The Super Happy Fun Game:
A Text-Based Adventure Game

Final Project Report
December 6, 2000
E155

Ari Moradi and Ryan Stuck

Abstract:

An interesting problem that comes up quite often in industry is the problem of interfacing
with auser. This particular design issue, coupled with the fun of a text-based adventure
game, has spawned this project, the Super Happy Fun Game. In this project, we have
created a short, text-based adventure game, which alows users to input desired
commands on a standard 4x4 keypad, and outputs game information onto a 4 line by 20
character liquid crystal display. The game is implemented as a finite state machine on
our Xilinx FPGA, which in turn sends data to an HC11 Evaluation Board that interprets
the state data given from the FPGA and displays appropriate data to the user.

Introduction

We have designed and implemented a text adventure game called “The Super
Happy Fun Game.” The game uses a 68HC11 Evaluation Board (EVB), a Xilinx Spartan
FPGA, akeypad, and a LCD display. All of the parts necessary for our project have been
checked out of the Engineering Stockroom.

The FPGA holds the game data while the HC11 takes as input from the FPGA the
current state of the game and then outputs text to the LCD display.

Detailed descriptions of how the FPGA and the HC11 work follow.

Ari Moradi and Ryan Stuck, December 6, 2000 2

New Hardware

The creation of the Super Happy Fun Game required the use of a dot matrix style
liquid crystal display (LCD). The LCD employed is a 4 line by 20 character display.
Each character is made up of a 5x11 dot matrix. The actual number of dots employed in
displaying a character is configurable, as noted below. The LCD chosen is one of the
smart LCD variety, being that it has its own controller on board, namely a Hitachi
44780XX controller. Thus, one need only send pre-defined commands to the LCD to
operate it. Below can be found notes that may aid future groups in the implementation of
this type of LCD, including a wiring diagram, the fundamental instruction set, and some
trouble shooting tips. Two appendices at the end of this document will include one, code
implementing the LCD with an HC11 Evaluation Board (EVB), and two, timing
diagrams. Now, find below awiring diagram of the LCD and description of the pin out.

_tV
! >
2
3 S
4 P29 (HC11) =
5 P30 (HC11)
6 P31 (HC11)
LcD 7 P42 (HC11)
8 P41 (HC11)
9 P40 (HC11)
10 P39 (HC11)
11 P38 (HC11)
12 P37 (HC11)
13 P36 (HC11)
14 P35 (HC11)

Figure 1: Wiring Diagram of LCD. Shows contrast
adjustment circuit and pin out to HC11 EVB. A description
of the pins can be found below.

Ari Moradi and Ryan Stuck, December 6, 2000 3

Below is atable describing the pin out of the previous wiring diagram; it contains the pin
number, connection, name and function of each pin on the LCD.

Pin Number Name Function Connection
1 Vs Ground Ground
2 Vi +5V +5V power supply
3 Ve Contrast Potentiometer
4 RS Register Select P29 HC11 port A, bit 5
5 R/W Read/Write P30 HC11 port A, bit 4
6 E Enable P31 HC11 port A, bit 3
7 DO Databit O P42 HC11 port B, bit 0
8 D1 Daabitl P41 HC11 port B, bit 1
9 D2 Databit 2 P40 HC11 port B, bit 2
10 D3 Datahit3 P39 HC11 port B, bit 3
11 D4 Datahit 4 P38 HC11 port B, bit 4
12 D5 Datahit5 P37 HC11 port B, bit 5
13 D6 Databit6 P36 HC11 port B, bit 6
14 D7 Databit7 P35 HC11 port B, bit 7

Table 1: Pin out of LCD. Table shows pin number, name, function, and connection to cir cuit.

On the following page can be found a table describing the fundamental command
set to control the LCD. More commands exist, however they are a bit more exotic, and
not relevant to the functionality of this design. See references to find more resources on
implementing these other instructions. Also, to write an ASCII character to the LCD, the
write data command must be given. Attached is an ASCII character table, giving the
character and which byte is used to denote it. This byte is what is sent along with the
write data command. Also note that R/W was tied high, as no reading from the LCD was
ever necessary.

Command Binary
D7 D6 D5 D4 D3 D2 D1 DO

Clear Display O 0 O O o0 o 0 0O 1 0
DisplayandCursorHome O O O O O O 0 1 X 02or03
Character Entry Mode O 0 0 O o O 1 I/ID S 04to07
Display/Cursor On/Off O 0 0 O 0 1 D U B O08toOF
Display/Cursor Shift O 0 O O 1 ©DIC RL X X 10tolF
Function Set O O O 1 84 21 1007 X X 20to3F
Set CGRAM Address O 0 1 A A A A A A 40to7F
Set Display Address O 1 A A A A A A A 80toFF
Write Data 1 D D D D D D D D O00toFF
|/D: 1=Increment, O=Decrement R/L: 1=Right shift, O=Left Shift

S: 1=Display shift on, O=Display shift off 8/4: 1=8 bit interface, 0=4 bit interface

D: 1=Display on, O=Display off 2/1: 1=2 line mode, 0=1 line mode

U: 1=Cursor underline on, O=off 10/7: 1=5x10 dot format, 0=5x7 dot format

B: 1=Blinking Cursor on, O=no blinking D/C: 1=Set Display shift, 0=Set Cursor

Table 22 Command control codes. Thistableliststhe commands necessary to operatethe LCD.
Setting appr opriate bits sends r ecognizable commands to the LCD on board controller.

Ari Moradi and Ryan Stuck, December 6, 2000 4

The following are some troubleshooting tips that have helped us implement the
LCD with the HC11 EVB. To fully implement the LCD, the RS, E, and R/W signals
must be timed appropriately, through the proper use of delays for setup and hold times.
Attached in an appendix the reader can find the general timing diagrams to implement an
LCD. However, through experimentation, we have found that these timing specs are
inaccurate when applied to the HC11. Thus, in our code, the reader will note that we
have employed considerably longer setup and hold times to actually operate the LCD.
Generally speaking, we have found that delays between instructions should be around 1
to 2 mS, otherwise the display will not act properly. See the assembly code for more
detalls. For testing the LCD, we found that using a ssmple protoboard and DIP switches
worked quite well, as we just set the data and set the enable signa when necessary.

Ari Moradi and Ryan Stuck, December 6, 2000 5

Schematics

The breadboard layout of our project is shown below. The HC11 and FPGA
communicate over a 16 bit parallel connection. The FPGA sends datato the HC11. The
HC11 sends no information back to the FPGA. The HC11 communicates to the LCD
using 11 paralel bits. The keypad is connected to the FPGA using eight wires. Four bits
are input; four bits are output. The pin outs of all devices can be seen in appendix C.

Ari Moradi and Ryan Stuck, December 6, 2000 6

38
39
FPGA 40

44

7891018 19 20 23 24 25 26 27 28 29 46 47 48 49 50 51

LCD

O©CO~NOOOUTAWNPEF

10
11
12
13
14
15
16
29
30
31
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50

HC11

- 12 3 456 7 8

KeyPad

Ari Moradi and Ryan Stuck, December 6, 2000

Microcontroller Design

The following section will describe the use of the HC11 EVB in our design. The
EVB in our design acted mainly as a LCD control look up table. State information was
sent from the FPGA, and appropriate text was sent to the LCD. Thus, internaly, the
HC11 acted asfollows. First, the HC11 polled 2 8 bit input ports, namely port C and port
E. Once information was received from the FPGA via these 2 ports, the data received
was assembled as a 16 bit state. The state was interpreted by a routine on the HC11.
Once interpreted, other appropriate routines were called that effectively set a pointer to an
appropriate place in memory. Then, ASCII characters were read from memory and sent
viaan 8 bit output port to the LCD, along with the corresponding control bits. The LCD
then displayed the characters sent to it, and the HC11 went back to polling for a new
state. The mgjor subroutines listed above will be discussed in further detail below.

First, the polling routine will be discussed. As mentioned above, port C,
configured as input, and port E were used in tandem to gather 16 bit data from the FPGA.
As shown previously, port C and port E are both hard-wired to output pins on our FPGA
board. The polling routine would store the data coming into these ports, and check them
against the last state processed. If the new data were the same as the old, the routine
would continue to poll port C and E. Once a new state had been received by the polling
routine, the rest of the program would then be executed.

The next large routine is the interpreter. This routine took the 16 bit state data
from the polling routine and operated on it to interpret the state information. For
example, if the top nibble of the top byte of the two was set to 0x0, then the interpreter
would decide it was a story line state, and set the pointer to the appropriate place in
memory to display story line data. Other possible states include death states, search
states, and various error states, such as bad key presses.

Thus, the interpreter would jump to appropriate subroutines based upon what kind
of state was delivered from the FPGA. These subroutines al acted fundamentally the
same, by generally looking at the lower 12 bits of state data and place a pointer at the
place in memory that referenced the text for that particular state. For example, if the
interpreter decided it was a story line state, it would jump to the story line subroutine. In
this routine, the lower 12 bits of state would be interpreted further into which actual story
page was being accessed, then move a pointer to the correct place in memory to send the
correct ASCII charactersto the LCD to display this pages story line.

Once the pointer had been set, the write data to LCD routine was accessed. This
routine started at the place in memory where the pointer had been set by the previous
routines, and ssimply sequentially sent 80 bytes of data to the LCD, corresponding to 80
characters. Thus, afull screen of text was sent to the LCD for every state processed. The
pointer would ssmply be incremented to the next address, and the byte in memory written
to the LCD via port B. Within this routine, various command signals such as Enable and
Register Select were also sent via port A to the LCD. Please see the new hardware
section for more information on command signals for the LCD.

Ari Moradi and Ryan Stuck, December 6, 2000 8

FPGA Design

The FPGA stores the finite state machine (FSM) data and takes keypad input.
The keypad is the standard 16-button keypad used previoudy in an E155 lab. The keys
are asfollows:

' RS
1 Maorth
¢ “West Search East
3 South
4 |rven- Fres, Mest
tory Fage Fage
- -

Any buttons that are not |abeled are not used. The FPGA de-bounces the keypad
signal and interprets which key has been pressed and then decides the next state. The
FPGA effectively has 3 state machines, the room state machine, the inventory state
machine, and the error state machine. All the state machines depend on the keypad input
and what state the gameisin. Each stateis 16 bitslong. The FPGA sends only one of
the three states at atime. Inventory states al have aleading 1 (i.e. 0x8001). Error states
are 3FFF, 3FFE, and 3FFD. All other outputs denote room states. Thelogic in the
FPGA determines which state to send to the HC11 depending on current state and user
input. Two bits are saved to tell the FPGA whether it should send the Error State or the
Inventory State. The error message takes precedence. If neither are to be sent, then the
room state is sent. A description of the state machines follow.

Inventory State

Irventory State
5 114 .. 0

P'agga] [Fvenbony
Dezignation

L AloquaaL)

The Inventory State saves the items the user hasin inventory. Theinventory on bit lets
the HC11 know that it islooking at the inventory state. The page designation bitstell the
HC11 which page of inventory to display. Thelast 12 bits designate what items the
player has. If abitison, the user hastheitem. If it is off, the user does not have the

Ari Moradi and Ryan Stuck, December 6, 2000 9

item. If auser has an item, then it will belisted in inventory. If he does not haveit, a
blank line will be shown. As of now the bitsin inventory represent the following items:

10 : Rubber Ducky

11: 2.2 kOhm Resistor

12 : Hamster

13 : Bra

14 : Flower

15 : Sword

16 : HC11 Reference Manual

|7 : Torch

Error State
The Error State gets sent to the HC11 when the ErrorMessage signal is high. The three
possible error messages are :

3FFF: You cannot use that key.
3FFE: You cannot use that item.
3FFD: You do not have that item.

Room States

The room states are ssimply encoded starting at 0x0000 and counting up in the
order in which you can encounter them. The room state by default gets sent to the HC11.
Each room state has 80 characters in memory associated with it. Each room state has
another room state associated with it, the searching the room state. The search stateis
encoded by aleading 0x4 (i.e. the search state for 0x0005 is 0x4005). Other special room
state encodings are ones with leading Ox2s. These represent game endings. A Ox1 at the
beginning of aroom state represents that the user has picked up an item. In such a state
bits 0 — 11 one-hot encode which item was just picked up. The method for choosing
these state encodings is based on making it easy for us to distinguish types of state and to
make it easier to reference locations in memory. The room state machineis givenin
Appendix B.

Verilog Implementation
The verilog code that implements the state machinesis attached in Appendix B.

Ari Moradi and Ryan Stuck, December 6, 2000 10

Results
We created a fun game. It is in fact super happy fun. The hardest part of the

project was conserving memory. There is limited memory available to the HC11 and to
one FPGA. Trying to make a game that was large enough to be fun required looking
carefully at our resources and how to store data effectively. Overall we think our project
turned out very well for us designing it and for everyone who has played it.

Ari Moradi and Ryan Stuck, December 6, 2000

11

Appendix A: Assembly Code
The following assembly file includes the interpreter and polling routines, as well

asthe LCD driver routines.

khkkkhkhhhkkhkhhkhhkhhhhkhdhhhdhdhrhdrrdkix*x

* M croP' s Final *
* The Super Happy Fun Gane *
* Novenber 16, 2000 *
* Aut hor ed by: *

* Ari Mor adi *

* Ryan Stuck *

EE R Sk S b I o S O kR kS kS Rk

** Regi ster Addresses

PORTA EQU $1000
PORTB EQU $1004
PORTC EQU $1003
DDRC EQU $1007
PORTE EQU $100A

** Port direction mask

PCCFG EQU 9%9©0000000 *configs port c as input

** | nventory Page Mask

PVASK EQU 991110000 *masks page bits in state dat a

| MASK EQU 9%©0000111 *masks inventory bits of interest

P3MASK EQU %©0000001 *masks bit of interest fromtop bits

** Constants

CX11 EBEQU s$ACA *the CXnn's are conpare val ues

CX12 EQU $C4D8 *to see when to nove on to the next
CX13 EQU $CAEC *inventory item these are used in
CX21 EQU $C500 *set inventory functions

CX22 EQU $C514
CX23 EQU $C528
CX31 EQU $C53C
CX32 EQU $C550
CX33 EQU $C564
CX41 EQU $C578
CX42 EQU $C58C
CX43 EQU $C5A0
CXN EQU $C370

BADK EQU $3FFF *pbadkey state conpare val ue

BADI EQU $3FFE *cant use itemstate conpare val ue
DONTI EQU $3FFD *no itemstate conpare val ue

BKOFF EQU $C370 *all values | abel ed xxOFF are offsets

Ari Moradi and Ryan Stuck, December 6, 2000 12

Bl OFF EQU
Nl OFF EQU
STOFF EQU
SECFF EQU
ENDOFF
| NOFF EQU
| TOFF1
| TOFF2
| TOFF3
| TOFF4
BLOFF EQU
NPOFF EQU

FSI ZE EQU
I SI ZE EQU

Bl ADDR

t he

Tl ADDR
AADDR EQU
BADDR EQU
DADDR EQU
XADDR EQU
LXADDR
YADDR EQU
LYADDR

PAGEL
PAGE2
PAGE3
PAGE4

EQU
EQU
EQU
EQU

IT EQU
I TWR EQU

$C3C0
$C410
$C700
$D200
EQU
$C5A0
EQU
EQU
EQU
EQU
$Ca74
$C35C

$D8EO

$C4BO
$CAEC
$C528
$C564

$50
$14

EQU

EQU
$05
$06
$07
$09
EQU
$0B
EQU

$C5A0
$C5F0
$C640
$C690

$04

$03

$0A

$0C

$C460
$C488

** Quput Masks

** b5 = register select
** b4 = read=1/wite=0
** ph3 = enabl e=1

WD EQU 990100000

WRDEN EQU 990101000

WC EQU 990000000

WRCEN EQU 990001000

** Command Signal s

CLEAR EQU
HOVE EQU
ENTRY EQU
DI SPON
FUNCT EQU
SETCUR

$01
$02
$06
EQU
$38
EQU

$0C

$14

*to nenory | ocations where text is |ocated

*size for full screen (80 characters) of text
*size for 1 line (20 characters) of text

*all values | abel ed xxADDR are offsets on
*zero page for tenporary nenory to store

*values in the accunul ators A,B,D, indices
*X and Y, and inventory bytes

*PACEXx refers to a page of inventory

*Got Itemoffset in menory
*Where to wite itemrecei ved of f set

command=0/ dat a=1

** Time del ays for proper setup

HTI ME EQU

$02

Ari Moradi and Ryan Stuck, December 6, 2000

13

DTI ME EQU

$40

** Main Function - calls necessary subroutines

ORG
MAIN JSR
LDAA
STAA
LDD
STD
LDAA
STAA
STAA
AGAI'N LDX
JSR
JSR
JSR
JSR
JSR
JSR
LDD
JSR
ADDD
STAB
SUBD
NEXT XGDX
LDAB
JSR
LDAA
JSR
I NX
XGEDX
CvPB
BNE
BRA
SW

** Wite Data Function

* ORG

VRl TED
STAA
JSR
LDAA
STAA
JSR
STAB
LDAA
STAA
RTS

$C000

I NI TLCD
#PCCFG
DDRC
#$0001
DADDR
#3$00
TI ADDR
Bl ADDR
#$0000
PCLL
CLEARI
SETI P1
SETI P2
SETI P3
SETI P4
DADDR
| NTERP
#FSI ZE
BADDR
#FSI ZE

0, X

VRl TED
#HTI ME
| DELAY

BADDR
NEXT
AGAI' N

$C000

LDAA #WRD

PCORTA
STALL
#WRDEN
PCORTA
STALL
PCORTB
#WRD
PCORTA

*Initialize LCD
*Port C config bits
*Store config in DDRC
*Initialize D register
*Save in nmenory
*Put 0 in AA
*Initialize Inventory
*to enpty
*Initialize X index
*Pol|l for new state data
*If new gane, clear inventory
*Set up inventory page 1
*Set up inventory page 2
*Set up inventory page 3
*Set up inventory page 4
*Retrieve state fromD reg
*Interpret state data
*add frame size to D
*store end of frane in AB
*subtract frane size
*put pointer to frane in index X
*| oad character from nemat X
*write character to LCD
*| oad delay tine
*delay for LCD setup tine
*increnent pointer
*put Xin D
*see if at end of frane
*if not at end of frame, next character
*el se search for new state

*Send wite data to LCD

*pause for hold tine
*Send enabl e data to LCD

*pause for hold tine
*Load data for LCD
*Drop enable signal to LCD

** Wite Command Function

* ORG

VRl TEC
STAA
JSR

$C100

LDAA #WRC

PCORTA
STALL

*Send wite command to LCD

*pause for hold tine

Ari Moradi and Ryan Stuck, December 6, 2000 14

LDAA #WRCEN *Send enabl e command to LCD

STAA PORTA

JSR STALL *pause for hold tine

STAB PORTB *Load command for LCD
LDAA #WRC *Drop enable signal to LCD
STAA PORTA

RTS

** Stall Function - to account for hold tine

* ORG $0Q050
STALL LDY #$0100
LCCP DEY
CPY #$0000
BNE LOOP
RTS

** Delay Function - to allow instruction conpletion
** |asts approx. 1 nB

* ORG $C150 *# of cycles
DELAY LDY #$01E8 *1000 | oops
MORE DEY *4

NOP *2

NOP *2

NOP *2

NOP *2

CPY #$0000 *5

BNE MORE *3

RTS

** | nstruction Delay Function - delays AA nB
** for this instruction

* ORG $C200
| DELAY DECA
JSR DELAY
CMPA #$00
BNE | DELAY
RTS
** |Initialization Function - inits LCDto wite

** to 4x20 node, and to increnment address counter

* ORG $C220
I NI TLCD LDAB #DI SPON *Turn on displ ay
JSR WRITEC
LDAA #HTI ME
JSR | DELAY
LDAB #ENTRY *Set entry node
JSR WRITEC
LDAA #HTI ME
JSR | DELAY
LDAB #FUNCT *Set cursor/shift
JSR WRITEC
LDAA #HTI ME
JSR | DELAY
LDAB #CLEAR *Cl ear screen

Ari Moradi and Ryan Stuck, December 6, 2000

15

JSR
LDAA
JSR
LDAB
JSR
LDAA
JSR
RTS

VRl TEC
#HTI ME
| DELAY
#HOVE

VRl TEC
#HTI ME
| DELAY

*Send cursor home

** Polling Function - to pol

* ORG

POLL LDAA
LDAB
CPD
BEQ
STD
RTS

$C300
PORTC
PORTE
DADDR
PCLL

DADDR

** | nterpret Function -

* ORG
| NTERP
BEQ
CPD
BEQ
CPD
BEQ
CVPA
BEQ
CVPA
BEQ
CVPA
BEQ
CVPA
BEQ
CVPA
BGE
BADKEY
BRA
BADI T JSR
BRA
DONTI T
BRA
ST JSR
BRA
GET JSR
BRA
GEND JSR
BRA
SE JSR
BRA
IN JSR
BACK RTS

$C400
CPD #BADK
BADKEY
#BADI
BADI T
#DONTI
DONTI T
#3$00
ST
#$10
GET
#%$20
GEND
#3$40
SE
#$80
I'N

for input state

*Load top bits

*Load bottombits

*Conpare to see if changed

*If no change, continue to poll
*el se store in mem and conti nue

decodes input state

*check

*check

*check

*check

*check

*check

JSR KEYCHK

BACK
CANTI T
BACK

JSR NO TEM

BACK
STORY
BACK
GETI TEM
BACK
GAMEEND
BACK
SEARCH
BACK

I NVEN

*check if bad key press

if wong item

*check if no itemyet

if story line state
if got itemstate
if ending state

if search state

if inventory state

** The followi ng functions set the pointer in nenory
** to an appropriate frame to display the proper nessage

Ari Moradi and Ryan Stuck, December 6, 2000

16

** Bad Key Function - displays bad key nmessage

* ORG
KEYCHK
RTS

** Can't
* ORG

CANTIT
RTS

$C450
LDD

$C610
LDD

#BKOFF

#Bl OFF

Item Function - displays cant use item nessage

** Don't Have Function - displays dont have item nessage

* ORG
NGO TEM
RTS

** Set

$C620
LDD

#NI OFF

Inventory Function - sets nenory

** to display inventory properly

* ORG
SETI P1
ANDB
STAB
LDY
LDX
NEXTS11
ANDB
C\VPB
BEQ
LDAA
SETI 11
I NY
I NX
CPX
BNE
LDAB
NEXTS12
ANDB
C\VPB
BEQ
LDAA
SETI 12
I NY
I NX
CPX
BNE
LDAB
NEXTS13
ANDB
C\VPB
BEQ
LDAA
SETI 13
I NY

$C800

LDAB Bl ADDR

#1 MASK
BADDR
#PAGEL

#1 TOFF1
LDAA 0, X
#$01

#$01

SETI 11
BLOFF
STAA 0,Y

#CX11
NEXTS11
BADDR
LDAA 0, X
#$02

#$02

SETI 12
BLOFF
STAA 0,Y

#CX12
NEXTS12
BADDR
LDAA 0, X
#$04

#$04

SETI 13
BLOFF
STAA 0,Y

*| oad bottominventory bits
*mask for bottom 3 bits

*| oad inventory page 1 offset
*load item 1 offset
*| oad character from nem at index X
*if this itemis flagged as gotten

*then save it in menory
*else wite a blank to nmenory

*This actually continues for each item

*in the sane nmanner, so no nore conmenting
*for this function or the next three |like

*it will be noted. Just know that they
act the sanme, just with different

*of fsets and inventory bit checks

*al |

Ari Moradi and Ryan Stuck, December 6, 2000

17

I NX
CPX
BNE
LDX
NEXTS14
SETI 14
I NY
I NX
CPX
BNE
RTS

** Set Inventory Function - sets nenory
** to display inventory properly

* ORG
SETI P2
LSRB
LSRB
LSRB
ANDB
STAB
LDY
LDX
NEXTS21
ANDB
C\VPB
BEQ
LDAA
SETI 21
I NY
I NX
CPX
BNE
LDAB
NEXTS22
ANDB
C\VPB
BEQ
LDAA
SETI 22
I NY
I NX
CPX
BNE
LDAB
NEXTS23
ANDB
C\VPB
BEQ
LDAA
SETI 23
I NY
I NX
CPX
BNE
LDX

#CX13
NEXTS13
#NPOFF
LDAA 0, X
STAA 0,Y

#CXN
NEXTS14

$C900

LDAB Bl ADDR

#1 MASK
BADDR
#PAGE2

#1 TOFF2
LDAA 0, X
#$01

#$01

SETI 21
BLOFF
STAA 0,Y

#CX21
NEXTS21
BADDR
LDAA 0, X
#$02

#3$02

SETI 22
BLOFF
STAA 0,Y

#CX22
NEXTS22
BADDR
LDAA 0, X
#$04

#$04

SETI 23
BLOFF
STAA 0,Y

#CX23
NEXTS23
#NPOFF

Ari Moradi and Ryan Stuck, December 6, 2000

*| oad next/prev |line offset

*save characters into inventory

18

NEXTS24
SETI 24
I NY
I NX
CPX
BNE
RTS

** Set Inventory Function - sets nenory
** to display inventory properly

* ORG
SETI P3
LSRB
LSRB
LSRB
LSRB
LSRB
LSRB
ANDB
LDAA
ANDA
LSLA
LSLA
STAA
ORAB
STAB
LDY
LDX
NEXTS31
ANDB
C\VPB
BEQ
LDAA
SETI 31
I NY
I NX
CPX
BNE
LDAB
NEXTS32
ANDB
C\VPB
BEQ
LDAA
SETI 32
I NY
I NX
CPX
BNE
LDAB
NEXTS33
ANDB
C\VPB
BEQ
LDAA
SETI 33

LDAA 0, X
STAA 0,Y

#CXN
NEXTS24

$CA00

LDAB Bl ADDR

#1 MASK
TI ADDR
#P3MASK

AADDR
AADDR
BADDR
#PAGE3

#1 TOFF3
LDAA 0O, X
#$01

#$01

SETI 31
BLOFF
STAA 0,Y

#CX31
NEXTS31
BADDR
LDAA 0, X
#$02

#$02

SETI 32
BLOFF
STAA 0,Y

#CX32
NEXTS32
BADDR
LDAA O, X
#$04

#$04

SETI 33
BLOFF
STAA 0,Y

Ari Moradi and Ryan Stuck, December 6, 2000

19

I NY
I NX
CPX
BNE
LDX
NEXTS34
SETI 34
I NY
I NX
CPX
BNE
RTS

#CX33
NEXTS33
#NPOFF
LDAA 0, X
STAA 0,Y

#CXN
NEXTS34

** Set Inventory Function - sets nenory
** to display inventory properly

* ORG
SETI P4
LSRB
ANDB
STAB
LDY
LDX
NEXTS41
ANDB
C\VPB
BEQ
LDAA
SETI 41
I NY
I NX
CPX
BNE
LDAB
NEXTS42
ANDB
C\VPB
BEQ
LDAA
SETI 42
I NY
I NX
CPX
BNE
LDAB
NEXTS43
ANDB
C\VPB
BEQ
LDAA
SETI 43
I NY
I NX
CPX
BNE
LDX
NEXTS44

$CB00
LDAB Tl ADDR

#1 MASK
BADDR
#PAGE4

#| TOFF4
LDAA 0, X
#$01

#$01

SETI 41
BLOFF
STAA 0,Y

#CX41
NEXTS41
BADDR
LDAA 0, X
#$02

#$02

SETI 42
BLOFF
STAA 0,Y

#CX42
NEXTS42
BADDR
LDAA 0, X
#$04

#$04

SETI 43
BLOFF
STAA 0,Y

#CX43
NEXTS43
#NPOFF
LDAA O, X

Ari Moradi and Ryan Stuck, December 6, 2000

20

SETI 44 STAA 0,Y

I NY

I NX

CPX #CXN
BNE NEXTS44
RTS

** Story Function - displays storyline

* ORG $C500
STORY LDAA #FSI ZE
MUL
ADDD #STOFF
RTS

** Got Item Function - displays got item nmessage
** This function checks to see which itemyou received
** then prints out a nessage saying you received it

* ORG $C550

GETI TEM ANDA #$0F
CRAB Bl ADDR
STAB Bl ADDR
CRAA TI ADDR
STAA Tl ADDR

LDD DADDR
LDY #$0000
ANDA #$0F

CHECKI CWPB #$01
BEQ DI SPI
I NY
LSRD
CPY #$000B
BEQ ENDI
BRA CHECK

DISPI STY YADDR
LDAA LYADDR
LDAB #| SI ZE
MUL
ADDD #| TOFF1
XGDY
LDAB #$00
LDX # TWR

MOREI LDAA O, Y
CWPB #$02
BGT WRIT
LDAA BLOFF

WRIT STAA O, X
I NX
I NY
| NCB
CWPB #$14
BNE MOREI
LDD #IT

ENDI RTS

Ari Moradi and Ryan Stuck, December 6, 2000

** Game End Function - displays gane over nessage

* ORG $G600
GAMEEND LDAA #FSI ZE
MUL
ADDD #ENDOFF
RTS

** Search Function - displays search options

* ORG $Cr00

SEARCH LDAA #FSI ZE
MUL
ADDD #SEOFF
RTS

** |nvetory Function - displays current inventory

* ORG $Cr50

I NVEN ANDA #PMASK
LSRA
LSRA
LSRA
LSRA
LDAB #FSI ZE
MUL
ADDD #| NOFF
RTS

** (Clear Inventory Function - if you die, this clears the
** jnventory information

ORG $CE0O

CLEARI CPD #3$0000
BNE ENDCL
LDAA #$00

STAA Tl ADDR
STAA Bl ADDR
ENDCL RTS

Ari Moradi and Ryan Stuck, December 6, 2000

The following assembly code is the storyboard, which will be written to memory

to be accessed by the assembly file above.

hkhkkkhkhhkhkhkhhkhhkhhkhhkhhhdhhdhdrrhdrrhkix*x

* M croP' s Fi nal *
* Story Line (in ASCI) *
* Novenber 19, 2000 *
* Aut hor ed by: *

* Ryan Stuck *
* Ari Mor adi *
R R S S b o S O S Rk I Sk S

** Blank to be repeated when necessary
* ORG $DF50

* FCC " "

** Next/Previous page |ines

ORG $C35C
FCC "prev next"

** Bad Key Press Message

ORG $C370

FCC "You can't do that "
FCC " "
FCC "her e! "
FCC " "

** Wong Item Press Message

ORG $C3Q0

FCC "You can't use that "
FCC " "
FCC "item here ! "
FCC " "

** Don't Have Item Press Message

ORG $t410

FCC "You can't use what "
FCC "Dumy ! "
FCC "you don't have, "
FCC " "

** |tem Pick Up screens
ORG $C460

* Any ltem
FCC "You got the "
FCC " "
FCC " "
FCC " "

** Total Inventory to be witten |ater

Ari Moradi and Ryan Stuck, December 6, 2000

23

* by proggie in $DD00

ORG

FCC
FCC
FCC
FCC
FCC
FCC
FCC
FCC
FCC
FCC
FCC
FCC

$C4ABO

"1) Rubber ducky "
"2) 2.2 kOhm Resistor”
"3) Hanster "
"1) Sexy bra "
"2) Fl ower "
"3) Angry Axe "
"1) HC11 Manual "
"2) Torch "
"3) Item?9 "
"1) Item 10 "
"2) Item11l "
"3) Item 12 "

** Story screens

ORG

* State O
FCC
FCC
FCC
FCC
* State 1
FCC
FCC
FCC
FCC
* State 2
FCC
FCC
FCC
FCC
* State 3
FCC
FCC
FCC
FCC
* State 4
FCC
FCC
FCC
FCC
* State 5
FCC
FCC
FCC
FCC
* State 6
FCC
FCC
FCC
FCC
* State 7

$C700

c700

The Super Happy
by

" Fun Gane "

" A Mradi & R Stuck "
c750

"You wake up in a tub”

"naked. There is a "

"and notice you are

"door to the east. FE'
c7a0

"You find yourself

"break from your

"enjoying a nice

"hectic norning.
c7fO

"You find yourself

"spaceshi p.

"on the deck of a

" w
€640

"You find yourself

"r hi nogooser uf ul us.

"confronted by a mad "

" NSEW
€690

"The rhino is happy.

"enpty field.

"You are now in an

" NSEW
c6e0

"You find yourself

"in a cabin.
" EW
c730

Ari Moradi and Ryan Stuck, December 6, 2000

24

FCC
FCC
FCC
FCC
State 8
FCC
FCC
FCC
FCC
State 9
FCC
FCC
FCC
FCC
State 10
FCC
FCC
FCC
FCC
State 11
FCC
FCC
FCC
FCC
State 12
FCC
FCC
FCC
FCC
State 13
FCC
FCC
FCC
FCC
State 14
FCC
FCC
FCC
FCC
State 15
FCC
FCC
FCC
FCC
State 16
FCC
FCC
FCC
FCC
State 17
FCC
FCC
FCC
FCC
State 18
FCC
FCC

"You are in the
"cabin's kitchen.
" w
c780
"You see a bridge. A"
"asks: What is your "
"troll comes out and "
"favorite col or? "
c7d0
"You find yourself at"”
"moat. The way over "
"the foot of a giant
"is a drawn bridge. N’
€820
"You are confronted
"of a forboding
"by the giant doors
"castl e. EW
c870
"You are in the main
"castle. So now
"hall of an ancient
"what to do? NS"
c8c0
"You find yourself in
"room surrounded by
"a medi eval weapon's
"axes and swords. N’
€910
"You are now in an
"of forgotten things
"old library. Tomnes
"surround you. s
€960
"You find yourself in"
"l aboratory. Bottles"
"a magician's "
"are all about. SE"
c9b0
"You are now in the
"You see many fl owers"
"castle's courtyard. "
"and benches. N’
ca00
"You step into a dark"
"man nmunbl es i nsanel y"
"dungeon. A crazy "
"in the corner. E"
ca50
"You step into a roont
"gears and strange "
"filled with grinding"
"bottles. "
caa0l
"You enter a tower
"magi ci an staring at

Ari Moradi and Ryan Stuck, December 6, 2000

25

FCC "roomand find a
FCC "you angrily.
* State 19 cafO
FCC "Pi eces of the "
FCC "you. You still feel"
FCC "mmgician lie about "
FCC "unconf ort abl e. "
* State 20 cb40

FCC "You see before a "

FCC "who seens to have "

FCC "beautiful princess "

FCC "lost her top. "
* State 21 chb90

FCC "The princess, now "

FCC "at you. What shoul d"
FCC "decent, smles shyly”
FCC "you do now? "

** Search screens
ORG $D200

* Search 0 d200
FCC "You can: "
FCC " ducky "
FCC "1 Pick up a rubber "
FCC "2 Use toilet "

* Search 1 d250
FCC "You can: "
FCC " ducky "
FCC "1 Pick up a rubber "
FCC "2 Use toilet "

* Search 2 d2a0
FCC "You do not find "
FCC " "
FCC "anyt hi ng. "
FCC "

* Search 3 d2f0
FCC "You can: "
FCC "2 Push FIRE button "
FCC "1 Push LAND button "
FCC "3 Get 2kOhm Resi stor”

* Search 4 d340
FCC "You do not find "
FCC " "
FCC "anyt hi ng. "
FCC "

* Search 5 d390
FCC "You do not find "
FCC " "
FCC "anyt hi ng. "
FCC "

* Search 6 d3e0
FCC "You can: "
FCC "2 Pick up a sexy bra"
FCC "1 Pick up a hanster "
FCC " "

Ari Moradi and Ryan Stuck, December 6, 2000

26

Search 7
FCC
FCC
FCC
FCC
Search 8
FCC
FCC
FCC
FCC

d430
"You see a nicrowave."
"tasty, furry thing "
"I'f only you had sone"
"to eat right now. "
d480
"You can answer: "
"2 blue "
"1 yell ow "
"3 fart "

Search 9 d4doO

FCC
FCC
FCC
FCC
Search 10
FCC
FCC
FCC
FCC
Search 11
FCC
FCC
FCC
FCC
Search 12
FCC
FCC
FCC
FCC
Search 13
FCC
FCC
FCC
FCC
Search 14
FCC
FCC
FCC
FCC
Search 15
FCC
FCC
FCC
FCC
Search 16
FCC
FCC
FCC
FCC
Search 17
FCC
FCC
FCC
FCC
Search 18
FCC

"You see that the
"and a hanster whee
"drawbridge is broken
"and plug are nearby.
d520

"You can:

"2 Knock on the door
"1 Pick up the flower

d570

"You can:

"2 Go downstairs
"1 Go upstairs

d5c0

"You can:

"2 Pick up the sword
"1 Pick up the axe

de10

"You can:

" Reference Manual
"1 Pick up HC11 "
"2 Pick up SpaceQuest”
de60
"You can:
" |abeled 'Drink Me""
"1 Drink bottle "
"2 Eat the burrito "
déb0
"You can:
"2 Sit on a bench "
"1 Pick up the torch "

d700

"You can:

"2 Talk to crazy man
"1 Go back upstairs
d750

"You see an HCl11 on
"You can:

"t he geared machi nes.
"1 Press reset button"
d7a0

"You do not find

Ari Moradi and Ryan Stuck, December 6, 2000

27

FCC " "
FCC "anyt hi ng. "

FCC " "
* Search 19 d7f0

FCC "You see the nagician”

FCC "but you feel he is "

FCC "lying before you, "

FCC "not yet dead. "
* Search 20 d840

FCC "The princess seens

FCC "standing there with-"

FCC "very enbarrassed "

FCC "out a shirt. "
* Search 21 d890

FCC "The princess |ooks

FCC "snmile on her gl ow ng"
FCC "at you with a happy "
FCC "face. "

** CGame Endi ng screens
ORG $DBSEOD

* Ending 1 d8e0
FCC "You accidentally
FCC "Oops. GAME OVER! "
FCC "blew up the earth ! "
FCC " "
* Endi ng 2 d930
FCC "You try to run, but "
FCC "pain of a horn "
FCC "you feel the sharp

FCC "inpaling you. "
* Endi ng 3 d980
FCC "You pass over a hill"

FCC "Candyland. You live"

FCC "and find you are in "

FCC "happily ever after
* Endi ng 4 d9d0

FCC "You wander into the "

FCC "recall you are naked"
FCC "frozen nount ai ns, "
FCC "and freeze and die. "

* Endi ng 5 dacO
FCC "As you watch the "
FCC "see it expand and "
FCC "hanster cooking, you"
FCC "explode into bits. "
* Endi ng 5 dacO
FCC "You try to run past"”
FCC "catches, kills, and "
FCC "the troll. He "
FCC "eats you. "
* Endi ng 6 da20
FCC "You answer incorrect”
FCC "to disenbowel you. "
FCC "and the troll starts”

Ari Moradi and Ryan Stuck, December 6, 2000

28

Endi

Endi

Endi

Endi

Endi

Endi

Endi

Endi

Endi

Endi

Endi

Endi

FCC "You die painfully. "
ng 7 da70

FCC "You place the 2 kohnt
FCC "and feel electricity”
FCC "resistor in the plug”
FCC "cook your brain. "
ng 8 dbl0

FCC "You put the hanster "
FCC "runs, the dawbridge "

FCC "in the wheel. As it"
FCC "begins to drop. "
ng 9 db60

FCC "A frenchman | eans '
FCC "taunt you in a very "
FCC "out and proceeds to "
FCC "unki nd fashi on. "
ng 10 dbbO

FCC "You reach for the "
FCC "blade slips through "
FCC "sword and slip. The"
FCC "you like butter. "
ng 11 dc00

FCC "You drink the bottle"
FCC "You are lucky that "
FCC "and feel a bit sick."
FCC "didn't kill you. "
ng 12 dc50

FCC "You scarf down the "
FCC "you need that toilet”
FCC "burrito. Suddenly "
FCC "again and rush back."
ng 13 dca0

FCC "You take a seat on a"
FCC "enjoy the scenery "
FCC "nearby bench and "
FCC "around you. "
ng 14 dcfO

FCC "You try to navigate
FCC "dark but slip and "
FCC "the stairs in the "
FCC "smash your skull. "
ng 15 dd40

FCC "The old man says:
FCC "Halitosis Man? | "
FCC "What is it you want,"
FCC "see, M. Stinknouth."
ng 16 dd9o

FCC "As you press the "
FCC "begin to expl ode. "
FCC "button, the bottles "
FCC "You die in flames. "
ng 17 ddeO

FCC "You reference the
FCC "you think is a bonb "
FCC "manual, defuse what "
FCC "and | eave the room "
ng 18 de30

Ari Moradi and Ryan Stuck, December 6, 2000

29

FCC
FCC
FCC
FCC

* Endi ng 19
FCC
FCC
FCC
FCC

* Endi ng 20
FCC
FCC
FCC
FCC

"You wield the torch "
"manage to catch your"
"bravely, but only "
"self on fire and die"
de80

"As you turn to walk "
"stands up and bl asts”
"away, the magician "
"you to pieces.

dedO

"The princess smles!
"the evil w zard and
"You have def eat ed
"have won the game!

Ari Moradi and Ryan Stuck, December 6, 2000

30

Appendix B: Verilog Code

[l final.v
/1 top level nodule for el55 final project
/1 Ari Moradi and Ryan Stuck

nmodul e final (Ok, Reset, LED, Pollout, Keypadln, ParallelQt) ;

i nput [3:0] Keypadl n;
i nput dk, Reset ;

out put [3:0] Poll out;
out put [15:0] ParallelQut;
out put [7:0] LED;

wi re nycl k; /'l nyclk signal; «clock for all flops
wi re NewDat a; /1 tells if a new button has been pressed
wi re [3:0]data; /1 keypadi n data when newdat a

wire [7:0]Count;
assi gn Count = 8' b10000000; /1 delay for slow ng down cl ock

/1 LED s show the bottom 8 bits of parallel data
assign LED = Parallel Qut[7:0];

/1 creates nyclk signal; sequenti al
assi gnMyC k anc(d k, Count, myclk, Reset);

/1 takes myclk and input to do debouncing and stop/continue
/1 polling; sequential
get I nput gi (nyclk, Reset, Keypadln, Pollout, NewData, data);

/] interprets data for output to HCll;, sequenti al
assi gnQuts ao(nycl k, Reset, NewData, data, Pollout, ParallelQut);

endnodul e

/] assignnycl k. v
/1 slows down clock to hel p debounce keypad si gnal
/1 Ari Moradi and Ryan Stuck

nmodul e assi gnMyd k (d k, Count, nyclk, Reset) ;

i nput Ok, Reset ;
i nput [7:0] Count ;
out put nyclk ;

reg [12: 0] nyCount;
reg nyclk;

/1 counts up until myCount reaches Count, then toggles nyclk to slow
down cl ock
al ways@ posedge O k or posedge Reset)

i f(Reset)

Ari Moradi and Ryan Stuck, December 6, 2000 31

begi n
nmycl k <= 0;
myCount <= 0;
end
else if (nyCount == {Count[7:0], 5" b00000})
begi n
nycl k <= ~nycl k;
myCount <= 0;
end
el se
nyCount <= nyCount + 1;

endnodul e

/1 getinput.v
/1 nodul e that debounces and detects the keypad signal
/1 Ari Moradi and Ryan Stuck

nodul e getlnput (nmyclk, Reset, Keypadln, PollQut, NewData, Data) ;

i nput myclk ;

i nput Reset ;

i nput [3: 0] Keypadl n; /1 row input from keypad
out put [3:0] Pol | Qut; /1 polling output to keypad
out put NewDat a; /1 if a new button has been
pressed

out put [3: 0] Dat a; /1 row input on new keypress

reg Poll Qut;

reg KeepPol | i ng;

reg [3:0]Dat a;

reg NewDat a;

reg sameKey; /1 if the user is holding
down a button

/1 takes pollout and keypadin to determine if a key has been pressed
al ways @ posedge nycl k or posedge Reset)
i f(Reset)
begi n
KeepPol i ng <= 1;
NewDat a <= 0;
Data <= 4'bl1111;
sameKey <= 0;
Pol | Qut <= 4' b1110;
end
/1 continues to poll if keepPolling
el se if (KeepPolling)
/1 checks if a button has been pressed
/1 4'bl1l1l means a button has not been pressed
if (Keypadln !'= 4'b1111)
begi n
KeepPol i ng <= 0;
Dat a <= Keypadl n;
NewDat a <= 0;
end
el se
begi n

Ari Moradi and Ryan Stuck, December 6, 2000 32

KeepPol i ng <= 1;
NewDat a <= 0;
/'l cycles pollout
case(Pol | Qut)

4' p1110: Poll Qut <= 4'bl1101;
4' p1101: Poll Qut <= 4'bl1011;
4' p1011: Poll Qut <= 4'b0111;
4' p0111: Poll Qut <= 4'bl1110;
default: Poll Qut <= 4'bl110;

endcase

end
/1 this is the check for the user hol ding down the key
else if (Keypadln == Data)

i f (~sanmeKey)

begi n

NewDat a <= 1;

sameKey <= 1,

NewDat a <= O;

ling <= 1;

end
el se
el se
begi n
KeepPol
sameKey <= 0;
end
endnodul e

/] assignouts.v

/1 nodul e that takes keypad input, determ nes what key was pressed,

/] then determ nes
// is in this nodul

the next state. all of the state machine info
e.

/1 Ari Moradi and Ryan Stuck

nmodul e assignQuts (myclk, Reset, NewData, Data, Pollout, Parallel Cut);

i nput myclk ;
i nput Reset ;
i nput NewDat a;

i nput [3: 0] Dat a;
i nput [3:0] Pol | out;
out put [15:0] Par al |

wire [7:0]signal;
/1 what button has

/1 tells if a new button has been pressed
/1 data in from keypad

/1 Polling signal for keypad
el Qut; /1 the parallel data that goes to HCl1l

been pressed

reg [15: 0] Roontt at e;
/] stores what roomthe player is in

reg [15: 0] I nventoryState;
/] stores the inventory information

reg lnventory;

/1 tells if the user is looking at inventory

reg [15:0] Error State;

Ari Moradi and Ryan Stuck, December 6, 2000 33

/1 any error message state that needs to be displ ayed

reg ErrorMessage;
/1 tells if an error nessage needs to be displ ayed

/1 signal
/1 pollout signal fromthe FPGA
assign signal = {Data[3:0], Pollout[3:0]};

/1 definintions of the keys

is the conmbination of the rows in fromthe keypad and the

par anet er ONE = 8'b0111 0111; // 1
par anmet er UNUSED1 = 8'b0111 1011; // 2
par anmet er NORTH = 8'b0111 1101; // 3
par anet er UNUSED2 = 8'b0111 _1110; // 12
par aneter TWD = 8'bl1011 0111; // 4
par anet er WEST = 8'bl1011_1011; // 5
par anet er SEARCH = 8'bl1011 _1101; // 6
par anet er EAST = 8'bl1l011_1110; // 13
par anet er THREE = 8'bl101_0111; // 7
par anmet er UNUSED3 = 8'bl101_1011; // 8
par anmet er SOUTH = 8'bl101_1101; // 9
par anet er UNUSED4 = 8'bl101_1110; // 14
par anet er FOUR = 8'bl1110_0111; // 10
paraneter | NVENTORY = 8' b1110 1011; // O
par aneter PREVPAGE = 8'b1110_1101; // 11
par amet er NEXTPAGE = 8'b1110_1110; // 15

// this is the finite state machi ne

al ways@ posedge nycl k or
begi n
/1 on reset,

posedge Reset)

the gane starts at the start screen and the user has

/1 no inventory
i f(Reset)

/1

if there is a new button press then it

begi n

Roonft at e <= 16' h0000;

InventoryState <= 16' h8000;

I nventory <= 0;

ErrorState <= 16' h3FFF;

Error Message <= 0;

end

i nterprets what

/1 shoul d happen
el se if (NewDat a)

begi n
/] if an error nessage is being displayed,
/1 to the gane
if (ErrorMessage)
begi n
Error Message <= 0;
end
/] if the user is |ooking at
else if (lnventory)
/1 switches for which page the user is |ooking at
case (lnventoryState[14:12])
/1l switches for keypresses
3' b000: case (signal)
I NVENTORY

then it

returns

i nventory

I nventory <= 0,

Ari Moradi and Ryan Stuck, December 6, 2000

NEXTPAGE: | nventoryState[14:12]
<= 001;
ONE: if (lnventoryState[O0])
if (Roonfttate ==
16' h0004)
begi n
I nventory <= 0;
Roontt at e
<= 16' h0005;
end
el se
begi n
I nventory <= 0;
Error Message
<= 1;
ErrorState
<= 16' h3ffe;
end
el se
begi n
I nventory <= 0;
Error Message <= 1,
ErrorState <= 16' h3ffd;
end
TWO if (InventoryState[1])
if (Roonfttate ==
16' h0009)
begi n
I nventory <= 0;
Roontst at e
<= 16' h2007,
end
el se
begi n
I nventory <= 0;
Error Message
<= 1;
ErrorState
<= 16' h3ffe;
end
el se
begi n
I nventory <= 0;
Error Message <= 1,
ErrorState <= 16' h3ffd;
end
THREE: if (InventoryState[2])
if (Roonfttate ==
16' h0007)
begi n
I nventory <= 0;
Roontt at e
<= 16' h2004,
end
else if (Roonftate ==
16' h0009)
begi n

Ari Moradi and Ryan Stuck, December 6, 2000

I nventory <= 0;

Roontt at e
<= 16' h2008;
end

el se
begi n
I nventory <= 0;
Error Message
<= 1;
ErrorState
<= 16' h3ffe;
end

el se

begi n

I nventory <= 0;

Error Message <= 1,

ErrorState <= 16' h3ffd;

end

/1 default is for bad key press
def aul t:
begi n

Error Message <= 1,
ErrorState <= 16' h3fff;
end
endcase
3' b001: case (signal)
I NVENTORY: | nventory <= 0;
PREVPAGE: I nventoryState[14:12]

<= 000;
NEXTPAGE: | nventoryState[14:12]
<= 010;
ONE: if (lnventoryState[3])
if (Roonfttate ==
16' h0014)
begi n
I nventory <= 0;
Roontt at e
<= 16' h0015;
end
el se
begi n

I nventory <= 0;
Error Message
<= 1;
ErrorState
<= 16' h3ffe;
end
el se

begi n

I nventory <= 0;

Error Message <= 1,

ErrorState <= 16' h3ffd;

end

TWO if (lnventoryState[4])

if (Roonfttate ==
16' h0015)
begi n

Ari Moradi and Ryan Stuck, December 6, 2000

36

I nventory <= 0;
Roontst at e
<= 16' h2014,
end
el se
begi n
I nventory <= 0;
Error Message
<= 1;
ErrorState
<= 16' h3ffe;
end
el se
begi n
I nventory <= 0;
Error Message <= 1,
ErrorState <= 16' h3ffd;
end
THREE: if (InventoryState[5])
if (Roonfttate ==
16' h0012)
begi n
I nventory <= 0;
Roontst at e
<= 16' h0013;
end
el se
begi n
I nventory <= 0;
Error Message
<= 1;
ErrorState
<= 16' h3ffe;
end
el se
begi n
I nventory <= 0;
Error Message <= 1,
ErrorState <= 16' h3ffd;
end
defaul t:
begi n
Error Message <= 1,
ErrorState <= 16' h3fff;
end
endcase
3' b010: case (signal)
I NVENTORY: | nventory <= 0;
PREVPAGE: | nventoryState[14:12]
<= 001;
NEXTPAGE: I nventoryState[14:12]
<= 011;
ONE: if (lnventoryState[6])
if (Roonfttate ==
16' h0011)
begi n
I nventory <= 0;

Ari Moradi and Ryan Stuck, December 6, 2000 37

el se

el se

begi n

Roontt at e
<= 16' h2011;
end

begi n

I nventory <= 0;
Error Message
<= 1;
ErrorState

<= 16' h3ffe;
end

I nventory <= 0;
Error Message <= 1,
ErrorState <= 16' h3ffd;

end

TWO if (lnventoryState[7])
if (Roonfttate ==

16' h0013)
begi n
I nventory <= 0;
Roontt at e
<= 16' h0014,
end

begi n

I nventory <= 0;
Error Message
<= 1;
ErrorState

<= 16' h3ffe;
end

I nventory <= 0;
Error Message <= 1,
ErrorState <= 16' h3ffd;

el se
el se
begi n
end
defaul t:
begi n

Error Message <= 1,
ErrorState <= 16' h3fff;

end
endcase
3' b011: case (signal)

I NVENTORY: | nventory <= 0;
PREVPAGE: | nventoryState[14:12]
<= 010;

def aul t:
begi n

Error Message <= 1,
ErrorState <= 16' h3fff;

end
endcase

/1 this error is for a bad inventory state, and shoul d never happen

defaul t:

Ari Moradi and Ryan Stuck, December 6, 2000

38

begi n
ErrorState <= 16' h3fff;
Error Message <= 1,
I nventory <= 0;
end
endcase

el se case (Roonttate)
/1l switches on roomstate if linventory and ! errorMessage
/1 some roons are just display nmessages and autonmatically go to the
/1 next state, while others check what key is pressed. Al defaults
/1 are for bad key presses
16' h0000: begin
Roontt ate <= 16' h0001;
InventoryState <= 16' h8000;

end
16' h0001: case (signal)
SEARCH: Roontt at e <= 16' h4001;
EAST: Roontt ate <= 16' h0003;
I NVENTORY: | nventory <= 1;
def aul t:
begi n
ErrorState <= 16' h3FFF;
Error Message <= 1,
end
endcase

16' h0002: Roonttate <= 16' h0001;
16' h0003: case (signal)
SEARCH: Roontt ate <= 16' h4003;
I NVENTORY: I nventory <= 1;
VAEST: Roontt ate <= 16' h0001;
defaul t:
begi n
ErrorState <= 16' h3FFF;
Error Message <=1;
end
endcase
16' h0004: case (signal)
SEARCH Roonftate <= 16' h4004;
I NVENTORY: | nventory <= 1;
NORTH: Roontt ate <= 16' h2001;

EAST: RoonfSt ate <= 16' h2001;
WEST: RoonfSt ate <= 16' h2001;
SOUTH: RoonfSt ate <= 16' h2001;
defaul t:

begi n

ErrorState <= 16' h3FFF;
Error Message <=1;
end
endcase
16' h0005: case (signal)
SEARCH: Roonfttate <= 16' h4005;
I NVENTORY: | nventory <= 1;
NORTH: RoonfSt ate <= 16' h2002;
WEST: RoonfSt ate <= 16' h2003;
EAST: RoontSt ate <= 16' h0006;
SOUTH: RoonfSt ate <= 16' h0008;

Ari Moradi and Ryan Stuck, December 6, 2000

39

defaul t:

endcase

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,

end

16' h0006: case (signal)
SEARCH Roonftate <= 16' h4006;
I NVENTORY: I nventory <= 1;

VEST:
EAST:

RoontSt ate <= 16' h0005;
RoonfSt ate <= 16' h0007;

defaul t:

endcase

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,

end

16' h0007: case (signal)
SEARCH Roonftate <= 16' h4007;
I NVENTORY: Inventory <= 1;

VEST:

RoontSt ate <= 16' h0006;

defaul t:

endcase

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,

end

16' h0008: case (signal)
SEARCH Roonftate <= 16' h4008;
I NVENTORY: I nventory <= 1;

SOUTH: RoonfSt ate <= 16' h2005;
NORTH: RoontSt at e <= 16' h0005;
defaul t:

begi n

endcase

ErrorState <= 16' h3fff;
Error Message <= 1,
end

16' h0009: case (signal)
SEARCH Roonftate <= 16' h4009;
I NVENTORY: I nventory <= 1;

NCRTH:

RoonfSt ate <= 16' h0005;

defaul t:

endcase

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,

end

16' hOOOA: case (signal)
SEARCH Roonftate <= 16" h400A;
I NVENTORY: I nventory <= 1;

EAST: RoonfSt ate <= 16' h0009;
WEST: RoontSt ate <= 16' hO0O0B;
defaul t:

begi n
ErrorState <= 16' h3fff;

Ari Moradi and Ryan Stuck, December 6, 2000

40

Error Message <= 1,
end

endcase

16' hOOOB:

case (signal)

SEARCH Roonftate <= 16' h400B;
I NVENTORY: | nventory <= 1;
EAST: RoonState <= 16' hOOO0A;
SQUTH: Roonfttate <= 16' h000C,
NORTH: RoonState <= 16' hO0OO0D;
defaul t:

begi n

ErrorState <= 16' h3fff;

Error Message <= 1,

end

endcase
16' hOOOC:. case (signal)

SEARCH: Roonft ate <= 16' h400C;
I NVENTORY: | nventory <= 1;
NORTH: Roonft ate <= 16' hO0OO0B;
def aul t:

begi n

ErrorState <= 16' h3fff;

Error Message <= 1,

end

endcase
16' hOOOD: case (signal)

SEARCH: Roonttate <= 16' h400D,
I NVENTORY: I nventory <= 1;
SQUTH: Roonfttate <= 16' hOOOB;
defaul t:

begi n

ErrorState <= 16' h3fff;

Error Message <= 1,

end

endcase
16' hOOOE: case (signal)

SEARCH: Roonttate <= 16' h400E;
I NVENTORY: | nventory <= 1;
EAST: Roonftate <= 16' h000D;
SQUTH: Roonfttate <= 16' hOOOF;
defaul t:

begi n

ErrorState <= 16' h3fff;

Error Message <= 1,

end

endcase

16' hOOOF:

case (signal)

SEARCH: Roonttate <= 16' h400F;
I NVENTORY: I nventory <= 1;
NORTH: Roonft ate <= 16' hOOOE;
defaul t:

begi n

ErrorState <= 16' h3fff;

Error Message <= 1,

end

endcase

16' h0010:

case (signal)

Ari Moradi and Ryan Stuck, December 6, 2000

41

SEARCH Roonftate <= 16' h4010;
I NVENTORY: I nventory <= 1;

EAST:

RoontSt ate <= 16' h0011;

defaul t:

endcase

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,

end

16' h0011: case (signal)
SEARCH Roonftate <= 16' h4011,
I NVENTORY: I nventory <= 1;
defaul t:

endcase

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,

end

16' h0012: case (signal)
SEARCH Roonftate <= 16' h4012;
I NVENTORY: I nventory <= 1;
defaul t:

endcase

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,

end

16' h0013: case (signal)
SEARCH Roonftate <= 16' h4013;
I NVENTORY: I nventory <= 1;
NORTH: Roonftate <= 16' h2013;
SQUTH: Roonfttate <= 16' h2013;

EAST:
VEST:

RoonfSt ate <= 16' h2013;
RoonfSt ate <= 16' h2013;

defaul t:

endcase

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,

end

16' h0014: case (signal)
SEARCH Roonftate <= 16' h4014;
I NVENTORY: | nventory <= 1;
defaul t:

endcase

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,

end

16' h0015: case (signal)
SEARCH Roonftate <= 16' h4015;
I NVENTORY: I nventory <= 1;
defaul t:

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,

end

Ari Moradi and Ryan Stuck, December 6, 2000

42

endcase

16' h1001:
16' h1002:
16' h1004:
16' h1008:
16' h1010:
16' h1020:
16' h1040:
16' h1080:
16' h2004:
16' h2008:
16' h20009:
16' h200B:
16' h200C:
16' h200D:
16' h200F:
16' h2011:
16' h4001:

Roontt at e
Roontt at e
Roontt at e
Roontt at e
Roontt at e
Roontt at e
Roontt at e
Roontt at e
Roontt at e
Roontt at e
Roontt at e
Roontt at e
Roontt at e
Roontt at e

16' h0001;
16' h0003;
16' h0006;
16' h0006;
16' hOOOA;
16' h000C;
16' h00OD;
16' hOOOF;
16' h0007;
16' hOOOA;
16' hOOOA;
16' hOOOE;
16' h0002;
16' hOOOF;

Roontt ate <= 16' h0010;
Roontt ate <= 16' h0010;
case (signal)
SEARCH. Roonttate <= 16' h0001;
ONE:
begi n
Roontt ate <= 16' h1001;
InventoryState[0] <= 1;
end
TWO. RoonfBtate <= 16' h0002;
def aul t:
begi n
ErrorState <= 16' h3FFF;
Error Message <= 1,
end

endcase

16' h4003:

case (signal)

SEARCH Roonftate <= 16' h0003;

ONE: begin
Roontt ate <= 16' h0004;
end

TWD begin
Roontt ate <= 16' h2000;
end

THREE: begi n
Roontt ate <= 16' h1002;
InventoryState[1l] <= 1;
end

def aul t:
begi n
ErrorState <= 16' h3FFF;
Error Message <= 1,
end

endcase

16' h4004:

case (signal)
SEARCH Roonftate <= 16' h0004;
defaul t:
begi n
ErrorState <= 16' h3FFF;
Error Message <= 1,
end

endcase

Ari Moradi and Ryan Stuck, December 6, 2000

43

16' h4005: case (signal)

SEARCH Roonftate <= 16' h0005;

def aul t:
begi n
ErrorState <= 16' h3FFF;
Error Message <= 1,
end

endcase
16' h4006: case (signal)

SEARCH Roonftate <= 16' h0006;

ONE: begin
Roontt ate <= 16' h1004;
InventoryState[2] <= 1;
end

TWD begin
Roontt ate <= 16' h1008;
InventoryState[3] <= 1;
end

def aul t:
begi n
ErrorState <= 16' h3fff;
Error Message <= 1,
end

endcase

16' h4007: case (signal)
SEARCH Roonftate <= 16' h0007;
defaul t:
begi n
ErrorState <= 16' h3FFF;
Error Message <= 1,
end
endcase
16' h4008: case (signal)
SEARCH Roonftate <= 16' h0008;

ONE: RoontSt ate <= 16' h2006;
VWO RoonfSt ate <= 16' h0009;
defaul t:

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,
end
endcase
16' h4009: case (signal)
SEARCH Roonftate <= 16' h0009;
def aul t:
begi n
ErrorState <= 16' h3fff;
Error Message <=1;
end
endcase
16' h400A: case (signal)
SEARCH Roonftate <= 16' hOOO0A;
ONE: begi n
Roontt ate <= 16' h1010;
InventoryState[4] <= 1;
end

Ari Moradi and Ryan Stuck, December 6, 2000

TWO RoonfBtate <= 16' h2009;
def aul t:
begi n
ErrorState <= 16' h3fff;
Error Message <= 1,
end
endcase
16' h400B: case (signal)
SEARCH Roonftate <= 16' hOOO0B;
ONE: Roonftate <= 16' h0012;
TWD if (InventoryState[7])
Roontt ate <= 16' h0010;
el se
Roontt ate <= 16' h200E;
def aul t:
begi n
ErrorState <= 16' h3fff;
Error Message <= 1,
end
endcase
16' h400C. case (signal)
SEARCH Roonftate <= 16' h000C,
ONE: begin
Roontt ate <= 16' h1020;
InventoryState[5] <= 1;

end
TWDO RoonfState <= 16' h200A;
defaul t:

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,
end
endcase
16' h400D: case (signal)

SEARCH Roonftate <= 16' h0O00D;

ONE: begin
Roontt ate <= 16' h1040;
InventoryState[6] <= 1;

end
TWDO Roonftate <= 16' hOOOE;
defaul t:

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,
end
endcase
16' h400E: case (signal)
SEARCH Roonftate <= 16' hOOOE;
ONE: Roonftate <= 16' h200B;
TWO. RoonfBtate <= 16' h200C,
def aul t:
begi n
ErrorState <= 16' h3fff;
Error Message <= 1,
end
endcase
16' h400F: case (signal)

Ari Moradi and Ryan Stuck, December 6, 2000

SEARCH Roonftate <= 16' hOOOF;

ONE:

begi n

Roontt ate <= 16' h1080;
InventoryState[7] <= 1;
end

TWO. Roonftate <= 16' h200D;
defaul t:

endcase

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,

end

16' h4010: case (signal)
SEARCH: Roonttate <= 16' h0010;

ONE: RoontSt ate <= 16' hO0O0B;
TWO RoonfState <= 16' h200F;
defaul t:

begi n

endcase

ErrorState <= 16' h3fff;
Error Message <= 1,
end

16' h4011: case (signal)
SEARCH: Roonttate <= 16' h0011;

ONE: RoonfSt ate <= 16' h2010;
defaul t:
begi n
ErrorState <= 16' h3fff;
Error Message <= 1,
end
endcase

16' h4012: case (signal)
SEARCH: Roonttate <= 16' h0012;
defaul t:

endcase

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,

end

16' h4013: case (signal)
SEARCH: Roonttate <= 16' h0013;
defaul t:

endcase

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,

end

16' h4014: case (signal)
SEARCH: Roonttate <= 16' h0014;
defaul t:

endcase

begi n

ErrorState <= 16' h3fff;
Error Message <= 1,

end

16' h4015: case (signal)
SEARCH: Roonttate <= 16' h0015;

Ari Moradi and Ryan Stuck, December 6, 2000

46

def aul t:
begi n
ErrorState <= 16' h3fff;
Error Message <= 1,

end
endcase
default: RoontBtate <= 16' h000O;

endcase

end
el se

begi n

Roonftt at e <= Roonft at e;

end
end

/1 if (ErrorMessage) ParallelQut = ErrorState;

/1 else if (Inventory) ParallelQut = InventoryState;

/1 else Parallel Qut = Roonft at e;

assign Parallel Qut = {32{ Error Message}}&ErrorState | {32{~ErrorMessage
& Inventory}} & nventoryState | {32{~ErrorMessage&

~I nvent ory}} &Roontt ate ;

endnodul e

Ari Moradi and Ryan Stuck, December 6, 2000

47

Appendix C: Pin Outs

HC11 FPGA

Pin# Function Pin# Function

9-16 Port C (input) 7 Column 1 (KP)
9=low bit through
16=high bit

29 Register Select 8 Column 3 (KP)
1=instruction
O=data

30 Read/nWrite 9 Column 2 (KP)

31 Enable (high) 10 Column 4 (KP)

35-42 Port B (output) 18 State b15
35=high bit through
42=|ow bit

43 Port E b0 19 State b14

44 Port E b4 20 State b13

45 Port E bl 23 State b12

46 Port E b5 24 State b1l

47 Port E b2 25 State b10

48 Port E b6 26 State b9

49 Port E b3 27 State b8

50 Port E b7 28 State b0

LCD 29 State b2

1 Vss (ground) 37 Row 4 (KP)

2 Vee (0-5V) 38 Row 3 (KP)
Contrast adjust

3 Vdd (+5V) 39 Row 2 (KP)

4 Register Select 40 Row 1 (KP)

5 Read/nWrite 46 State b7

6 Enable (high) 47 State b5

7-14 Data(1/0) 48 State b3

KeyPad 49 State bl

1 Row 4 50 State b4

2 Column 1 51 State b6

3 Row 1

4 Row 3

5 Row 2

6 Column 2

7 Column 3

8 Column 4

Ari Moradi and Ryan Stuck, December 6, 2000

Appendix D: Game Map

49

Ari Moradi and Ryan Stuck, December 6, 2000

