A Modern Music Box

Final Project Report
December 7, 2000
E155

James Speros and Mike Sakasegawa

Abstract:

This project prototypes a digital, programmable music box consisting of a keypad, FPGA, microcontroller,
and speaker. The user can select one of twelve notes to play using the keypad. The FPGA debounces and
decodes the signal from the keypad and sends it to the microcontroller, which generates atone code. The
tone code is read by the FPGA, which outputs a square wave of the proper frequency to a speaker.
Additionally, the user can choose to record and playback songs using the other buttons on the keypad. The
sequences of tones are stored on the microcontroller using a sequence descriptor table.

Introduction

Music boxes are well-loved devices that are found in many homes. A typical music box has a
rotating cylinder with a specific pattern of bumps. Asthe cylinder turns, the bumps pluck metal reeds that
produce atone. In this manner they can continuoudly play pleasant and familiar tunes. However, they
suffer from two major shortcomings: only one song can be encoded in an individual box and the duration of
this song is typically very short due to physical size constraints. By taking advantage of more modern
technology, we have added functionality to overcome these drawbacks.

The system we have designed is adigital music box with record and playback capabilities. To the
end user, this system consists of a keypad for input, LEDs to indicate of the system is recording or playing,
and a speaker to generate the music. The keypad has 16 keys. Twelve of these keys correspond to notes.
The avail able notes form the major scale spanning over one and a half octaves, starting at C and going up to
G in the next octave up. One key starts recording, one starts the playback, and one stops both recording
and playback. Thefina key isinactive.

The system starts up in tone generation mode. 1t will output tones based on the user’ sinput. If the
user presses the RECORD key, the record LED lights up and system records all tone inputs until the STOP
button is pressed. Once a sequence has been recorded, pressing the PLAY button will cause the system to
play the recorded sequence.

The system consists of the following functional blocks: user interface, polling and debounce,
memory, and output control. These functions are realized using a 16-button keypad, a Spartan FPGA, a
Motorola 68HC11 microcontroller, a speaker, and two LEDs. The user interface is consists of the keypad
for user input, the speaker to play the music and the LEDs for feedback to the user. The polling and
debounce module is implemented on the FPGA. The memory module isimplemented on the HC11. The
output control is split between both the FPGA and the HC11. The FPGA generates the tones that are sent
to the spesker, while the HC11 sends control signals to the FPGA that determine which tones will be

generated. Additionally, the HC11 controls the LEDs.

Schematics

The schematics for our system include a schematic of the main layout of the circuitry aswell asa
schematic of the LED circuitry. These schematics show the breadboarded layout, including the keypad,
FPGA, LEDsand HC11.

The keypad is the standard 16 button hex keypad with 8 pins. These pins are labeled 1 through 8
from left to right when viewed from underneath with the pins along the top edge. Pins1, 2, 3, and 7 are the
column pins and pins 4, 5, 6, and 8 are the row pins. The column pins are pulled up through 47-kO

resistors for the purpose of polling.

g &
P R P B CLE RESET
L} [} Lk 1} u Lk LF
L| p L P L| P L| p
L L L L
FFGA
KEYFALD =
2 i HC11
Pk T T T T T P FEL
PilT - T T T] ﬂ FE1
Pk T T T o) FEZ
PiME T T T 10 Pady PE3
ki ! ! ! T (28] FE4
Pk - T T 18 PES
Pz L T 718 PEG
Pk - 1] Pid FET
PE7 Poo
PsS [mH]
P PCZ
Py P
]
S i m
oL '
ED1 LED2
>
2| 2
] L=
SPEAKER

Figure1l: Main Layout Schematic

The output pads, shown on the main schematic astied to pins PBO and PB1 of the HC11, drive the
LEDs that are used for feedback to the user. These pins drive the bases of two 2N3904 npn transistors
through 12-kO current limiting resistors. The emitters of the transistors drive the LEDs through 330-O
resistors. The collectors aretied to a5-V voltage source. When the base is driven high, the path between

the emitter and the collector is a short circuit and the LEDs are turned on.

+W

E

o)
iﬁ‘ﬁ

L

Wi
AN O
3305

Figure2: LED circuits

Microcontroller Design

The main functions of the HC11 are memory and output control. The memory isimplemented as
a sequence descriptor table. The table entries consist of two bytes. Thefirst byte is the tone value to be
played, and the second byte is the duration for which the toneisto be played. The output control consists
of control over whether the function generation hardware modul e receives data from memory or directly
from the keypad decoder. The code to implement these functionsis found in Appendix A.

The HC11 receives one input byte from the FPGA and outputs 4 bits to the FPGA and 2 to the
LEDs. Theinput byte consists of eight bits. From most significant to least significant bit, these are valid
button push, stop, play, record, and 4 tone code bits. The four output bits that are sent to the FPGA are tone
code bits that are encoded in the same way as the 4 tone code input bits. The two bits that are sent to the
LED circuits control whether the LEDs are on or off. The input bits are received over port E, the output to
the FPGA is sent over port C, and the output to the LED circuitsis sent over port B. All communication is
parallel.

The assembly code consists of three main segments: the setup routine, the polling routine, the
record routine and the play routine. In the setup routine, the offset index isset. Thisis necessary because
many of the branch commands in HC11 assembly language require indexed addressing. In addition to
setting the index, port C is configured as output and both LEDs are set to beinitially off.

The polling routine initially checks for any valid button push. When avalid button push is
received, it checks to see which button was pressed. If the record button was pushed, the HC11 enters the
record routine. If the play button was pushed the HC11 enters the play routine. The stop button isignored.
If avalid button push was detected but neither the record button, the stop button or the play button was
pushed, the HC11 sends whatever tone code is currently on the input and outputsit to port C. The entire
input byteis actually sent to the port, but only the lower four bits are actually connected to the FPGA.
Then the HC11 waits for the button to stop being pushed, at which point it sends a null value to port C.
After writing the null value it waits for another valid button push.

Thefirst action in the record routineis lighting the record LED. ThisLED remainslit aslong as
the HC11 remainsin the record routine. After lighting the LED, the HC11 waits until there is no button

being pushed. Then it waits for a button to be pushed. It isimportant that both conditions be met because

recording any initial pauseisundesirable. Thisway, the HC11 will not actually begin recording until the
first noteis played. After meeting these criteria, the HC11 checks to see which button was pushed. The
record and play buttons send the HC11 back to the beginning of the routine. The stop button will send the
HC11 to the stop subroutine. If none of these buttons were pressed, then the HC11 enters a subroutine for
writing tones. The entire input byte is written to the sequence descriptor table, without actually checking
which tone was requested. Thisway, the HC11 can use the same basic mechanism for outputting tones and
pauses. After writing to the table, the HC11 outputs the byte to port C and then measures the duration of
the button push. Thisis done by counting the number of internal timer overflows until the button is
released. This gives aresolution of about 30 ms, which is sufficiently small to make almost no audible
difference. The number of timer overflows is stored in an accumulator, which can store values of up to
255, or about 7 seconds. If the button is held longer than that, the HC11 writes the maximum value to the
table, then restarts the subroutine for writing tones. Since the user is still holding the button down, the next
table entry will be the same tone, with no pause recorded in between. Actually, a pause of about 7 clock
cyclesis produced, but that is more or lessinaudible to the ear. If the button is not held down long enough
to cause the accumulator to overflow, the duration is written to the table whenever the button is rel eased.
After writing the duration, the HC11 enters a subroutine for writing a pause.

The system resolution of about 30 msis sufficient to assume that there will aways be apausein
between two different notes because most people would be unable to switch buttons that fast. Therefore
the pause subroutine is always entered after the button isreleased. The pause subroutine functions almost
identically to the tone subroutine. The differenceisthat instead of writing the input tone to the table, a null
valueisaways sent. Also, the duration is measured from button push to button push instead of from
releaseto release. After this routine is complete, the program re-enters the tone subroutine. Since the tone
subroutine always checks for a stop, the record routine can only be exited from there. Thisis sufficient
because any button push will send the HC11 to that subroutine.

The stop subroutine will right anull value as the tone byte and a duration of zero. In thisway, the
no special mechanism needs to be built into the play routine to handle the tone of astop. Additionally, the

stop subroutine will extinguish the record LED before exiting to the polling routine.

The play routine begins by lighting the play LED. It then reads the first table value, loading the
tone into accumulator a and the duration into accumulator b. The HC11 then immediately outputs the tone
to port C. Then it checksto seeif the duration is zero. If the duration is zero at this point, before any other
operations, the current value is a stop, and the play LED is extinguished and the HC11 returns to the polling
routine. Since the stop entry always has a null value for the tone byte, this does not produce any sound. If
the duration is nonzero, the HC11 checks to see if the stop button has been pressed. If so, the play LED is
extinguished and the HC11 returnsto the polling routine. Otherwise, it waits for one timer overflow, then
decrements the duration accumulator. Then it checks to seeif the value in the duration accumulator is zero.

If itis, the play routine starts over. Otherwise, the HC11 waits for another timer overflow and then checks

again.

FPGA Design

The functions performed on the FPGA include polling and debounce of the keypad and a portion of the
output generation. The Verilog code (see Appendix B) consists of four modules to implement these
functions. These include the Polling Finite State Machine, the Debounce Finite State Machine, the
Function Generator, and the Clock Division circuitry. These four functional modules are instantiated by
the Top Level module that handles the interface between the FPGA any other circuitry including the
keypad, HC11, and spesker.

The IMHz clock running the FPGA is too fast for the system because the polling, debounce, and
function generation have critical timesin the millisecond range and longer. The Clock Division circuitry
divides the IMHz system clock by 22 to produce aslow clock signal with a period of 4.096 ms.

The Polling Finite State Machine determines if a button has been pushed and if so, encodes the
keypad information in the signal buttoncode for use by the HC11. All of the column pins on the keypad are
pulled up to 5 volts. The Polling FSM holds all of the rows high except for one at any given time. It then
checksthe columns. If acolumn lineislow, then the button corresponding to the active row and column
has been pushed. Thisinformation isthen encoded is buttoncode. The FSM continues to check the active
row until no buttons are pressed in that row.

The Debounce FSM performs two functions. The primary function is rigorous keypad
debouncing. When abutton is pushed, it verifies avalid push but wasting 8 msto allow the keypad to
stabilize and checking that same button again. (Each clock cycleis about 4ms. Thereis one state for the
button push and one wasted state.) Once it has been verified that a button has been pushed, the valid_push
signal is asserted until that button isreleased. The secondary function of the Debounce FSM isto ensure
that valid pushed are not sent to the HC11 to quickly. The HC11 can spend up to about 32 ms executing
other tasks between checking the keypad. To avoid missing button transitions, this FSM inserts waste
states to ensure that valid_push goes inactive long enough for the HC11 to catch it.

The Function Generator creates the output to the speaker. It produces square waves of a specified
period by holding the output, wave, either low or high for half the period and then toggling it and repeating
the process. Thisis performed with a free-running, nine-bit counter. The HC11 sends afour-bit signal

(tone) to the Function Generator. This dictates a particular tone to be generated. The Function Generator

decodes this into a value equal to half the period (in terms of 4.096 ms clock cycles) of the desired square
wave. When the counter matches this half period, it is reset and the wave output istoggled. When no tone
isto be generated, the toneinput is 0000. Therefore, the tone bits are ORed together to produce an enable

signal for toggling the output.

Results

The result of this project was a system that can play notes directly based on user input or
simultaneously record and play notes for playback. The system reliably reproduces the user'sinput. The
recorded sequence is audibly identical to the actual user input to a precision of approximately 30 ms.

The record and playback functions were the most difficult part of the design because they were the
most complex. The considerations involved include interpreting the output from the polling and debounce,
accurately measuring and recording the duration of a note, and consistently updating the function generator.
A number of these tasks must be performed in parallel. These parallel tasks needed to be combined into
one sequential process that the HC11 could handle. Most of our problems arose from inadequate
understanding of the sequence in which to perform the necessary tasks.

Thereis one major difference between our proposed and actual designs. In our proposal, we
outlined a method for generating a sine wave using the HC11 to generate adigital representation of the sine
wave that would be interpreted by a digital-to-analog converter and amplified before driving the speaker.
Experimentation showed that the pure tone of the sine wave is not aesthetically pleasing. Additionaly, the
inductive impedance of the speaker made it sensitive to sharp signal edges and relatively insensitive to
waveforms without sharp edges. The smooth curve of the sine wave produced |ow volume even with very
high power. Therefore, we drove the speaker using a square wave. The harmonics in the square wave
made it sound better. The sharp edges produced a speaker response at an appropriate volume level without
any extraamplification. Additionally, using a square wave simplified the digital-to-analog conversion,
such that the speaker could be driven directly from the FPGA, rather than using a more complicated circuit.

Driving the speaker directly from the FPGA caused some peculiar behavior. Some measurements
made on the system showed that the output voltage swing was from zero to one volt, rather than zero to five
volts. We measured the resistance of the speaker at about 8 Ohms. This means that the FPGA was
sourcing 125 mA. Thisiswhy it couldn't pull the output to an acceptable logic level, but since we weren't

using the signal for logic purposes, it didn't matter.

10

Parts List

Part Source Vendor Part # Price
2N3904 Transistors Electronics Lab - -
Speaker Electronics Lab - -

11

Appendices

Appendix A: M68HC11 Assembly Code

* This unit passes the note value along and also perfornms the nenory * * functions.
*

* Constant Defines

REGS equ $1000

PORTB equ $04 * output port for LEDs

PORTC equ $03 * output port for tone

DDRC equ $07

PORTE equ $0A * input port

Bl TO equ 990000001 * bits 0 - 3 are the tone code
BI T1 equ %90000010

BI T2 equ 290000100

BI T3 equ %90001000

Bl T4 equ %9©0010000 * bit 4 is the "record" bit

BI TS5 equ %0100000 * bit 5 is the "play" bit

BI T6 equ 291000000 * bit 6 is the "stop" bit

Bl T7 equ 940000000 * bit 7 is the "button pushed" bit
ZERO equ $0

TFL&2 equ $25

TOF equ 940000000

*

* Menory

*

* Main Program

*

* Setup Routine

*

org $c000
I dx #REGS
* Initialize the data direction of PORTC
| daa #%11111111
staa DDRC, x
* Set the LEDs to the off state initially.
bclr PORTB, x BIT1
bclr PORTB, x BI TO

Pol I'i ng Routi ne

EE

if no button pushed, keep waiting for a button push.
VWAI T brclr PORTE, x BIT7 WAI' T
* if play button pushed, go to play routine.
brset PORTE, x BI T5 PLAYER
bra NEXT
PLAYER | np PSTART
* if record button pushed, go to record routine.
NEXT brset PORTE, x Bl T4 RECORD
* if stop button is pushed and not in record routine, wait
* for a new button push.
brset PORTE, x BIT6 WAIT
* if a button is pushed and it is not the play, record,
| daa PORTE, x
* or stop button, output the proper tone code to PORTC,
staa PORTC, x
* wait until the button is no | onger being pushed
BUTTON brset PORTE, x BI T7 BUTTON
* then output a null value to PORTC
| daa #$0
staa PORTC, x
* then wait until next button push.
bra VWAI T

Record Routi ne

ok F kK

Set index y as the table pointer and initialize it to the first
tabl e val ue.

12

RECORD I dy #$d000
* Turn on the record LED.
bset PORTB, x BI T1
* Wait here for a button push.

RSTART brset PORTE, x Bl T7 RSTART
* Wait here for no button push.

PBUTT brclr PORTE, x BI T7 PBUTT
*

Once you get a button push, check which button.

* |f the record button is pushed, wait for another button push.
brset PORTE, x Bl T4 RSTART

* |f the play button is pushed, wait for another button push.
brset PORTE, x BI T5 RSTART

* |f the stop button is pushed, toto the stop routine.
brset PORTE, x Bl T6 RECSTOP

* Otherwi se the button is a tone button.

* Load the tone code into accunul ator a.
| daa PORTE, x

* First store the tone code to the table.
staa ZERQO vy

* Then output the tone code to PORTC.
staa PORTC, x

* Check to see if we are at the last table val ue.

crpy #$df f f
* |f so, go back to the beginning.
beq VWAI T
* Otherwi se, incremenent the table pointer.
iny
* Load accunulator b with the initial duration zero.
I dab #$00
* Reset the timer overflow flag.
TOVER | daa #TOF

staa TFLQ&2, x
* Wait here until the tinmer overfl ows.

RSPI N brclr TFL&, x TOF RSPIN
* Check to see if the duration accunul ator has overfl owed.
cnpb #$f f
* |f not, branch to the no counter overflow case.
bne NCO
* | f there was overflow, store the maxi num duration value to the table.
stab ZERO vy
* Increnent the table pointer.
i ny

* |f no button is being pushed, start witing a pause.
brclr PORTE, x Bl T7 PAUSE
* Otherwise start witing whatever tone is being requested.
bra PBUTT
* | f there was no duration counter overflow, then increnment the
* duration accunul ator.
NCO inch
* |f the button is still being held down, then go back and wait
* for another timer overflow
brset PORTE, x Bl T7 TOVER
* Otherwise, wite the duration to the table.

stab ZERO vy
* And increnent the table counter.
iny

* |f no button is being pressed, wite a null value to the table.
PAUSE | daa #$00
staa ZERQOy
* Qutput a null value to PORTC
staa PORTC, x
* Increnent the table counter.

i ny

* |nitialize the duration accunulator to zero.
| dab #$00

* Clear the timer overflow flag.

TOVER2 | daa #TOF

staa TFLQ&2, x
* Wait here for the tiner to overflow
RSPI N2 brclr TFLG2, x TOF RSPI N2
* Check to see if the duration accunul ator has overfl owed.

13

cnpb #$f f
* |f not, go to the no counter overflow case.

bne NCO2

* Otherwi se, wite the maxi mum duration value to the table.
stab ZERO vy

* | ncrement the table counter.
i ny

* |f a button is being pushed, start witing the new tone.
brset PORTE, x Bl T7 PBUTT
* Otherwi se write another pause.
bra PAUSE
* |f there was no counter overflow, increment the duration counter.
NCO2 inch
* |f there is still no button pressed, wait for another tiner overflow.
brclr PORTE, x Bl T7 TOVER2
* Otherwise, wite the duration to the table.

stab ZERO vy

* | ncrement the table counter.
iny

* Start writing the new tone.
bra PBUTT

* |f a stop value was received, wite a null value to the table for
* the tone.
RECSTOP | daa #$00
staa ZERQO vy
* Increnent the table counter.
iny
* Qutput a null value to PORTC
staa PORTC, x
* Wite a zero duration to the table.
staa ZERQO vy
* Turn off the record LED.
bclr PORTB, x BIT1
* Go back to the beginning.
jnp VAI T

Pl ay Routine

EE

* go to the beginning of the sequence descriptor table.
PSTART | dy #$d000
* Turn on the play LED.
bset PORTB, x BITO
* | oad the tone code into accunul ator a.
PLAY | daa ZERO y
iny
* |oad the duration into accumul ator b.
| dab ZERO, y
iny
* output the tone code to PORTB.
staa PORTC, x
* check the duration.

cnpb #$0

* if the duration is zero, the sequence is over.
beq HOVE
bra PDUR

* |f the sequence is over, turn off the play LED.
HOVE bclr PORTB, x BI TO
* Go back to the beginning.

jmp VAIT
PDUR brset PORTE, x Bl T6 PLSTOP
* otherw se reset the timer overflow flag.
| daa #TOF

st aa TFL&2, x
* wait here until the timer overflows.

PSPI N brclr TFL&, x TOF PSPI N

* decrenment the duration.
decb

* check the remining duration.
cnpb #$0

* if the renmmining duration is zero, go to the next table val ue.
beq PLAY

14

* otherw se keep waiting.

bra PDUR
* |f a stop value was received, turn off the play LED.
PLSTOP bclr PORTB, x BI TO
* Go back to the beginning.

j mp VWAI T

15

Appendix B: Verilog Code

/1 Top Level

/| Pur pose: This top level is the interface between the FPGA and
//any other circuitry including keypad, the hcll and the speaker.

modul e topl evel (clk, reset, colum, tone, row, tohcll, wave)

input clk ;

i nput reset

input [3:0] colum ;
input [3:0] tone ;
output [3:0] row ;
output [7:0] tohcll ;
out put wave ;

wire slowclk;
wire [6:0] buttoncode;
wire valid_push;

/I nodul e instantiation
pol I'i ng_f sm pfsn{col um, slowclk, reset, row, buttoncode);

debounce_fsm df sm(sl owcl k, reset, colum, valid_push);
cl ockdi vi sion cd(clk, reset, slowclk);
functiongenerator fg(tone, clk, reset, wave);

//some bit swi zzling

assign tohcll = { valid_push, buttoncode[6:0] };

endnodul e

/1 Cl ock Division

/| Pur pose: This circuitry divides the clock by 2212 to produce
/la clock with a period of about 4 ms. This is necessary because

//input fromthe keypad can be unstable for up to about 5 ns.

/1 The debouncing circuitry uses two clock cycles (8 nms) to allow

//the keypad i nput to stabalize.

modul e cl ockdi vision (clk, reset, slowclk)

input clk ;

i nput reset

out put slowcl k ;

reg [11: 0] q;

//counter for slow down timng

al ways @ (posedge cl k or posedge reset)
if (reset) q <= 12' b0;
el se q<=q + 1;

/1 The slow clock is the highest bit of the counter.
assign slowl k = q[11];

endnodul e
//Polling Finite State Mchine

/| Pur pose: This state nmachine polls the keypad. All of the columms
//on the keypad are pulled up. The pollingfsmholds all of the rows

16

/1 high except for one at any given tine. It then checks the col ums.
//1f a colum line is low, then the button corresponding to the active
//row and colum has been pushed. This is decoded and the signal is
//sent to the hcll as buttoncode.

modul e polling_fsm (colum, clk, reset, row, buttoncode) ;

input [3:0] colum ;

i nput clk, reset;

output [3:0] row ;

out put [6:0] buttoncode ;

reg [2:0] state;
reg [2: 0] nextstate;
reg [3:0] row

reg [6: 0] buttoncode;
Wi re pushbar;

/1 State val ues

paraneter SO = 3' b00O;
paraneter S1 = 3' b001;
paraneter S2 = 3' b010;
paraneter S3 = 3'b011;
paraneter S4 = 3'bl00;
paraneter S5 = 3'bl01;
paraneter S6 = 3'bl10;
paraneter S7 = 3'bll1l;

assi gn pushbar = &col um;

/] State Register

al ways @ (posedge cl k or posedge reset)
if (reset) state <= S0;

el se state <= nextstate;

/1 Next State Logic
al ways @ (state or pushbar)
case (state)

/] Checking row O

SO: nextstate <= Sl;
S1: if (~pushbar) nextstate <= SO;
el se nextstate <= S2;

// Not e: Looping back through the states for a given row

/1 allows time for the button push to stabalize
/1 and keeps checking that row until the button is
/1 no | onger pushed. It is possible for the user
/1 to push another button in the row before letting
/1 go of the active button. This contingency is
/1 handl ed by the debounce circuitry.
/] Checking row 1
S2: nextstate <= S3;
S3: if (~pushbar) nextstate <= S2;

el se nextstate <= S$4;

/] Checking row 2

S4: nextstate <= S5;
S5: if (~pushbar) nextstate <= S4;
el se nextstate <= S6;

/] Checking row 3

S6: nextstate <= S7;
S7: if (~pushbar) nextstate <= S6;
el se nextstate <= S0;

//Default to handl e entering an unknown state
default: nextstate <= S0;
endcase

17

/] State machi ne output Logic
al ways @ (state)
case (state)
S0: row <= 4'b0111
S1: row <= 4'b0111;
S2: row <= 4'b1011
S3: row <= 4'b1011
S4: row <= 4'b1101
S5: row <= 4'b1101
S6: row <= 4'b1110
S7: row <= 4'b1110
endcase

|/ Keypad decoder logic: Wich button is pushed

/***********~k****~k****~k****~k****~k****~k****~k***********************/

/1 The encodi ng of button code is as follows:

/1 [3:0] tone code

/1 0000 = no tone should be generated

/1 0001 = C1

/1 0010 = D1

/1 0011 = E1

/1 0100 = F1

/1 0101 = &

/1 0110 = A1

/1 0111 = B1

/1 1000 = undefined (never output)

/1 1001 = C2

/1 1010 = D2

/1 1011 = E2

/1 1100 = F2

/1 1101 = @

/1 1110 = undefined (never output)

/1 1111 = undefined (never output)

/1 not e: if the undefined codes were ever generated, the
/1 function generator would interpret themas A2
/1 and generate that tone.
/1 [4] Record button (active high)

/1 [5] Pl ay button (active high)

/1 [6] Stop button (active high)

/***********~k****~k****~k****~k****~k****~k****~k***********************/

al ways @ (col um or row)
case (row)
4' b0111: if (~colum[O0]) buttoncode = 7'b0000001;//Cl
else if (~colum[1]) buttoncode 7' b0000010; // D1
else if (~colum[2]) buttoncode 7' b0000011;//E1
else if (~colum[3]) buttoncode 7' b0000100; // F1
el se buttoncode = 7' b00O00000
4' b1011: if (~colum[O0]) buttoncode = 7'b0000101;// Gl
else if (~colum[1]) buttoncode = 7'b0000110;//Al
else if (~colum[2]) buttoncode = 7'b0000111;//B1
else if (~colum[3]) buttoncode = 7'b0001001;//C2
el se buttoncode = 7' b00O00000
4' b1101: if (~colum[O0]) buttoncode = 7'b0001010;//D2
else if (~colum[1]) buttoncode = 7'b0001011;//E2
else if (~colum[2]) buttoncode = 7'b0001100;//F2
else if (~colum[3]) buttoncode = 7'b0001101;// X
el se buttoncode = 7' b00O00000
4' b1110: if (~colum[O0]) buttoncode = 7'b0010000;// Record
else if (~colum[1]) buttoncode = 7'b0100000;// Pl ay
else if (~colum[2]) buttoncode = 7'b1000000;// St op
else if (~colum[3]) buttoncode = 7' b0000000;// NO
el se buttoncode = 7' b00O00000
defaul t: buttoncode = 7' b0000000
endcase

endnodul e

/1 Debounce Finite State Machine

18

/| Pur pose: This state nachine perforns two functiors. The
//primary function is rigorous keypad debounci ng. When a
//button is pushed, it verifies a valid push by wasting 8
//ms (Each clock cycle is about 4 ms. There is one state
//for the button push and one wasted state.) and checking
//that sane button again. |If the button is still pushed, a
//valid_push is generated until that button is no |onger

// pushed. The secondary function of the debounce fsmis to
//ensure that valid pushes are not sent to the hcll to
//quickly. The worst case scenario is that the hcll checks
//for valid pushes about every 32 ms. To avoid m ssing
//button transitions, this fsminserts waste states to
//ensure that valid push goes inactive |ong enough for the
//hcll to catch it

modul e debounce_fsm (cl k, reset, colum, valid_push) ;

input clk ;

i nput reset ;

input [3:0] colum ;
out put valid_push ;

reg [4:0] state;
reg [4:0] nextstate;
reg [3:0] colum;

// State val ues
par aneter SO
paraneter S1
paraneter S2
paraneter S3
paraneter S4
paraneter S5
par aneter S6
paraneter S7
paraneter S8
paraneter S9
paraneter S10
paraneter Si1
paraneter S12
paraneter S13
paraneter S14
paraneter S15
paraneter S16
par anet er WASTEO
par anet er WASTEL
par anet er WASTE2
par anet er WASTE3

CNoarwNMRO

PRERRPRRRPP
In i n IIO?(F#}ONHO

N e
o ©m~

/] State register

al ways @ (posedge cl k or posedge reset)
if (reset) state <= S0;

el se state <= nextstate;

// Nextstate |ogic
al ways @ (state or col um)
case (state)

//polling the colums to determine if a button has been pushed

// The columm signals are active |ow.

S0: if (~colum[0]) nextstate <= Si;

else if (~colum[1]) nextstate <= Sb;
else if (~colum[2]) nextstate <= S9;
else if (~colum[3]) nextstate <= S183;
el se nextstate <= SO;

//states to handl e colum 0 button push
S1: nextstate <= S2;

S2: if (~colum[O0]) nextstate <= S3;//if button is still

generate valid push

19

pressed

el se nextstate <= SO; //else no valid push and wait
for another
S3: nextstate <= S4
S4: if (colum[O0]) nextstate <= WASTEO; //generating valid push
si gnal
el se nextstate <= S4

//states to handl e colum 1 button push

S5: nextstate <= S6
S6: if (~colum[1]) nextstate <= S7;//if button is still pressed
generate valid push
el se nextstate <= SO; //else no valid push and wait
for another
S7: nextstate <= S8
S8: if (colum[1]) nextstate <= WASTEO; //generating valid push

si gnal
el se nextstate <= S8

//states to handl e colum 2 button push

S9: nextstate <= S10
S10: if (~colum[2]) nextstate <= S11;//if button is still pressed
generate valid push
el se nextstate <= SO; //else no valid push
and wait for another
S11: nextstate <= S12
S12: if (colum[2]) nextstate <= WASTEO; //generating valid push

si gnal
el se nextstate <= S12

//states to handl e colum 3 button push

S13: nextstate <= Sl14
S14: if (~colum[3]) nextstate <= S15;//if button is still pressed
generate valid push
el se nextstate <= SO; //else no valid push
and wait for another
S15: nextstate <= S16
S16: if (colum[3]) nextstate <= WASTEO; //generating valid push

si gnal
el se nextstate <= S16

//waste time to ensure that there is a null tone between each valid tone
WASTEO: nextstate <= WASTE1l

WASTEL: nextstate <= WASTE2

WASTE2: nextstate <= WASTE3

WASTES3: nextstate <= S0;//go back to polling the buttons

//include default to avoid inplying latches and to handle errors
default: nextstate <= SO
endcase

//Qutput |ogic

//While the state machine is in the fourth state of a particular colum cycle, a valid
//button push is being detected, sovalid_push is asserted

assign valid_push = (state == S4) || (state == S8) || (state == S12) || (state == S16)

endnodul e

/1 Function Generat or

/1 The counter counts out the duration to hold a particular voltage |evel
/1 The hal f - peri od decoder determ nes how high the counter has to count to
//to hold a voltage level for half the period of the given tone. The

// conpare-match circuitry conpares the value of the counter with the half-
//period decoder. It then activates the match signal. \Wen the natch
//signal is activated, the out-toggle toggles the output (wave) and the
//counter resets to begin counting another duration. Wen the function
//generator is not supposed to be generating a tone, thetone[3:0] input
//is 0000. Therefore, the tone bits are ORed together to produce an

// enabl e signal for the out-toggle

20

modul e functiongenerator (tone, clk, reset, wave)

input [3:0] tone
input clk ;

i nput reset ;

out put wave ;

reg [8:0] q ;

reg [8:0] conpare
reg match ;

reg wave

/] count er

al ways @ (posedge cl k or posedge reset)
q <= 0;//asynchronous reset
q <= 0;//synchronous reset

if (reset)
else if (match)
else q<=q+1

// hal f-period decoder
al ways @ (tone)
case (tone)
4' b0000:
4' b0001:
4' b0010:
4' b0011:
4' b0100:
4' b0101:
4' b0110:
4' b0111:
4' b1001:
4' b1010:
4' b1011:
4' b1100:
4' b1101:
defaul t:
happen)
endcase

// conpare-match circuitry

al ways @ (q or conpare)

if (g == conpare)
el se

//out-toggle

conpare <=
conpare <=
conpare <=
conpare <=
conpare <=
conpare <=
conpare <=
conpare <=
conpare <=
conpare <=
conpare <=
conpare <=
conpare <=
conpare <=

mat ch <= 1;

9
9
9
9
9
9
9
9
9
9
9
9
9

mat ch

al ways @ (posedge cl k or posedge reset)

if (reset)

/1 The follow ng test
/1A'l valid tones have one or

else if (tone[O0]
if (match)

endnodul e

wave <= 0;

b111111111;
b111011110;
b110101010

b101111011;
b101100110

b100111111;
b100011100

b011111101;
b011101111;
b011010101;
b010111110;
b010110011;
b010011111;
b010001110

<= O;

wave <= ~wave

21

tone[3])

//no button pushed

/1478
/1426
/1379
/1358
/1319
/1284
/1253
/1239
/1213
/1190
/1179
/1159
/1142

cycles-Cl
cycl es-D1
cycles- E1l
cycles-F1
cycles-Gl
cycl es-Al
cycl es-B1
cycl es-C2
cycl es-D2
cycl es-E2
cycl es-F2
cycl es- @&

cycl es- A2 (shoul dn't

is performed to verify that a tone should be
more 1's in their encoding
tone[1] | tone[2]

creat ed

