
Controlling an HC11-based Robot

Final Project Report
December 8, 2000

E155

Roy Pollock and Greg Matthews

Abstract:

Motorized robot kits for hobbyists with some engineering background can
be purchased to investigate the use of motors and sensors. The Rug Warrior
Pro is one such robot that uses the HC11 as a microprocessor for motor and
sensor control. This project facilitates control of the robot while it is detached
from a host computer. A Spartan FPGA supplies glue logic for communicating
button presses to the robot's HC11, allowing navigation of a menu displayed on
the robot's LCD screen. The FPGA, buttons, and LCD display are mounted
on a small breadboard that is attached to the robot, and this extra hardware
successfully controls the tasks running on the robot's HC11.

1

Introduction

The Rug Warrior Pro robot can be programmed to operate its motors and
sensors to perform a variety of actions. The user downloads tasks to the robot
using a host computer, but once disconnected from the host the set of tasks
being run cannot be changed. It is desirable to be able to control the robot
both when attached and detached from the host computer. The user should be
able to load many di�erent tasks onto the robot, and while in operation choose
from among those tasks using additional hardware.

We decided to make use of an LCD display that the robot already knows
how to control. On this display we present the user with a menu consisting of
a list of the task groups currently loaded on the robot. Each task group will
typically represent a program that uses motors and sensors to perform some
action, such as seeking light. The user is allowed to scroll through this list and
select which task group is running, and then stop those tasks and return to the
menu with another button press (which may of course require chasing after the
robot).

Figure 1. Block Diagram of Overall Hardware

Screen
LCD Spartan

FPGA

Buttons

Display
LED

Robot/
HC11

The breakup and interaction of the hardware components is shown in
Figure 1. The FPGA handles the user input portion of the user interface,
detecting button presses and communicating these to the robot. LED's that are
on the same board as the FPGA are controlled by the FPGA and used to signal
when a button press has been detected. The robot's HC11 responds to these
button presses by starting and stopping the appropriate tasks and updating the
LCD screen.

2

New Hardware

The Rug Warrior Pro is the only substantial piece of new hardware used
in our design. It o�ers many advantages, including a two-line, �fteen character
per line LCD display that is accessible through a printf formating routine and
automatic A/D conversion routines on two externally accessible lines. It also
comes with a fairly comprehensive library of motor control routines including
velocity and tracking management.

The Rug Warrior can be programmed in two ways. The �rst is to use the
Interactive C language. This was developed by Newton Labs, Inc. and comes
with the Rug Warrior Pro kit. Alternatively, a freeware version is available
although it is slightly out of date. However the freeware version does have the
advantage of being open source. Interactive C has many of the same basic fea-
tures as C, though a few important features are missing. Pointers are severely
limited{they can not be used to arbitrarily access memory. Also, function point-
ers are completely non-existent. On an annoying if minor note, the switch/case
statement is also not implemented.

The second method is to write assembly language routines. These are
written in HC11 assembly for a processor in Special Test Mode. They can be
integrated into the Interactive C code that serves as the \operating system" for
the robot by using a modi�ed assembler called as11 icb which produces relocat-
able object code which can then be loaded into the robot. Various mechanisms
can be used to declare global variables, make subroutines, and specify code to
be executed during the boot sequence of the Rug Warrior. This last is the most
important feature, as it can be used to install custom interrupt handlers. These
features are fully documented in the Interactive C User's Guide [3].

Most importantly, the Rug Warrior can communicate with peripheral de-
vices through an 8-bit multiplexed memory bus connected to Port C on the
HC11 that controls the Rug Warrior. To avoid contention, the connections to
this bus must be in a high impedance state when the peripheral does not have
control of the bus. Bus signaling for write is accomplished by means of four
input select lines. When a device is permitted to assert data to the bus, the
corresponding line goes low for 250 ns, during which time the peripheral has
control. To meet these constraints, we used a 74HC244 octal bu�er chip. On
the software side, reading from the bus is accomplished by performing a mem-
ory access to $4xxx,$5xxx,$6xxx, and $7xxx for the four lines (the x's represent
don't cares).

To avoid the overhead associated with polling, we used an interrupt based
method. The IRQ* signal is also externally accessible. It generates an interrupt
vector that is not used by anything on the main Rug Warrior board, and so is
well suited for use as a peripheral interrupt mechanism. Furthermore, the input

3

select signal provides a convenient acknowledgment mechanism. The Rug War-
rior services the interrupt by reading from the peripheral bus. The peripheral
detects this signal edge and uses it as a reset to the op which asserts IRQ*,
thus clearing the interrupt.

4

FPGA Design

The FPGA is responsible for accepting user input through button-switch
presses. This has been implemented with three push-button switches that close
an open circuit when pressed. The FPGA detects when a button is pressed,
and debounces this signal to avoid multiple detections of the same button press
event. The multiple button press events resulting from a non-debounced signal
are undesirable because each button press event must result in one input to the
menuing system on the robot. Our debouncing logic is based heavily on the lab
4 solution Verilog code, and experimentation revealed that a period of about 2
milliseconds for the debounce sampling was e�ective. See Figure 2 for Verilog
pseudo-code of the debouncing logic.

Figure 2. Debouncing Verilog Pseudo-Code

always @ (2 millisecond clock tick) {

}

 if (no button pressed) {
 continue polling;
 }

 set IRQ;
 set button press;
 }

 //valid button press;
 else if (button pressed && no button pressed at last check) {

The FPGA must also speak the robot's bus protocol in order to transfer
information about the button presses. This involves an active-low IRQ signal,
as well as an encoding of which button has been pressed. The IRQ signal from
the FPGA must only stay low until the interrupt has been serviced, otherwise
the same button press will be acted upon twice by the HC11. To achieve this
we wire into the FPGA a signal used by the HC11 to enable input on its port C.
This signal, called ISEL0, goes low for one clock tick on the HC11, and is picked
up by the FPGA as an indication that the current IRQ has been serviced.

5

Figure 3. FPGA Block Diagram

Robot

signal
determine

button press

debounce button
 press

display button
press for 1 second

 choose IRQ and
 output valuesIRQ and

button−switch

button
press

ISEL0

LEDs on the FPGA board are utilized to inform the user that a button
has been pressed. Each button press is displayed for 1 second, and then the
display goes blank. This is useful because insuÆcient pressure on the buttons
may result in a clicking sound but will occasionally not actually close the circuit.
In addition the manner in which our hardware is aÆxed to the robot leaves it
vulnerable to damage as the robot moves around, and the LEDs will allow a
quick check that no damage was done to the switches or their connections if a
collision or other such accident occurs.

6

Microcontroller Design

The code on the RugWarrior is conceptually simple. The assembly routine
has several functions. The �rst runs as the robot boots and copies the address
of the interrupt handler into the appropriate vector. The interrupt handler
itself reads the keypress data from the bus, stores it in a global variable, and
increments an interrupt count.

The Interactive C routine causes a function do menu() to start when the
robot is turned on. This function polls the global variable set by the assembly
routine, waiting for it to change to a non-zero value, indicating a keypress.

When this happens, the robot enters a mode where it kills any running
processes and stops the motors. It then displays an entry in its task menu. It
also resets the keypress variable and waits for it to change again. On seeing an
up keypress it clears the variable and scrolls the menu display up, and does the
corresponding scroll if down is pressed. If select is pressed, the toggle x() task
for menu choice x is run. This starts all the appropriate subtasks needed to
execute the behavior. It also stores their Process ID numbers in a table so that
they can be killed later.

After the tasks have been started, the do menu() task exists the display
loop and begins polling for another keypress. While doing this, it uses the
minimum possible timeslice by calling the defer() builtin. This reduces its
impact on the CPU time available to other tasks to an insigni�cant amount.

7

Schematics

Our breadboard layout di�ers from previous labs in that our space con-
straints have been tightened to avoid having to attach the typical large bread-
board to the robot. Power and ground are now supplied by the robot through
convenient pinouts on the robot's board, and the robot's batteries provide power
for the entire system for many hours.

The button switches supply an active-high signal to the FPGA, and the
corresponding pins on the FPGA are tied low to avoid oating inputs. An 8
bit latch acts as a bu�er for sending of keypress data to the robot's HC11. The
HC11's ISEL0 signal described in FPGA Design controls the output enable of
the bu�er, placing the signals held by the bu�er onto the HC11's port C.

Figure 4. Breadboard Schematic

switch

switch

switch

+5 V

display

IN

OUT

P79

P78
P77

Robot

FPGA
P56

IRQ

330 ohm

1K ohm
Key Data

LED

Data
Key

ISEL0

P58

Buffer
(output enable)

+0 V

8

Results

Our project accomplished its goals. There were no signi�cant discrepancies
between the proposal and the �nished project. The automatic generator for the
menuing system has not yet been generated, but it is extremely easy to make
the modi�cations by hand.

The most diÆcult part of the design was the interrupt handling. First, we
had diÆculty getting the assembly code to interact with the Interactive C code
correctly. This turned out to be due to a limitation in the as11 icb program
which only allows 16-bit integer values to be declared in assembly �les. Second,
we had to �gure out how to get the FPGA to acknowledge that the interrupt had
been cleared without using a lot of extra lines. The breakthrough came when
we found that the CLB's had set/reset lines for their ops that are independent
of the GSR signal.

9

References

The success of this project is due in large part to the excellent documen-
tation available for the Rug Warrior Pro robot system. Here are the citations.

[1] Jones, Seiger, Flynn, Mobile Robots, 2ncd ed., A K Peters, Natick, Mass.,
1999.

[2] Jones, Rug Warrior Pro Assembly Guide, A K Peters, Natick, Mass., 1999.

[3] Newton Research Labs, Interactive C User's Guide, http://www.newtonlabs.com/ic/manual.html

Parts List

Part Source Vendor Part # Price

8-bit latch Radio Shack 74HC244 $.75
Rug Warrior Pro Kit Acroname R34-RWPRO $580

10

Appendix A

Verilog code for accepting and debouncing button presses. Multiple coun-
ters are used to control various ops with di�erent periods and maintain syn-
chronous design.

/* Greg Matthews

Verilog to debounce button presses, display which button is pressed for

one second, and control an IRQ to an HC11

*/

module overall(clk, reset, switches, resetIRQ,

LEDs, IRQ, swPress);

input clk, reset, resetIRQ;

input [2:0] switches;

output [7:0] LEDs;

output [7:0] swPress;

output IRQ;

reg state;

reg IRQ;

reg [7:0] swPress, displayPress;

reg [20:0] dispCount;

reg [14:0] dbCount;

// determine which switch is pressed

parsesw parse(reset, switches, swPress);

always @(posedge clk or posedge reset or negedge resetIRQ)

// asynchronous reset for all registers

if (reset)

begin

dispCount <= 21'b0_00000_00000_00000_00000;

dbCount <= 15'b00000_00000_00000;

displayPress <= 8'b000_00000;

state <= 1'b0;

IRQ <= 1'b1;

end

// asynchronous reset for IRQ, this is run every time ISEL0 off the robot

// goes low

else if (~resetIRQ) IRQ <= 1'b1;

11

// debouncing and displaying of button press

else

begin

// button press is checked every 2 ms (assuming a 2 MHz clock)

if (dbCount == 15'b00100_00000_00000)

begin

// if no button is pressed -> state goes low

if (~(|swPress))

begin

state <= 1'b0;

end

// if a button is pressed and state is low then we have a valid

// button press

else if (~state)

begin

state <= 1'b1;

displayPress <= swPress;

IRQ <= 1'b0;

dispCount <= 21'b0_00000_00000_00000_00000;

end

dbCount <= 15'b00000_00000_00000;

end

else dbCount <= dbCount + 1;

// display button press for approximately 1 second

if (dispCount == 21'b1_11111_11111_11111_11111)

begin

displayPress <= 8'b000_00000;

dispCount <= 21'b0_00000_00000_00000_00000;

end

// only adjust timer if we're actually displaying a button press

else if (|displayPress) dispCount <= dispCount + 1;

end

// determine which LEDs should be lit

decoder decode(reset, displayPress, LEDs);

endmodule

12

/* Greg Matthews

Determine which switch is pressed

*/

module parsesw(reset, switches, pressed);

input reset;

input [2:0] switches;

output [7:0] pressed;

reg [7:0] pressed;

parameter UP = 3'b100;

parameter DOWN = 3'b010;

parameter SELECT = 3'b001;

parameter BLANK = 3'b000;

// determine which key is pressed

always @(switches or reset)

if (reset) pressed <= 8'b000_00000;

else

case (switches)

UP: pressed <= 8'b000_00010;

DOWN: pressed <= 8'b000_00100;

SELECT: pressed <= 8'b000_01000;

default: pressed <= 8'b000_00000;

endcase

endmodule

/* Greg Matthews

LED display decoder for display of switch press, w/ async

reset to blank out the display

*/

module decoder(reset, switch, leds);

input reset;

input [7:0] switch;

output [7:0] leds;

reg [7:0] leds;

parameter BLANK = 8'b0000_0000;

parameter UP = 8'b0000_1100;

parameter DOWN = 8'b0000_0011;

parameter SELECT = 8'b1100_0000;

13

always @(switch or reset)

if (reset) leds <= BLANK;

else

case (switch)

8'b000_00000: leds <= BLANK;

8'b000_00010: leds <= UP;

8'b000_00100: leds <= DOWN;

8'b000_01000: leds <= SELECT;

default: leds <= BLANK;

endcase

endmodule

14

Appendix B

Here is the Interactive C code for the menuing system

/* Menu sample code */

/* Roy Pollock */

/* This code is intended to serve as a basis for what will

eventually be generated code */

#define UP 2

#define DOWN 4

#define SELECT 8

#define num_items 4 /* constant after link time */

struct menu_entry {

char message[31]; /* 30 char description of function (looks like

two 15 char lines */

int started;

};

struct menu_entry menu[num_items] =

{{"Seek Light",0},

{"Seek Dark",0},

{"Sonic Commander",0},

{"Echo",0}};

/*

struct menu_entry menu[num_items] =

{{"Seek Light",0},

{"Seek Dark",0},

{"Follow wall",0},

{"Wimp",0},

{"Follow",0},

{"Sonic Commander",0},

{"Echo",0},

{"Bugle",0},

{"YoYo",0},

{"Theremin",0}};

*/

int pids[10] = {0,0,0,0,0,0,0,0,0,0}; /* each task can have up to

10 sub-tasks */

15

void toggle_0() {

printf("Toggling 0\n");

if(pids[1]) {

kill_process(pids[1]);

kill_process(pids[2]);

kill_process(pids[3]);

pids[1] = 0;

}

else {

pids[1] = start_process(moth_point(1));

pids[2] = start_process(moth_bump()); /* Stop on collision */

pids[3] = start_process(moth_drive());

}

}

void toggle_1() {

printf("Toggling 1\n");

if(pids[1]) {

kill_process(pids[1]);

kill_process(pids[2]);

kill_process(pids[3]);

pids[1] = 0;

}

else {

pids[1] = start_process(moth_point(-1));

pids[2] = start_process(moth_bump()); /* Stop on collision */

pids[3] = start_process(moth_drive());

}

}

void toggle_2() {

printf("Toggling 2\n");

if(pids[1]) {

kill_process(pids[1]);

kill_process(pids[2]);

kill_process(pids[3]);

kill_process(pids[4]);

pids[1] = 0;

}

else {

pids[1] = start_process(snc_sample_sound());

pids[2] = start_process(snc_capture_command(),1);

pids[3] = start_process(sonic_control(),1);

pids[4] = start_process(snc_rpt(),1);

}

16

}

void toggle_3() {

printf("Toggling 3\n");

if(pids[1]) {

kill_process(pids[1]);

kill_process(pids[2]);

kill_process(pids[3]);

kill_process(pids[4]);

pids[1] = 0;

}

else {

pids[1] = start_process(sample_sound());

pids[2] = start_process(capture_command(),1);

pids[3] = start_process(echo_control(),1);

pids[4] = start_process(rpt(),1);

}

}

void do_toggle(int i) {

if(i == 0) toggle_0();

else if(i == 1) toggle_1();

else if(i == 2) toggle_2();

else toggle_3();

}

void do_menu() {

int selection_num = 0;

int i, stay_in_menu;

int egg = 0;

int eggpid = 0;

while(1) {

if(!keypress) {

defer();

}

else {

keypress = 0; /* so select doesn't "select" the first time */

/* kill any running process. Boy I wish I had function pointers*/

for(i = 0; i < num_items; ++i) {

if(menu[i].started) {

do_toggle(i);

menu[i].started = 0;

}

}

stop(); /* stop the motors */

stay_in_menu = 1;

17

printf("%s\n",menu[selection_num].message);

while(stay_in_menu) {

if(keypress == UP) {

keypress = 0;

egg = egg+2;

selection_num = (selection_num+1)%num_items;

stay_in_menu = 1;

printf("%s\n",menu[selection_num].message);

}

else if(keypress == DOWN) {

keypress = 0;

egg = egg - 1;

selection_num = (selection_num-1+num_items)%num_items;

stay_in_menu = 1;

printf("%s\n",menu[selection_num].message);

}

else if(keypress == SELECT) {

keypress = 0;

stay_in_menu = 0;

if (egg == 11) {

if(eggpid) {

kill_process(eggpid);

eggpid = 0;

}

else { /* cof() plays the theme from Chariots of Fire */

eggpid = start_process(cof(),1);

}

}

menu[selection_num].started = 1;

do_toggle(selection_num);

}

}

}

}

}

void main() {

start_process(do_menu(),1);

}

18

Appendix C

Here is the assembly interrupt handling code. The variable xxx labels
make a global variable visible to the C programs. The subroutine initialize module
function is called as part of the Interactive C initialization sequence.

* Roy Pollock

* Interrupt code to poll port C for the keypress data

#define IRQV #$BFF2

ORG MAIN_START

* keypress is the global used to store the data

variable_keypress:

FDB 0

* irqcount stores a count of the interrupts

* (in its MSB, so looks like 256*no. interrupts)

variable_irqcount:

FDB 0

* routine to install interrupt handler

subroutine_initialize_module:

LDX IRQV ; load address of vector

LDD #interrupt_code_start ; load address of code start

STD 0,X ; store in the vector

RTS

* Here is the code that will be installed

interrupt_code_start:

LDAB $4000 ; read from expansion bus (should clear interrupt)

LDAA #$0

STD variable_keypress

INC variable_irqcount ; this actually changes the MSB and so does *256

RTI

19

