data;
reg NewData;
reg sameKey; // if the user is holding
down a button

// takes pollout and keypadin to determine if a key has been pressed
always@(posedge myclk or posedge Reset)

if(Reset)
begin
KeepPolling <= 1;
NewData <= 0;
Data <= 4'b1111;
sameKey <= 0;
PollOut <= 4'b1110;
end

// continues to poll if keepPolling
else if (KeepPolling)

// checks if a button has been pressed
// 4'b111 means a button has not been pressed
if (KeypadIn != 4'b1111)

begin
KeepPolling <= 0;
Data <= KeypadIn;
NewData <= 0;
end

else
begin

Ari Moradi and Ryan Stuck, December 6, 2000 33

KeepPolling <= 1;
NewData <= 0;
// cycles pollout
case(PollOut)

4'b1110: PollOut <= 4'b1101;
4'b1101: PollOut <= 4'b1011;
4'b1011: PollOut <= 4'b0111;
4'b0111: PollOut <= 4'b1110;
default: PollOut <= 4'b1110;

endcase
end

// this is the check for the user holding down the key
else if (KeypadIn == Data)

if (~sameKey)
begin
NewData <= 1;
sameKey <= 1;
end

else
NewData <= 0;

else
begin
KeepPolling <= 1;
sameKey <= 0;
end

endmodule

// assignouts.v
// module that takes keypad input, determines what key was pressed,
// then determines the next state. all of the state machine info
// is in this module.
// Ari Moradi and Ryan Stuck

module assignOuts (myclk, Reset, NewData, Data, Pollout, ParallelOut);

input myclk ;
input Reset ;
input NewData; // tells if a new button has been pressed

input [3:0]Data; // data in from keypad
input [3:0]Pollout; // Polling signal for keypad
output [15:0]ParallelOut; // the parallel data that goes to HC11

wire [7:0]signal;
// what button has been pressed

reg [15:0]RoomState;
// stores what room the player is in

reg [15:0]InventoryState;
// stores the inventory information

reg Inventory;
// tells if the user is looking at inventory

reg [15:0]ErrorState;

Ari Moradi and Ryan Stuck, December 6, 2000 34

// any error message state that needs to be displayed

reg ErrorMessage;
// tells if an error message needs to be displayed

// signal is the combination of the rows in from the keypad and the
// pollout signal from the FPGA
assign signal = {Data[3:0], Pollout[3:0]};

// definintions of the keys
parameter ONE = 8'b0111_0111; // 1
parameter UNUSED1 = 8'b0111_1011; // 2
parameter NORTH = 8'b0111_1101; // 3
parameter UNUSED2 = 8'b0111_1110; // 12
parameter TWO = 8'b1011_0111; // 4
parameter WEST = 8'b1011_1011; // 5
parameter SEARCH = 8'b1011_1101; // 6
parameter EAST = 8'b1011_1110; // 13
parameter THREE = 8'b1101_0111; // 7
parameter UNUSED3 = 8'b1101_1011; // 8
parameter SOUTH = 8'b1101_1101; // 9
parameter UNUSED4 = 8'b1101_1110; // 14
parameter FOUR = 8'b1110_0111; // 10
parameter INVENTORY = 8'b1110_1011; // 0
parameter PREVPAGE = 8'b1110_1101; // 11
parameter NEXTPAGE = 8'b1110_1110; // 15

// this is the finite state machine
always@(posedge myclk or posedge Reset)

begin
// on reset, the game starts at the start screen and the user has
// no inventory
if(Reset)

begin
RoomState <= 16'h0000;
InventoryState <= 16'h8000;
Inventory <= 0;
ErrorState <= 16'h3FFF;
ErrorMessage <= 0;
end

// if there is a new button press then it interprets what
// should happen
else if (NewData)

begin
// if an error message is being displayed, then it returns
// to the game
if (ErrorMessage)

begin
ErrorMessage <= 0;
end

// if the user is looking at inventory
else if (Inventory)

// switches for which page the user is looking at
case (InventoryState[14:12])

// switches for keypresses
3'b000: case (signal)

INVENTORY: Inventory <= 0;

Ari Moradi and Ryan Stuck, December 6, 2000 35

NEXTPAGE: InventoryState[14:12]
<= 001;

ONE: if (InventoryState[0])
if (RoomState ==

 16'h0004)
begin
Inventory <= 0;
RoomState
<= 16'h0005;
end

else
begin
Inventory <= 0;
ErrorMessage
<= 1;
ErrorState
<= 16'h3ffe;
end

else
begin
Inventory <= 0;
ErrorMessage <= 1;
ErrorState <= 16'h3ffd;
end

TWO: if (InventoryState[1])
if (RoomState ==

 16'h0009)
begin
Inventory <= 0;
RoomState
<= 16'h2007;
end

else
begin
Inventory <= 0;
ErrorMessage
<= 1;
ErrorState
<= 16'h3ffe;
end

else
begin
Inventory <= 0;
ErrorMessage <= 1;
ErrorState <= 16'h3ffd;
end

THREE: if (InventoryState[2])
if (RoomState ==

 16'h0007)
begin
Inventory <= 0;
RoomState
<= 16'h2004;
end

else if (RoomState ==
 16'h0009)
begin

Ari Moradi and Ryan Stuck, December 6, 2000 36

Inventory <= 0;
RoomState
<= 16'h2008;
end

else
begin
Inventory <= 0;
ErrorMessage
<= 1;
ErrorState
<= 16'h3ffe;
end

else
begin
Inventory <= 0;
ErrorMessage <= 1;
ErrorState <= 16'h3ffd;
end

// default is for bad key press
default:

begin
ErrorMessage <= 1;
ErrorState <= 16'h3fff;
end

endcase
3'b001: case (signal)

INVENTORY: Inventory <= 0;
PREVPAGE: InventoryState[14:12]

<= 000;
NEXTPAGE: InventoryState[14:12]

<= 010;
ONE: if (InventoryState[3])

if (RoomState ==
 16'h0014)
begin
Inventory <= 0;
RoomState
<= 16'h0015;
end

else
begin
Inventory <= 0;
ErrorMessage
<= 1;
ErrorState
<= 16'h3ffe;
end

else
begin
Inventory <= 0;
ErrorMessage <= 1;
ErrorState <= 16'h3ffd;
end

TWO: if (InventoryState[4])
if (RoomState ==

 16'h0015)
begin

Ari Moradi and Ryan Stuck, December 6, 2000 37

Inventory <= 0;
RoomState
<= 16'h2014;
end

else
begin
Inventory <= 0;
ErrorMessage
<= 1;
ErrorState
<= 16'h3ffe;
end

else
begin
Inventory <= 0;
ErrorMessage <= 1;
ErrorState <= 16'h3ffd;
end

THREE: if (InventoryState[5])
if (RoomState ==

 16'h0012)
begin
Inventory <= 0;
RoomState
<= 16'h0013;
end

else
begin
Inventory <= 0;
ErrorMessage
<= 1;
ErrorState
<= 16'h3ffe;
end

else
begin
Inventory <= 0;
ErrorMessage <= 1;
ErrorState <= 16'h3ffd;
end

default:
begin
ErrorMessage <= 1;
ErrorState <= 16'h3fff;
end

endcase
3'b010: case (signal)

INVENTORY: Inventory <= 0;
PREVPAGE: InventoryState[14:12]

<= 001;
NEXTPAGE: InventoryState[14:12]

<= 011;
ONE: if (InventoryState[6])

if (RoomState ==
 16'h0011)
begin
Inventory <= 0;

Ari Moradi and Ryan Stuck, December 6, 2000 38

RoomState
<= 16'h2011;
end

else
begin
Inventory <= 0;
ErrorMessage
<= 1;
ErrorState
<= 16'h3ffe;
end

else
begin
Inventory <= 0;
ErrorMessage <= 1;
ErrorState <= 16'h3ffd;
end

TWO: if (InventoryState[7])
if (RoomState ==

 16'h0013)
begin
Inventory <= 0;
RoomState
<= 16'h0014;
end

else
begin
Inventory <= 0;
ErrorMessage
<= 1;
ErrorState
<= 16'h3ffe;
end

else
begin
Inventory <= 0;
ErrorMessage <= 1;
ErrorState <= 16'h3ffd;
end

default:
begin
ErrorMessage <= 1;
ErrorState <= 16'h3fff;
end

endcase
3'b011: case (signal)

INVENTORY: Inventory <= 0;
PREVPAGE: InventoryState[14:12]

<= 010;
default:

begin
ErrorMessage <= 1;
ErrorState <= 16'h3fff;
end

endcase
// this error is for a bad inventory state, and should never happen

default:

Ari Moradi and Ryan Stuck, December 6, 2000 39

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
Inventory <= 0;
end

endcase

else case (RoomState)
// switches on room state if !inventory and ! errorMessage
// some rooms are just display messages and automatically go to the
// next state, while others check what key is pressed. All defaults
// are for bad key presses

16'h0000: begin
 RoomState <= 16'h0001;
 InventoryState <= 16'h8000;
 end

16'h0001: case (signal)
SEARCH: RoomState <= 16'h4001;
EAST: RoomState <= 16'h0003;
INVENTORY: Inventory <= 1;
default:

begin
ErrorState <= 16'h3FFF;
ErrorMessage <= 1;
end

 endcase
16'h0002: RoomState <= 16'h0001;
16'h0003: case (signal)

SEARCH: RoomState <= 16'h4003;
INVENTORY: Inventory <= 1;
WEST: RoomState <= 16'h0001;
default:

begin
ErrorState <= 16'h3FFF;
ErrorMessage <=1;
end

 endcase
16'h0004: case (signal)

SEARCH: RoomState <= 16'h4004;
INVENTORY: Inventory <= 1;
NORTH: RoomState <= 16'h2001;
EAST: RoomState <= 16'h2001;
WEST: RoomState <= 16'h2001;
SOUTH: RoomState <= 16'h2001;
default:

begin
ErrorState <= 16'h3FFF;
ErrorMessage <=1;
end

 endcase
16'h0005: case (signal)

SEARCH: RoomState <= 16'h4005;
INVENTORY: Inventory <= 1;
NORTH: RoomState <= 16'h2002;
WEST: RoomState <= 16'h2003;
EAST: RoomState <= 16'h0006;
SOUTH: RoomState <= 16'h0008;

Ari Moradi and Ryan Stuck, December 6, 2000 40

default:
begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h0006: case (signal)

SEARCH: RoomState <= 16'h4006;
INVENTORY: Inventory <= 1;
WEST: RoomState <= 16'h0005;
EAST: RoomState <= 16'h0007;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h0007: case (signal)

SEARCH: RoomState <= 16'h4007;
INVENTORY: Inventory <= 1;
WEST: RoomState <= 16'h0006;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h0008: case (signal)

SEARCH: RoomState <= 16'h4008;
INVENTORY: Inventory <= 1;
SOUTH: RoomState <= 16'h2005;
NORTH: RoomState <= 16'h0005;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h0009: case (signal)

SEARCH: RoomState <= 16'h4009;
INVENTORY: Inventory <= 1;
NORTH: RoomState <= 16'h0005;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase

16'h000A: case (signal)
SEARCH: RoomState <= 16'h400A;
INVENTORY: Inventory <= 1;
EAST: RoomState <= 16'h0009;
WEST: RoomState <= 16'h000B;
default:

begin
ErrorState <= 16'h3fff;

Ari Moradi and Ryan Stuck, December 6, 2000 41

ErrorMessage <= 1;
end

 endcase
16'h000B: case (signal)

SEARCH: RoomState <= 16'h400B;
INVENTORY: Inventory <= 1;
EAST: RoomState <= 16'h000A;
SOUTH: RoomState <= 16'h000C;
NORTH: RoomState <= 16'h000D;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h000C: case (signal)

SEARCH: RoomState <= 16'h400C;
INVENTORY: Inventory <= 1;
NORTH: RoomState <= 16'h000B;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h000D: case (signal)

SEARCH: RoomState <= 16'h400D;
INVENTORY: Inventory <= 1;
SOUTH: RoomState <= 16'h000B;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h000E: case (signal)

SEARCH: RoomState <= 16'h400E;
INVENTORY: Inventory <= 1;
EAST: RoomState <= 16'h000D;
SOUTH: RoomState <= 16'h000F;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h000F: case (signal)

SEARCH: RoomState <= 16'h400F;
INVENTORY: Inventory <= 1;
NORTH: RoomState <= 16'h000E;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h0010: case (signal)

Ari Moradi and Ryan Stuck, December 6, 2000 42

SEARCH: RoomState <= 16'h4010;
INVENTORY: Inventory <= 1;
EAST: RoomState <= 16'h0011;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h0011: case (signal)

SEARCH: RoomState <= 16'h4011;
INVENTORY: Inventory <= 1;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h0012: case (signal)

SEARCH: RoomState <= 16'h4012;
INVENTORY: Inventory <= 1;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h0013: case (signal)

SEARCH: RoomState <= 16'h4013;
INVENTORY: Inventory <= 1;
NORTH: RoomState <= 16'h2013;
SOUTH: RoomState <= 16'h2013;
EAST: RoomState <= 16'h2013;
WEST: RoomState <= 16'h2013;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h0014: case (signal)

SEARCH: RoomState <= 16'h4014;
INVENTORY: Inventory <= 1;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h0015: case (signal)

SEARCH: RoomState <= 16'h4015;
INVENTORY: Inventory <= 1;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

Ari Moradi and Ryan Stuck, December 6, 2000 43

 endcase
16'h1001: RoomState <= 16'h0001;
16'h1002: RoomState <= 16'h0003;
16'h1004: RoomState <= 16'h0006;
16'h1008: RoomState <= 16'h0006;
16'h1010: RoomState <= 16'h000A;
16'h1020: RoomState <= 16'h000C;
16'h1040: RoomState <= 16'h000D;
16'h1080: RoomState <= 16'h000F;
16'h2004: RoomState <= 16'h0007;
16'h2008: RoomState <= 16'h000A;
16'h2009: RoomState <= 16'h000A;
16'h200B: RoomState <= 16'h000E;
16'h200C: RoomState <= 16'h0002;
16'h200D: RoomState <= 16'h000F;
16'h200F: RoomState <= 16'h0010;
16'h2011: RoomState <= 16'h0010;
16'h4001: case (signal)

SEARCH: RoomState <= 16'h0001;
ONE:

begin
RoomState <= 16'h1001;
InventoryState[0] <= 1;
end

TWO: RoomState <= 16'h0002;
default:

begin
ErrorState <= 16'h3FFF;
ErrorMessage <= 1;
end

 endcase
16'h4003: case (signal)

SEARCH: RoomState <= 16'h0003;
ONE: begin

RoomState <= 16'h0004;
end

TWO: begin
RoomState <= 16'h2000;
end

THREE: begin
RoomState <= 16'h1002;
InventoryState[1] <= 1;
end

default:
begin
ErrorState <= 16'h3FFF;
ErrorMessage <= 1;
end

 endcase
16'h4004: case (signal)

SEARCH: RoomState <= 16'h0004;
default:

begin
ErrorState <= 16'h3FFF;
ErrorMessage <= 1;
end

 endcase

Ari Moradi and Ryan Stuck, December 6, 2000 44

16'h4005: case (signal)
SEARCH: RoomState <= 16'h0005;
default:

begin
ErrorState <= 16'h3FFF;
ErrorMessage <= 1;
end

 endcase
16'h4006: case (signal)

SEARCH: RoomState <= 16'h0006;
ONE: begin

RoomState <= 16'h1004;
InventoryState[2] <= 1;
end

TWO: begin
RoomState <= 16'h1008;
InventoryState[3] <= 1;
end

default:
begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase

16'h4007: case (signal)
SEARCH: RoomState <= 16'h0007;
default:

begin
ErrorState <= 16'h3FFF;
ErrorMessage <= 1;
end

 endcase
16'h4008: case (signal)

SEARCH: RoomState <= 16'h0008;
ONE: RoomState <= 16'h2006;
TWO: RoomState <= 16'h0009;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h4009: case (signal)

SEARCH: RoomState <= 16'h0009;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <=1;
end

 endcase
16'h400A: case (signal)

SEARCH: RoomState <= 16'h000A;
ONE: begin

RoomState <= 16'h1010;
InventoryState[4] <= 1;
end

Ari Moradi and Ryan Stuck, December 6, 2000 45

TWO: RoomState <= 16'h2009;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h400B: case (signal)

SEARCH: RoomState <= 16'h000B;
ONE: RoomState <= 16'h0012;
TWO: if (InventoryState[7])

RoomState <= 16'h0010;
else

RoomState <= 16'h200E;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h400C: case (signal)

SEARCH: RoomState <= 16'h000C;
ONE: begin

RoomState <= 16'h1020;
InventoryState[5] <= 1;
end

TWO: RoomState <= 16'h200A;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h400D: case (signal)

SEARCH: RoomState <= 16'h000D;
ONE: begin

RoomState <= 16'h1040;
InventoryState[6] <= 1;
end

TWO: RoomState <= 16'h000E;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h400E: case (signal)

SEARCH: RoomState <= 16'h000E;
ONE: RoomState <= 16'h200B;
TWO: RoomState <= 16'h200C;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h400F: case (signal)

Ari Moradi and Ryan Stuck, December 6, 2000 46

SEARCH: RoomState <= 16'h000F;
ONE: begin

RoomState <= 16'h1080;
InventoryState[7] <= 1;
end

TWO: RoomState <= 16'h200D;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h4010: case (signal)

SEARCH: RoomState <= 16'h0010;
ONE: RoomState <= 16'h000B;
TWO: RoomState <= 16'h200F;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h4011: case (signal)

SEARCH: RoomState <= 16'h0011;
ONE: RoomState <= 16'h2010;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h4012: case (signal)

SEARCH: RoomState <= 16'h0012;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h4013: case (signal)

SEARCH: RoomState <= 16'h0013;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h4014: case (signal)

SEARCH: RoomState <= 16'h0014;
default:

begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
16'h4015: case (signal)

SEARCH: RoomState <= 16'h0015;

Ari Moradi and Ryan Stuck, December 6, 2000 47

default:
begin
ErrorState <= 16'h3fff;
ErrorMessage <= 1;
end

 endcase
default: RoomState <= 16'h0000;

endcase
end

else
begin
RoomState <= RoomState;
end

end

// if (ErrorMessage) ParallelOut = ErrorState;
// else if (Inventory) ParallelOut = InventoryState;
// else ParallelOut = RoomState;
assign ParallelOut = {32{ErrorMessage}}&ErrorState | {32{~ErrorMessage
& Inventory}}&InventoryState | {32{~ErrorMessage&
~Inventory}}&RoomState ;

endmodule

Ari Moradi and Ryan Stuck, December 6, 2000 48

Appendix C: Pin Outs

HC11 FPGA
Pin # Function Pin # Function
9-16 Port C (input)

9=low bit through
16=high bit

7 Column 1 (KP)

29 Register Select
1=instruction
0=data

8 Column 3 (KP)

30 Read/nWrite 9 Column 2 (KP)
31 Enable (high) 10 Column 4 (KP)
35-42 Port B (output)

35=high bit through
42=low bit

18 State b15

43 Port E b0 19 State b14
44 Port E b4 20 State b13
45 Port E b1 23 State b12
46 Port E b5 24 State b11
47 Port E b2 25 State b10
48 Port E b6 26 State b9
49 Port E b3 27 State b8
50 Port E b7 28 State b0
LCD 29 State b2
1 Vss (ground) 37 Row 4 (KP)
2 Vee (0-5V)

Contrast adjust
38 Row 3 (KP)

3 Vdd (+5V) 39 Row 2 (KP)
4 Register Select 40 Row 1 (KP)
5 Read/nWrite 46 State b7
6 Enable (high) 47 State b5
7-14 Data (I/O) 48 State b3
KeyPad 49 State b1
1 Row 4 50 State b4
2 Column 1 51 State b6
3 Row 1
4 Row 3
5 Row 2
6 Column 2
7 Column 3
8 Column 4

Ari Moradi and Ryan Stuck, December 6, 2000 49

Appendix D: Game Map

