
The Super Music Triggered Light Show Project
Final Project Report
December 8, 2000

E155

Mike Lane and Elizabeth Johansen

Abstract:

The aim of this project was to create a music-triggered set of strobe lights that would flash on the beat of an
audio input signal. The “beat” in music can be found by passing an audio signal through a low-pass filter
and then looking at the relative amplitudes of the output. The 68HC11 was used to determine whether or
not a peak occurred, and then output a digital signal to the FPGA. The FPGA then generated three different
pseudo-random pulse sequences, which were used to trigger a series of two relays, which then triggered the
three strobe lights, which could theoretically be covered with red, green, and blue gels for an interesting
effect. The system, as it stands, behaves perfectly when given a square wave input with small duty cycle
from a function generator. With audio input, the system detects the beats, but also strobes anomalously
during the audio input.

The Super Music Triggered Light Show Project

2

Introduction

Background

Many parties use strobe lights as a part of the dance floor lighting. Typically these

strobe lights are boring white lights that blink at a constant rate. The purpose of this

project is to make a system to control three strobe lights of three different colors to blink

with the beat of the music.

Specifications

The strobe system takes in a musical input from a CD player. The three strobes

(red, green, and blue colored when covered by different gels) flash in synch with the beat

of the music in a pseudo-random manner. This will cause either zero, one, two, or all

three strobes to be lit simultaneously, making the room appear black, red, orange, green,

blue, purple, or white during each beat of the music.

Method

The audio signal is an analog signal that is first put through a series of op-amps to

condition the signal. One of the op-amps is configured as a low-pass filter. The filter

increases the relative amplitude of the instruments used to keep the beat of dance music

(usually drums or a base guitar). The filtered and amplified signal is then converted to a

digital value by the 68HC11 EVB. The 68HC11 then produces a pulse over the parallel

port every time a beat is detected. The FPGA utility board takes in the beat pulse from the

68HC11 and uses the beat as a clock to generate three pseudo-random pulse sequences.

These pulse sequences are then fed to three series of two relays that, in turn, trigger the

three strobes (see Figure #1 for overall system diagram).

The Super Music Triggered Light Show Project

3

Figure #1: Overall System Block Diagram

Materials

? 68HC11 EVB

? Utility board with FPGA

? Protoboard

? Amplifier and filter

? 5-6V relays and 12V relays

? Strobe kits

Audio Input

Low Pass Filter
and Amplifier

A/D Conversion

Beat Detection

Psudo Random Sequence Generation

Strobe Triggers

Strobes

68HC11 EVB

FPGA

The Super Music Triggered Light Show Project

4

New Hardware

The main new piece of hardware used in this project was a strobe light kit.

Triggering the strobes with a 5-volt source was not trivial, but not very complex. In the

original design of the kit, the strobes were triggered by charging a capacitor whose

positive lead was attached to a triac trigger. The triac would open when the capacitor

reached a certain voltage and this would ground the xenon tube trigger capacitor, causing

the tube to flash. Our task was to create a trigger that would act like a switch and

momentarily connect the trigger capacitor to ground.

After many failures at a purely electrical method, we discovered that a relay

would do exactly what we wanted. Unfortunately, there are no relays that can be

triggered with a 5 volt signal and handle the large instantaneous current flow to ground.

To solve this problem, we used two relays to trigger each strobe light. The first relay

triggered on 5 to 6 volts, but needed more current than the FPGA could provide, so we

used transistors in a configuration similar to that used to power the 7-segment display in

Lab 2. The input of the smaller relay was connected to ground, and the output connected

to the negative side of the trigger on the second relay. The positive side of the trigger on

the second relay was connected to a 12 volt source such that when the first relay closed

the second would also close, completing the connection to ground and cause the strobe

light to flash (see Figure# 2 for schematics).

The only drawback to this solution is that the larger relays made a loud clicking

noise from the contacts quickly opening and closing, though this should not be a

distraction when loud dance music is also playing. For future projects, one may want to

put a little research into a cheaper, fully electronic method of grounding the trigger

capacitor.

The Super Music Triggered Light Show Project

5

Schematics

Figure #2: Overall System Schematic

Figure #3: Schematics of Strobe with Points “A” and “B” Highlighted
The area crossed out refers to the trigger mechanism built into the strobe kit. We
removed the trigger for the purposes of our system and replaced it with the relays.

The Super Music Triggered Light Show Project

6

Microcontroller Design

The Microcontroller is used to detect the peaks in the filtered, scaled, analog

audio signal. The algorithm (see Figure #4 for block diagram) operates with the

Figure #4: Microcontroller Block Diagram

idea that a “beat” is a signal of higher amplitude than the rest of the musical signal. The

signal enters through Port E7, which is configured to continuously perform analog to

digital conversions on the input. Digitized data samples are taken from the first address

storage location every 20ms. The sample rate was set in order to identify the peaks in the

input signal indicative of the beat as opposed to the smaller peaks in the signal not

indicative of beat. The DC offset of the input signal is subtracted from this new input

value. If the signal level is below the DC offset level, we take the absolute value of the

signal by finding the 2’s compliment and continue on. The new sample of the signal is

then compared to a running average. In our final algorithm, a peak is identified as a

value three times the amplitude of the running average. This value was determined by

observing the musical signal in Matlab, which showed that the filtered signal peaks were

generally 75% higher than the upper noise level below them. Looking at the average

level of the signal instead of the top edge of the signal, the peaks indicative of beat were

Analog Music Signal

+5V
DC
GND

0/5V signal
indicative of beat

A/D
Conversion

Compare
New Value
to Running

Average

Add New
Value to
Running
Average

Output Routine
High for 10ms
Low for 140ms

Not a peak

Peak Detected

The Super Music Triggered Light Show Project

7

200% - 250% higher than the average signal level. Hence, the beat peaks can be said to

be three times the amplitude of the average signal level (see Figure #5 for image of audio

signal in Matlab).

Figure #5: Graph of Filtered Musical Input Amplitude v. Time Generated in Matlab*

*X-axis is in units of [# of samples], y-axis is in units of [digital amplitude]

Upon sensing a peak high enough to be considered a beat, the micro-controller outputs a

+5V signal from Port B, bit zero for 10ms; the amount of time needed to trigger the

strobe lights. It then puts out a zero from Port B, bit zero, for 140ms. The 10ms peak

time and 140ms wait time were set after examining several types of music using Matlab

and determining the maximum width of a beat peak to be 150ms. Hence, during the

150ms-long output routine, the running average is kept up to date, but the peak-detection

algorithm is not used because, within one beat, the signal oscillates up and down which

could be identified to be several beats in a row instead of one beat by our peak-detection

algorithm. After the output routine, the peak detection program resumes. Please Refer to

Appendix A for assembly code.

The Super Music Triggered Light Show Project

8

FPGA Design

The FPGA is used to generate a pseudo-random sequence of triggers for our three

strobe lights (see Figure #6 for block diagram of FPGA).

Figure #6: FPGA Block Diagram

The FPGA takes in the signal indicative of beat generated by the HC11 and uses this as a

clock for the registers within the pseudo-random bit sequence generator (PRBSG) (see

Figure#7 for diagram of a pseudo-random bit sequence generator).

Pseudo-Random Bit
Sequence Generators

Pulse
Generators

Beat Signal
from HC11

Strobe Signal with
Pseudo-Random
10ms-long pulses

Seed Signal to
Initialize Generator

Strobe 1
Strobe 2
Strobe 3

The Super Music Triggered Light Show Project

9

Figure #7: Diagram of Pseudo-Random Bit Sequence Generator

When first implemented, we found that the PRBSG needed to have a value of “high”

input at some point to initialize the generation of random pulses. To do this, we added a

two-input “or” gate of which one pin is connected to the output of one of the registers in

the sequence and the other pin, “seed”, is connected to a pin on the FPGA which is held

at +5V briefly to initiate the cycle, and is then kept at GND forever after (see Figure #8

for simulation of system).

Figure #8: Simulation of Pseudo-Random Bit Sequence Generator

Because the strobe lights must be provided with a very brief pulse to trigger a flash, the

PRBSG output and the HC11 output were “anded” together to create a series of random

10ms pulses instead of a series of random high and low signals of equal length. This

output was then fed to the strobe light triggering mechanism. Please see Appendix B for

Verilog modules.

The Super Music Triggered Light Show Project

10

Results
The HC11, FPGA, and strobe light combination was first tested against input

from a function generator in the form of sine, square, and triangle waves of varying

frequency with +2.5V DC offsets. The fastest dance music we found had a beat

frequency of 6.7Hz, and the slowest music had a beat frequency of around 1Hz. With

this range in mind, the system as it stands will detect a beat at each peak and output a

10ms pulse when at the maximum frequency of 6.7Hz sine wave, which is then converted

successfully into three different pseudo-random pulse signals for the three strobe lights.

Yet, when the beat is slowed down to 1Hz, the system detects several peaks during the

course of each actual peak because new data is always sampled 150ms after an initial

peak detection. Hence, with slow, rolling peaks in the form of a sine wave, the input data

is sampled several times while the signal is still rising, and is compared to the running

average yielding several 10ms pulses during the course of one peak. While this is taken

into consideration, we also found experimentally that the width of peaks indicative of

beat in music are usually 150ms wide or less. Hence, a musical input with a 1Hz beat

frequency should yield only one pulse per beat because the peaks in the music are

sufficiently narrow that the system should not sample and compare during the same peak

twice. To simulate this, a 1Hz square wave with a +3V DC offset and a small duty cycle

was created using a function generator, and the system behaved perfectly, creating one

pulse per wave.

After this testing, an analog musical input was fed into the system, scaled from

+1.5-4.5V with a +3V DC offset. The effect was not perfectly tuned. It was apparent

that the system could detect peaks indicative of beat, but that it was also detecting other

anomalous occurrences from time to time and creating anomalous strobe output.

For future work, the system could be tuned more completely. One method which

might help filter out anomalous output would be to adjust the HC11’s peak detection

algorithm to detect peaks that were higher than three times as high as the average input

value. Another useful route to pursue would be to provide a signal to the HC11 with a

steeper rise at the beginning of the peak, as originally simulated using Matlab. With

proper amplification and rise time from the input signal, the system as it stands may be

properly tuned to detect only peaks indicative of beat, filtering out other anomalies.

The Super Music Triggered Light Show Project

11

References

Many thanks to the helpful guys at Marvac Dow and the wonderful professors at Harvey

Mudd, specifically Prof. Baumgaertner, Prof. Rosenberg, Prof. Spjut, and of course, the

wonderful and magical Prof. Harris.

Parts List

Part Source Vendor Part # Price
Strobe Kit Parts Express K5300 $19.95
12 volt relay Marvac Dow NTE R14-11D10-12 $10.52
5-6volt relay Marvac Dow NTE R56-7D $6.44
LM741 Op Amp Stock Room LM741CM-ND
LM318 Op Amp Stock Room LM318
Transistor Micro P’s Lab H-2N-3904B

The Super Music Triggered Light Show Project

12

Parts Data

The 12-Volt Relay

NTE Type No.
Nom.

Voltage
Contact

Arr.

Coil
Res.

Ohms
(Typ)

Nom.
Power

Max.
Contact
Cur. @
28VDC

or
120VAC

Diag.
No

The 5-6-Volt Relay

Times

NTE
Type No.

Nom.
Volt.
VDC

Contact
Arr.

Typ.
Coil
Res.

Ohms

Max.
Pickup
VDC

Min.
Drop
Out
VDC

Max.
Curr.
Amps

Max.
Separate

Max.
Release

Diag.
No.

R14-11D10-12 12VDC DPDT 160 0.9W 10A D10

R56-7D.5-6 5 DPST-NO 200 3.8 0.5 0.50 700µs 75µs D27E

The Super Music Triggered Light Show Project

13

Appendix A: Assembly Code

*Elizabeth Johansen and Mike Lane
*December 3, 2000
*Final Project Assembly Code

*Set pertinent variables

REGS EQU $1000 beginning of register stack
ADCTL EQU $30 address of A/D control
ADR1 EQU $31 address of converted input data
OPTION EQU $39 used to power up A/D convertor
PORTB EQU $1004 address of Port B, output
SAMP1 EQU $D001 addresses of four samples used
SAMP2 EQU $D002 to compute the running average
SAMP3 EQU $D003 of input data
SAMP4 EQU $D004
AV EQU $D000 address of calculated average input

DCOFF EQU %10011010 value of +3V DC offset of input
ADSET EQU %00100111 scan,1 channel only, PE7 input
ADFIN EQU %10000000 A/D conversion finished mask

OUTHI EQU $01 output when beat is heard
OUTLO EQU $00 output when beat is not heard
PEAK1 EQU $D00A width of output peak
PEAK2 EQU $D00B = PEAK1 X PEAK2
TIME1 EQU $D006 wait time until check new data again
TIME2 EQU $D007 = TIME1 X TIME2 X TIME3
TIME3 EQU $D00C
SAMPLE0 EQU $D008 sample period defined by
SAMPLE1 EQU $D009 = SAMPLE0 X SAMPLE1

*Begin Routine

ORG $C100

LDX #REGS initialize register stack
BSET $1039 %10000000 power up A/D converter
LDAA #40 delay for >100 ms

DELAY DECA delay for A/D converter
BNE DELAY
LDAA #ADSET scan, look to PE7 for input
STAA ADCTL,X

LDAA #OUTLO set initial output to low
STAA PORTB

*Main Loop

The Super Music Triggered Light Show Project

14

*The main loop looks at A/D converted data every 20 ms. It also stores
*the last 4 input values and averages them to compare them to the new
*input and see if we have a peak indicative of the beat in music.
*Then, the old samples of input are shifted by one, the oldest
*eliminated, and the new sample is placed in to be part of the
*calculation of the average the next time the data is sampled.

LOOP BRCLR ADCTL,X #ADFIN LOOP wait for first conversion
MAIN

LDAA ADR1,X load new digitized sample of input
LDAB #DCOFF load DC offset value
SBA subtract offset

BHI NEXT if not less than 0 go to “NEXT”
* if less than 0, find the absolute value

COMA one's compliment of a
ADDA #1 two's compliment of a

NEXT LDAB SAMP1 Calculate average by adding up
ADDB SAMP2 values of last four inputs, each of
ADDB SAMP3 which are already divided by four
ADDB SAMP4
STAB AV Store Average in location “AV”

LDAB SAMP3 shift all samples
STAB SAMP4
LDAB SAMP2
STAB SAMP3
LDAB SAMP1
STAB SAMP2

TAB save a copy of new input in ACCB
LSRB divide new input by 2
LSRB divide new input by 2
STAB SAMP1 store new input in location SAMP1

*See if new value is higher than average input level

LDAB AV
SBA find (new - averaged) input value

*See if the new input value is higher than the average input so much
*so that it should be considered a peak (2 x higher)

LSLB multiply average by 2
STAB AV
CMPA AV compare difference to average value
BLE WAIT continue main loop if too low

BRA OUTPUT we have a peak! Go to output routine

*This wait routine creates a 20ms wait time between successive data
*samples. All wait routines are implemented by creating a count-down
*loop which exits when the value reaches zero.

WAIT

The Super Music Triggered Light Show Project

15

LDAA SAMPLE0
WAIT0 DECA wait of length SAMPLE1 x SAMPLE0

LDAB SAMPLE1
WAIT1 DECB

NOP filler to make the wait long enough
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
CMPB #$00
BNE WAIT1

CMPA #$00
BNE WAIT0

JMP MAIN go back to main loop when done waiting

*Output Routine to follow in the case of a peak

OUTPUT
LDAA #OUTHI set output to hi
STAA PORTB

LDAA PEAK1 wait 10ms, specified by PEAK1 X PEAK2
WAIT2 DECA

LDAB PEAK2
WAIT5 DECB

NOP
NOP
NOP
NOP
NOP

The Super Music Triggered Light Show Project

16

NOP
CMPB #$00
BNE WAIT5

CMPA #$00
BNE WAIT2

LDAA #OUTLO set output back to lo
STAA PORTB

LDS $D100 initialize stack pointer

LDAB TIME1 wait 140ms, TIME1 X TIME2 X TIME3
WAIT3 DECB

LDAA TIME2
WAIT4 DECA

PSHA push value of ACCA onto stack
LDAA TIME3

WAIT6 DECA
PSHA push value of ACCA onto stack
PSHB push value of ACCB onto stack

* while waiting, continually update the
* running average by sampling new data

LDAA ADR1,X load new digitized sample of input
LDAB #DCOFF load DC offset value
SBA subtract offset

BHI NEXT2 if not less than 0 go to next step
* if less than 0, get absolute value

COMA one's compliment of a
ADDA #1 two's compliment of a

NEXT2

LDAB SAMP3 shift all samples
STAB SAMP4
LDAB SAMP2
STAB SAMP3
LDAB SAMP1
STAB SAMP2

LSRA divide new input by 2
LSRA divide new input by 2
STAA SAMP1 store new input in location SAMP1

PULB pull value of ACCB off of stack
PULA pull value of ACCA off of stack
CMPA #$00
BNE WAIT6

PULA pull value of ACCA off of stack
CMPA #$00
BNE WAIT4

The Super Music Triggered Light Show Project

17

CMPB #$00
BNE WAIT3

JMP MAIN return to main loop

The Super Music Triggered Light Show Project

18

Appendix B: Verilog Code

//The first three modules (pseudorandom1-3) generate the pseudorandom pulses.
//The “seed”, which starts the system up, is connected to a different wire in each
//generator in order to create three different pseudo-random bit sequences for the three
//separate strobes.

module pseudorandom1 (signal, seed, strobe) ;

input signal, seed;
output strobe;

reg q1, q2, q3, q4, q5; //These describe the wires between the
reg q1next, q2next, q3next, q4next, q5next; //registers of the shift register

always @(posedge signal) //Implements a shift register
begin

q5 <= q5next;
q4 <= q4next;
q3 <= q3next;
q2 <= q2next;
q1 <= q1next;
q5next <= q4;
q4next <= q3;
q3next <= q2;
q2next <= q1|seed; //Here is the seed input
q1next <= q2^q5;

end

assign strobe = q5; //The wire q5 is also the output wire

endmodule

module pseudorandom2 (signal, seed, strobe) ;

input signal, seed;
output strobe;

reg q1, q2, q3, q4, q5; //These describe the wires between the
reg q1next, q2next, q3next, q4next, q5next; //registers of the shift register

always @(posedge signal) //Implements a shift register
begin

q5 <= q5next;
q4 <= q4next;

The Super Music Triggered Light Show Project

19

q3 <= q3next;
q2 <= q2next;
q1 <= q1next;
q5next <= q4;
q4next <= q3;
q3next <= q2|seed; //Here is the seed input
q2next <= q1;
q1next <= q2^q5;

end

assign strobe = q5; //The wire q5 is also the output wire

endmodule

module pseudorandom3 (signal, seed, strobe) ;

input signal, seed;
output strobe;

reg q1, q2, q3, q4, q5; //These describe the wires between the
reg q1next, q2next, q3next, q4next, q5next; //registers of the shift register

always @(posedge signal) //Implements a shift register
begin

q5 <= q5next;
q4 <= q4next;
q3 <= q3next;
q2 <= q2next;
q1 <= q1next;
q5next <= q4;
q4next <= q3|seed; //Here is the seed input
q3next <= q2;
q2next <= q1;
q1next <= q2^q5;

end

assign strobe = q5; //The wire q5 is the output

endmodule

//This module takes in the pulsed signal from the HC11 and “ands” it with the signal
//coming out of the pseudo-random generator to create a pulsed, random output.

module pulsegen (random, signal, strobe) ;

The Super Music Triggered Light Show Project

20

input random, signal;
output strobe;

assign strobe = signal & random;

endmodule

//This module takes in the HC11 signal and the seed to start the pseudo random generator
//and uses the pseudorandom and pulsegen modules to create a psedo-random pulse
//signal.

module toplevel (signal, seed, strobe1, strobe2, strobe3) ;

input signal, seed; //Input HC11 signal and seed.
output strobe1, strobe2, strobe3; //Outputs to the three strobes.

pseudorandom1 ran1(signal, seed, random1);//Call the PRBSG three times
pseudorandom2 ran2(signal, seed, random2);//to generate three different
pseudorandom3 ran3(signal, seed, random3);//random sequences.

pulsegen gen1(random1, signal, strobe1); //Convert the PRBSG output
pulsegen gen2(random2, signal, strobe2); //into a series of random
pulsegen gen3(random3, signal, strobe3); //pulses.

endmodule

