
Scrolling Marquee Display
Final Project Report
December 9, 2000

E155

Dan Smith and Katherine Wade

Abstract:

A Scrolling Marquee Display is a visually appealing way to display more information than can be fit upon
the single screen. This project will create a scrolling Marquee Display using a 2X16 LCD that will
display up to ten messages that scroll across the screen. The messages will be input to the FPGA, “video
game high score”- style, using a 16 button keypad. The FPGA will debounce the keypad entries and pass
them to the HC11, which will control the LCD functions. Users will be able to create, delete, and edit the
16-character long messages, which will then be scrolled across the LCD screen for their viewing
enjoyment.

2

Introduction

We would like to make a nifty scrolling marquee that displays messages. However, most commercial
scrolling marquees use lots of LEDs, which is difficult to control using the small-scale equipment
available in the Microprocessors laboratory. Instead, we are using an LCD display with built-in character
display capabilities to serve the same purpose. The messages will still be scrolled across the display as in
a regular marquee. The LCD device we are using can be easily controlled with an HC11.

 Overview:

LCD HC11 FPGA

Keypad

The FPGA Polls and
debounces the keypad entry,
and sends it via the serial port
to the HC11The HC11 receives the keypress data from

the FPGA. It also controls the LCD display
and manages the queue of messages, which
are stored in the HC11’s memory.

3

Optrex DMC 16249 LCD

We received the Optrex DMC-16249 2x16 LCD display. Here is what it looks like:

On the LED display, 14 pins are used to display text. The first six of these, Pins 1 – 6, are the control
bits used to power the LCD and enable reading and writing. The other 8 pins, 7-14, are used to send
data to the LCD.

The HC11 will control the LCD directly. A parallel port (Port B) will be used to send the 8-bit
data to pins 7-14, and additional pins from the HC11 will be wired directly to the appropriate control
bits.

The pin holes on the LCD were filled with jumper pins and soldered to the LCD board. This way
we can put the LCD on our breadboard for ease of wiring. If the jumper pins are not desired for
future use, they can be unsoldered and removed.

H E L L O W O R L D !
X X X X X X X X X X X X X X X X

Control Data

1 14

4

Schematics

The FPGA will communicate with the HC11 via the SPI. To do this, we only need three wires
connecting the two devices. One of the wires will send the MOSI (master out, slave in) data from the
FPGA to the HC11, and the other wire will send the clock signal that will coordinate the receiving of
each bit of the serial information (SCK), and the third will be slave select (~SS) that tells the HC11
when data is being sent. MOSI, ~SS, and SCK will be output pins on the FPGA and can be easily
wired to the HC11EVB’s input pins. In this configuration, the FPGA acts as a master, and the HC11
acts as the slave.

The 16-button keypad will be placed on the solderless breadboard and wired to the FPGA as was done
in lab 4. The row pins will be inputs to the FPGA, and the column pins will be outputs so that the
FPGA can poll the keypad. Polling consists of each column being alternately pulled low while the
other columns are pulled high. The row pins which are input to the FPGA are attached to fairly high
resistors, so that their values are by default high if no current is passed through them. If a key is
pressed, the row corresponding to that keypress will be pulled low. The FPGA logic will look at the
combination of row and column inputs and determine which key was pressed.

Overall Breadboard Schematic:

FPGA
HC11

HI WORLD

Parallel bus (Port
B) for data bits

~SS
MOSI
 SCK
(SPI Port D)

COLS

ROWS

R
+5V

BREADBOARD

Parallel bus (Port
A) for control
bits

5

Microcontroller Design

The hc11 is responsible for controlling the LCD display based on the key presses
on the keypad. It receives messages serially from keypad (with the keypad as master, the
hc11 as slave) using the SPI interface. These messages are received as a binary encoding
of the value that was pressed on the keypad. It sends messages out to the LCD display via
parallel ports A and B.

The hc11 stores a queue of messages that are edited using the keypad. We decided
to represent this queue with a two dimensional array. Since the LCD display shows 16
characters on screen, we decided to make each messages exactly 16 bytes. We also
decided to fix the size of the queue to be 32 messages long, or 320 bytes. Empty messages
in the queue are represented by all NULLs.

C000
C010

 … …

C200

0… 16
Message Queue

We broke the operation of the hc11 into three different modes. These modes are normal mode,
message control mode, and message entry mode. In normal mode, the messages are displayed on the
screen until a key is pressed, at which point the program enters message control.

normalMode()
{

loop forever
{

scrollMessages()
if(checkInput())

MessageControl()
}

}

Message control mode allows the user to edit, delete, and create new messages

MessageControl()
{

Loop until done is pressed
{

displayMessage(selected message)
input = getInput()
switch(input)

up: increment selected message
down: decrement selected message
new: new()

Hello World

0000000000000000

0000000000000000

6

edit: edit(selected message)
remove: remove(selected message)

}
}

The remove() function just converts the selected message to NULLs. The
new() function finds an empty slot in the array, converts all the characters to
spaces, and then calls edit() on that position.

new()
{

find empty message
convert to spaces
edit(empty message)

}

The edit() function is the third mode of operation: message entry. The edit function gets
keystrokes from the user and modifies the message. It keeps a cursor position on the message and allows
the user to change the current character, or move left or right.

edit()
{

loop until done is pressed
{

displayMessagewithCursor(cursor position)
input = getInput()
switch(input)
up: increment selected message[cursor position]
down: decrement selected message[cursor position]
left: increment cursor positions
right: decrement cursor position

}
}

7

FPGA Design

Describe the function of the hardware in your FPGA, including inputs, outputs, and major hardware
modules. Describe the key logic, using datapath or FSM diagrams as needed. This section should give
the reader enough information to understand the Verilog code and/or FPGA schematics in the appendix.

So far we have coded modules in Verilog to take care of the polling, debouncing, and SPI communication.
The code for these modules can be found in Appendix A.

FPGA Logic Diagram:

Explanation of modules:

The main.v module is the controlling module that calls all the other ones. It takes in the global
inputs of clk, reset, and rows, and outputs the global outputs cols, MOSI, ~SS, and serialclk.

The clkdiv.v module takes the FPGA’s internal clock and slows it down by a factor of 2^11. This
clock is then used in the keypad module to debounce the signal by sampling it at greater than 5
ms. This slowed-down clock is outputted to the keypad.v module as slowclk.

The keypad.v module outputs the cols data, pulling each column alternately low. It also takes in
the rows data, and decodes the rows and cols data together to determine if a key was pressed
(keypressed) and what it was (key). Each keypress is sampled and debounced using slowclk.

To keypad

clkslow

keypad
keyout

shift

clock

slow clock

keypressed

MOSI
shiftclk,
load

MOSI

serialclk

key
4

key

8

rows

4

columns

4

FPGA
From
FPGA
board

From
keypad

To HC11

To HC11
~SS

8

The shift.v module is a 8-bit shift register which takes in a clk, load, and indata, and outputs
MOSI. When load is enabled, the indata is loaded directly into the shift register in parallel. The
clk then shifts the data through the registers. The MSB is outputted as outdata.

The keyout.v module takes in clk, reset, keypressed, key, and outputs MOSI, ~SS, and serialclk.
It stores key in shift.v and then generates clocks for the serial output and the shift register. The
shift register clock is the opposite of the serial output clock, delayed by one clock cycle. The
serialclk, ~SS, and the MOSI are outputted to the FPGA in SPI format.

9

Results

We were able to complete our project as proposed. The marquee could store up to 32 messages,
with each message being 16 characters long. The marquee could scroll the messages, and supported the
add, delete, edit, and new message operations described above. The edit message mode supported the
character ‘a-z’, “A-Z’, and some special characters like ‘ ‘, “#’, ‘!’, etc. Scrolling through all these
characters to find the one you wanted was a little cumbersome. It was suggested to us that instead of using
one keypad and entering in messages video game style, we could instead use two keypads and enter in the
letters “A-Z’ directly (26 buttons for ‘A-Z’, 6 control buttons).

One of the difficult parts of the project was trying to get the FPGA to communicate serially with
the HC11 using the FPGA as a master. The Verilog code to send data using this technique ended up being
more difficult than we thought. However, we were able to get it working.

We were unable to write the code in C as we hoped, because we did not get the C compiler
working in time. However, after we had written the code in assembly, we did get the C compiler to work.
We were unable to use the compiler for our project because we had already written the assembly code,
however, we hope that students will be able to use what we’ve learned about the compiler for future
projects.

10

References

Check the following links for up-to-date information about LCDs.

[1] Fil’s FAQ Link-In Corner: LCD Program and Pinout FAQ,
http://www.repairfaq.org/filipg/LINK/F_LCD_progr.html
[2] Optrex DMC-16249 Documentation, http://www.optrex.com/pdfs/Dmcman_full.pdf

Parts List

List all of the components you used other than standard resistors, capacitors, and parts available in the
MicroP’s lab.

Part Source Vendor Part # Price
Optrex DMC 16249
2x 16 LCD

MicroPs lab

16-button keypad MicroPs lab

11

Appendix A: Pinouts

12

Serial Interface:

FPGA HC11
MOSI 45 PD3
SCK 46 PD4
~SS 47 PD5

LCD Interface:

LCD HC11 OTHER
Vss GND
Vcc Vcc
Vee GND
RS PA4
R/W PA5
E PA3
DB0 PB0
DB1 PB1
DB2 PB2
DB3 PB3
DB4 PB4
DB5 PB5
DB6 PB6
DB7 PB7

Keyboard Interface:
Keyboard FPGA
Row0 P38
Row1 P39
Row2 P40
Row3 P44
Col0 P18
Col1 P19
Col2 P20
Col3 P23

13

Appendix B: Report on GCC Compiler

14

Report on gcc

We tried using a C compiler for the HC11 instead of writing in assembly. We were unable to get
it to work before writing our assembly code, however after we were done we realized that we were not
point the compiler at a valid location for the stack. After giving it a good location for the stack, the
compiler worked.

The compiler is a port of gcc, a free compiler written by the gnu
project. It does not yet support C++, but the C compiler works. It also comes with a simulator, a debugger,
and an assembler. The simulator works fine. The debugger is supposed to work with both the simulator
and buffalo, but we only got it working with the simulator. The assembler might be useful for linking in
assembly functions with C code but it does not use the same syntax as as11 and we couldn't get it working.

The compiler is availible on the web from http://home.worldnet.fr/~stcarrez/m68hc11_port.html.
I compiled it under linux, but the author has binaries for windows availible from his webpage. You need
to get both the binutils and gcc for a basic setup, but I'd recommend the debugger. You might also want
the newlib library, which has some useful functions. Follow his instruct for installing the stuff, for linux it
was very straightforward.

In order to get the code to put the code, data, and stack in the right locations, you need to put a
file called memory.x in the directory which you are compiling in. The format of memory.x is shown below
(I copied this from one of his examples, but modified it to use locations which work with buffalo).

To compile code into .s19 so you can download it to the hc11, you do the following:
? compile the .c code into an .o file

m68hc11-elf-gcc -mshort -g -Wall -0s file_name.c
? link the .o file(s) into a .elf file

m68hc11-elf-gcc --mshort -Wl,-m,m68hc11elfb file_name.elf file_name(s).o
? translate the .elf file into .s19

m68hc11-elf-objcopy --output-target=srec --only-section=.text
--only-section=.rodata --only-section=.vectors file_name.elf file_name.s19

If you want to run the simulator or the debugger, you just need the .elf file. The -Wl,-
m,m68hc11elfb option is telling the linker to use the memory.x file you specified, instead of just putting
the code into default locations which won't work the hc11's we have, so if you don't do this it'll simulate
fine but won't work on the board. the --only-section parts of the objcopy don't seem to matter, but the
author used them in his examples, so...

We didn't test the compiler very thoroughly, but it seemed to work. We did notice that it seemed
to be using unsigned comparisons (<, >), so be careful with comparisons.

15

memory.x file:

/* Fixed definition of the available memory banks.
 See generic emulation script for a user defined configuration. */
MEMORY
{
 page0 (rwx) : ORIGIN = 0x0, LENGTH = 30
 text (rx) : ORIGIN = 0xC200, LENGTH = 0x1E00
 data : ORIGIN = 0xC000, LENGTH = 0x200
}
/* Setup the stack on the top of the data memory bank. */
PROVIDE (_stack = 0xC200 - 1);

Sample Makefile:

#Makefile
Dan Smith
written to compile .elf and .s19 files from c code

#programs
BASE = m6811-elf-
CC = $(BASE)gcc
OBJCOPY = $(BASE)objcopy

#compiler options
CFLAGS = -mshort -g -Wall -Os
LFLAGS = -mshort -Wl,-m,m68hc11elfb
OFLAGS = --output-target=srec --only-section=.text --only-
section=.rodata --only-section=.vectors

#change this to build something else
TARGET = greatest.elf
STARGET = greatest.s19
OBJECTS = greatest.o

all: $(TARGET)

$(TARGET): $(OBJECTS) memory.x
$(CC) $(LFLAGS) -o $(TARGET) $(OBJECTS)
$(OBJCOPY) $(OFLAGS) $(TARGET) $(STARGET)

%.o: %.c
$(CC) $(CFLAGS) -c $<

clean:
rm *.o
rm *.elf
rm *.s19

16

Appendix C: Verilog Files

17

module main (clk, reset, rows, cols, mosi, serialclk, slaveselect) ;

input clk; //FPGA internal clock
input reset; //FPGA internal reset (big red button)

input [3:0] rows;
output [3:0] cols;

output mosi; //the keypress bits for serial output
output serialclk; //the clock used to control the serial transfer
output slaveselect; //goes low during the transmission, high otherwise

wire slowclk; //the slowed-down FPGA clock
wire[3:0] key; //the key that was pressed

clkdiv myclkdiv(clk, reset, slowclk); //slow down the clock
keypad mykeypad(slowclk, reset, rows, cols, key, keypressed); //poll the keypad
keyout mykeyout(clk, reset, key, keypressed, mosi, serialclk, slaveselect);

//output the pressed key serially

endmodule

///////////////////////////////////////
module clkdiv(clk, reset, slowclk);

input clk; //FPGA internal clock
input reset; //FPGA internal reset (big red button)
output slowclk; //the slowed-down FPGA clock

reg[11:0] count;

//This synthesizes to an asynchronously resettable counter.
//The reset line is tied to the global set/reset line of the FPGA
always@(posedge clk or posedge reset)

if (reset) count = 0;
else count = count +1;

assign slowclk = count[11];

endmodule

///
module keypad(slowclk, reset, rows, cols, key, keypressed);

input slowclk; //slowed-down clock
input reset; //FPGA internal reset (big red button)

input [3:0] rows;
output [3:0] cols;

output [3:0] key; //contains the binary value of the pressed key
output keypressed; //a key was pressed

reg keypressed; //for FSM
reg [3:0] cols;
reg [3:0] key;

//scanning FSM
always @(posedge slowclk or posedge reset)

if (reset) begin
keypressed <=0;
cols <= 4'b0111;

end else if (&rows) begin
//no key pressed on this column, so keep scanning
keypressed <= 0;
cols <= {cols[0], cols [3:1]}; //shift cols right

end else if (~keypressed) begin
keypressed <= 1;

end
//otherwise wait until all keys are released before continuing

//keypad conversion
always@(rows or cols)

18

case ({rows, cols})
8'b0111_0111: key <= 'hC;
8'b1011_0111: key <= 'hD;
8'b1101_0111: key <= 'hE;
8'b1110_0111: key <= 'hF;
8'b0111_1011: key <= 'h3;
8'b1011_1011: key <= 'h6;
8'b1101_1011: key <= 'h9;
8'b1110_1011: key <= 'hB;
8'b0111_1101: key <= 'h2;
8'b1011_1101: key <= 'h5;
8'b1101_1101: key <= 'h8;
8'b1110_1101: key <= 'h0;
8'b0111_1110: key <= 'h1;
8'b1011_1110: key <= 'h4;
8'b1101_1110: key <= 'h7;
8'b1110_1110: key <= 'hA;
default: key <= 'h0;

endcase

endmodule

///
module shift (clk, reset, load, indata, outdata) ;

//this is a basic 8-bit shift register

input clk, reset ;
input load;
input [7:0] indata ;
output outdata ;

reg [7:0] data;

always @(posedge clk or posedge reset)
begin
 if(reset == 1)

data <= 8'b1010_1010;
 else if (load == 1)
 data <= indata; //if loading, immediately load everything in

 else
begin //otherwise, shift everything through

 data[7] <= data[6];
 data[6] <= data[5];
 data[5] <= data[4];
 data[4] <= data[3];
 data[3] <= data[2];
 data[2] <= data[1];
 data[1] <= data[0];
 data[0] <= 1;

end
end

 assign outdata = data[7]; //the 7th bit is the MOSI out.

endmodule

///
module keyout (clk, reset, key, keypressed, mosi, serialclk, slaveselect) ;

input clk, reset; //serial clock
input [3:0] key; //the key that was pressed
input keypressed;

output mosi; //the keypress bits for serial output
output serialclk; //clock that controls the serial transfer
output slaveselect; //low during transmission, high otherwise.

reg [7:0] shiftreg; //shift register that holds the serial output
reg [3:0] bitcounter;

reg shiftclk;
reg serialclk;
reg previouslynotpressed;
reg load;

19

always @(posedge clk or posedge reset) //at every clock tick
if(reset)

begin
serialclk <= 0;
shiftclk <= 0;
load <= 1;
bitcounter <= 4'h8;
previouslynotpressed <= 1;

end
else if(keypressed)

begin
if(previouslynotpressed)

begin
load <= 1;
shiftclk <= 1; //the shifting clock is high
serialclk <= 0; //the serial clock outputted to the

 //HC11 is low
bitcounter <= 0; //we initialize the bit we start

 //transmitting to 0
previouslynotpressed <= 0;

end
else

begin
load <= 0;
if(bitcounter < 4'h8) //if we haven't yet

//transmitted bit 8,
begin

shiftclk <= ~shiftclk;
//toggle shift clock
serialclk <= ~serialclk;
//toggle serial clock
if(shiftclk)

bitcounter <= bitcounter + 1;
end

else
begin

//otherwise, we're on bit 8.
//end. transmission.

shiftclk <= 0;
//shift clock stays low

serialclk <= 0;
//the serial clock goes low (we aren't
//transmitting everything)
end

end
end

else
begin

previouslynotpressed <= 1;
shiftclk <= 0;
serialclk <= 0;
bitcounter <= 4'h8;
load <= 1;

end

assign slaveselect = ~(keypressed & (bitcounter < 4'h8) | serialclk);
//slave select goes low when we transmit data

shift outRegister(shiftclk, reset, load, {4'b1111, key}, mosi);
//shift out the data with 1’s in the bits we don’t use.

endmodule

Appendix D: Assembly Code

20

queue.asm

* Dan Smith
* 11/28/00
* e155 final project
* main event loop
* description - this program maintains a queue of messages
* it allows editing of the messages. It displays the messages
* to an lcd display and receives the messages from an FPGA. This
* file contains the message control aspects.

**
*constants

*locations, sizes
QUEUE_LOC EQU $C000
QUEUE_END EQU $C200
MESSAGE_SIZE EQU $10
NG_MESS_SIZE EQU $fff0
NUM_MESSAGES EQU $1f
STACK_LOC EQU $C380
PROGRAM_LOC EQU $C400
SCRATCH_LOC EQU $C390 ;used for scratch space in memory

*keys
UP EQU $FD
DOWN EQU $F6
LEFT EQU $F3
RIGHT EQU $F9
NEXT EQU $F5
PREV EQU $F2
DONE EQU $F8
DELETE EQU $F7
ADD EQU $F4
EDIT EQU $F1

*chactacters
SPACE EQU ' '
NULL EQU #0
FIRST_CHAR EQU ' '
LAST_CHAR EQU 'z'

* initial queue

org QUEUE_LOC
fcc "Marquee "
fcc "Display "
fcc "Katherine "
fcc " &Dan"
fcc "E155 is fun&EZ!!"

PREDEF: fcc "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"

* initialization code
* clear the queue, initialize the i/o devices

org PROGRAM_LOC

21

lds #STACK_LOC
jsr INITSPI ;initialize the serial interface
jsr INITDR ;initialize the display
jsr CLEAR ;clear the display
jsr CLEAR_QUEUE ;clear the queue
ldx #QUEUE_LOC ;load the X register with a pointer to

queue

**
*main loop
* scroll through messages, on a keypress go the the next message
MAIN:

pshx ;push x onto the queue for subroutine calls
jsr DISPLAY_MESSAGE
jsr WAITASEC
pulx
inx ;shift the display by 1 (scrolling)
clra
cmpa 0,X ;check to see if the next value is null
bne CONT1 ;if the next value is not null go on
ldx #QUEUE_LOC ;go back to the beginning of the queue

CONT1: pshx
jsr TESTDATA ;after this, A will be 0 if no input
pulx
cmpa #$0
beq MAIN ;if there is no input, display again
pshx
jsr MESSAGE_CONTROL ;otherwise
pulx
bra MAIN

*main loop helper functions

*clear the queue
CLEAR_QUEUE:

ldy #PREDEF ;start the end of the predefined messages
ldab #NULL ;write null to the queue

LOOP4: stab 0,Y
iny
cpy #QUEUE_END
bne LOOP4

rts

**
*message control loop
*create, delete, edit messages
*sequence
* display the current message
* read input (wait for it)
* switch(input)
* create a new message
* delete current message
* edit the current message
* go to the next message
* go to the previous message
* return to main loop

22

MESSAGE_CONTROL:
ldx #QUEUE_LOC ;start at the beginning of the queue

LOOP1: pshx
jsr DISPLAY_MESSAGE ;display the message
jsr GETDATA ;wait for input
pulx

cmpa #NEXT ;go to the next message
bne CASEA1
jsr NEXT_MESSAGE
bra LOOP1

CASEA1: cmpa #PREV ;go to the previous message
bne CASEA2
jsr PREV_MESSAGE
bra LOOP1

CASEA2: cmpa #DELETE ;delete a message
bne CASEA3
jsr DELETE_MESSAGE
bra LOOP1

CASEA3: cmpa #EDIT ;edit a message
bne CASEA4
jsr EDIT_MESSAGE
bra LOOP1

CASEA4: cmpa #ADD ;add a message
bne CASEA5
jsr NEW_MESSAGE
bra LOOP1

CASEA5: cmpa #DONE ;return to main loop
bne CASEA6
rts
bra LOOP1

CASEA6: bra LOOP1 ;default case

*message control helper functions

*go to the next message
* X = message
NEXT_MESSAGE:

ldab #MESSAGE_SIZE
abx
clra ;check to see if we have reached the end
cmpa 0,X
bne CONT2
ldx #QUEUE_LOC ;if we have, go to the beginning

CONT2: rts

*go to the previous message
* X = message
PREV_MESSAGE:

cpx #QUEUE_LOC ;check to see if we have reached the
beginning

bne CONT3

23

rts ;if we have, don't go anywhere
CONT3:

xgdx ;go back a message
addd #NG_MESS_SIZE ;
xgdx ;
rts

*message creation
NEW_MESSAGE:

jsr FIND_TAIL ;find the end of the queue
cmpa #$0 ;see if the queue is full
bne CONT4 ;if the queue is not full, branch
pshx ;display an error
jsr ERROR
pulx
rts

CONT4: pshx ;set message might corrupt X
ldaa #SPACE
jsr SET_MESSAGE ;set the message to spaces
pulx
jsr EDIT_MESSAGE ;edit the newly created message
rts

*message deletion
* X = message
DELETE_MESSAGE:

pshx
jsr MOVE_TAIL ;move the last nonempty message to

* ;the deleted locations
pulx
jsr FIND_TAIL ;find the tail
cpx #QUEUE_LOC ;if the queue is empty return
beq CONT12 ;

xgdx ;
addd #NG_MESS_SIZE ;find the last nonempty message
xgdx ;
ldaa #NULL
pshx
jsr SET_MESSAGE ;set the last message to NULL
pulx

CONT12: rts

*find the tail of the queue (the first empty message
*if the queue is full, store 0 in accumulator A
*otherwise store 1
*tail is stored in X
*return in A
FIND_TAIL:

ldx #QUEUE_LOC ;start a message below the queue
xgdx
addd #NG_MESS_SIZE
xgdx
ldaa #NULL ;we want to check for NULL

* ;at each message
LOOP2: ldab #MESSAGE_SIZE ;increment the pointer

24

abx
* note, we want to check to see if we are at the last message
* the reason is because we cant to leave the last message all NULLs

cpx #QUEUE_END
bne CONT5
ldaa #0 ;if the queue is full return 0
rts

CONT5: cmpa 0,X
bne LOOP2 ;if this isn't the end of the queue, go *

;on

ldaa #1 ;return 1
rts

*move last message in queue to a location pointed to by the X index
register
*used for delete.
* X = message
MOVE_TAIL:

pshx
jsr FIND_TAIL
puly ;getting tricky, we want Y to have the old

* ;location and X to have the tail of the list
cpx #QUEUE_LOC ;check to see if tail = head (empty queue)
beq CONT6 ;if they're equal just return

xgdx ;
addd #NG_MESS_SIZE ;
xgdx ;go to the last nonempty message
sty SCRATCH_LOC ;compare y to x
cpx SCRATCH_LOC ;
beq CONT6 ;if they're equal, just return

ldab #MESSAGE_SIZE ;initialize counter
LOOP6: ldaa 0,X ;get a byte from the tail

staa 0,Y ;put it in the location
inx ;
iny ;go to the next byte
decb ;decrement counter
bne LOOP6 ;loop

CONT6: rts

**
*message editing
*this function assumes the X index register is already pointing
*at the message in memory. It just diplays the cursor and changes
*the characters
* sequence
* display message
* display cursor
* get input
* switch (input)
* move cursor left
* move cursor right
* increment character
* decrement character
* return to message control

25

* X = message

EDIT_MESSAGE:
stx SCRATCH_LOC ;
ldy SCRATCH_LOC ;copy X to Y
pshy
pshx
jsr DISPLAY_MESSAGE ;display the message
jsr HOME
jsr CUR_ON ;turn on the cursor
pulx
puly

LOOP7: pshy
pshx
jsr GETDATA ;wait for input
pulx
puly

cmpa #UP ;go up a character
bne CASEB1
jsr UP_CHAR
bra LOOP7

CASEB1: cmpa #DOWN ;go down a character
bne CASEB2
jsr DOWN_CHAR
bra LOOP7

CASEB2: cmpa #LEFT ;go left
bne CASEB3
jsr PREV_CHAR
bra LOOP7

CASEB3: cmpa #RIGHT ;go right
bne CASEB4
jsr NEXT_CHAR
bra LOOP7

CASEB4: cmpa #DONE ;return to message control loop
bne CASEB5
pshx
jsr CUR_OFF
pulx
rts
bra LOOP7

CASEB5: bra LOOP7 ;default case

rts

*edit message helper functions

*rotate character pointed at by Y up
*Y = char
UP_CHAR:

inc 0,Y ;go up a character
ldaa 0,Y ;
deca ;

26

cmpa #LAST_CHAR ;check to see if we're at the last character
bne CONT8
ldaa #FIRST_CHAR ;
staa 0,Y ; jump to the first character

CONT8: ldaa 0,Y ; write the character to the LCD
pshx
pshy
jsr WRITED
jsr CUR_LEFT
puly
pulx
rts

*rotate character down
*Y = char
DOWN_CHAR

dec 0,Y ;go down a character
ldaa 0,Y ;
inca ;
cmpa #FIRST_CHAR ;check to see if we're before the first char
bne CONT9
ldaa #LAST_CHAR ;
staa 0,Y ;jump to the last character

CONT9: ldaa 0,Y ;write the character to the LCD
pshx
pshy
jsr WRITED
jsr CUR_LEFT
puly
pulx
rts

*go to the next character (in memory and display)
*Y = char
* X = start of message
NEXT_CHAR:

pshx ;save for later
ldab #MESSAGE_SIZE
decb
abx ;X now holds the end of the message
stx SCRATCH_LOC ;
pulx
cpy SCRATCH_LOC ;check to see if Y is the end of the message
bne CONT10
stx SCRATCH_LOC
ldy SCRATCH_LOC ;go the the beginning of the message
pshx
pshy
jsr HOME ;move the cursor home
puly
pulx
rts

CONT10: iny ;increment the pointer
pshx
pshy
jsr CUR_RIGHT ;move the cursor left

27

puly
pulx
rts

*go to the previous character (in memory and display)
*Y = char
*X = start of message
PREV_CHAR:

stx SCRATCH_LOC ;
cpy SCRATCH_LOC ;check to see if Y is the start of the message
bne CONT11
rts ;just stay at beginning if at beginning, no

wrap* ;around

CONT11: dey ;decrement the pointer
pshx
pshy
jsr CUR_LEFT ;move the cursor right
puly
pulx
rts

**
*generic helper functions

*display a message
* X = pointer to message
DISPLAY_MESSAGE:

ldab #MESSAGE_SIZE ;initialize counter
incb
pshx
pshb
jsr HOME ;go to the beginning of the display
pulb
pulx

LOOP3:
ldaa 0,X
pshx
pshb
jsr WRITED
pulb
pulx
inx ;increment the pointer
decb ;decrement the counter
bne LOOP3 ;loop until counter=0
rts

*set a message to the value accumulator A
*used to clear a message or initizialize it to some character
* A = value to set
* X = pointer to message
SET_MESSAGE:

ldab #MESSAGE_SIZE ;b is a counter
LOOP5: staa 0,X

inx
decb
bne LOOP5

rts

28

*display an error message

ERRM FCC "ERROR " ;the acual error message
ERROR: ldx #ERRM ;

jsr DISPLAY_MESSAGE ;display the string above
jsr WAITASEC ; delay for 1 second
jsr WAITASEC
jsr WAITASEC
ldx QUEUE_LOC ;reinitialize X
rts

*wait one-third of a second
WAITASEC: ldab #10 ; 10 overflows
DELAY1: ldaa #10000000 ; clear the TOF to start the delay

staa $1025 ; store in TFLG2
SPIN1: tst $1025 ; do 10 overflows for approx. 1/3 sec

bpl SPIN1 ; is flag 0? branch on bit 7 is clear
decb ; decrement counter
bne DELAY1 ; if we haven't counted to 0 yet, delay again
rts

29

interface.asm
*LCD Assembly Subroutines
*Katherine Wade
*11/30/00

*this code is based upon Jason Fong and Ferndando Mattos' code from last
year.

PORTA EQU $1000 *LCD Control Register
PORTB EQU $1004 *LCD Data Register

DDRD EQU $1009 *SPI Configuration Register
SPCR EQU $1028 *SPI Control Register
SPSR EQU $1029 *SPI Status Register
SPDR EQU $102A *SPI Data Register

ZERO EQU $0000 *for comparison purposes
DELAY EQU $0002 *holds the amount to wait

*this org is commented out so that this code will be put following
*the queue code in memory by the assembler
* ORG $c000

*initialize the serial port as a slave
INITSPI: ldaa #%00000100
 staa DDRD
 ldaa #%01001100
 staa SPCR
 clra
 rts

**
INITDR: ldaa #$38 //initializes the LCD driver
 jsr WRITEC
 ldaa #$38
 jsr WRITEC
 ldaa #$38
 jsr WRITEC
 ldaa #$06
 jsr WRITEC
 ldaa #$0C
 jsr WRITEC
 rts

*port A
*bit 3 = enable
*bit 4 = register select (0 for control)
*bit 5 = R/W (0 for writing data)
WRITEC: ldab PORTA //writes to the LCD control, control data in
acc.A
 andb #%11000111
 stab PORTA
 staa PORTB
 ldab PORTA

30

 andb #%11001111
 orab #%00001000
 stab PORTA
 ldab PORTA
 andb #%11000111
 stab PORTA
 ldab PORTA
 andb #%11100111
 orab #%00100000
 stab PORTA
 ldaa #10 //wait 10 ms
 staa DELAY
 jsr WAIT
 rts

*port A
*bit 3 = enable
*bit 4 = register select (1 for data)
*bit 5 = R/W (0 for writing data)
WRITED: ldab PORTA //write char data to LCD, char data in acc. A
 andb #%11010111
 orab #%00010000
 stab PORTA
 staa PORTB
 ldab PORTA
 andb #%11011111
 orab #%00011000
 stab PORTA
 ldab PORTA
 andb #%11010111
 orab #%00010000
 stab PORTA
 ldab PORTA
 andb #%11110111
 orab #%00110000
 stab PORTA
 ldaa #2 //wait 2ms
 staa DELAY
 jsr WAIT
 rts

WAIT1: ldy #40 //waits for 1 ms
LOOPW1: dey
 cpy #ZERO
 bne LOOPW1
 ldy #40
LOOPW2: dey
 cpy #ZERO
 bne LOOPW2
 ldy #40
LOOPW3: dey
 cpy #ZERO
 bne LOOPW3
 rts

WAIT: ldaa DELAY //wait for variable amount of seconds
LOOPW: cmpa #ZERO
 beq RETURN

31

 jsr WAIT1
 deca
 jmp LOOPW
RETURN:
 RTS

SWI

CLEAR: ldaa #$01 //clears the LCD
 jsr WRITEC
 rts

CUR_ON: ldaa #$0D //turns cursor on
 jsr WRITEC
 rts

CUR_OFF: ldaa #$0C //turns cursor off
 jsr WRITEC
 rts

CUR_LEFT: ldaa #$10 //moves cursor left
 jsr WRITEC
 rts

CUR_RIGHT: ldaa #$14 //move cursor right
 jsr WRITEC
 rts

HOME: ldaa #$02 //move cursor home
 jsr WRITEC
 rts

*wait for data from the serial port
CHECKDATA: ldaa SPSR
 anda #%10000000
 cmpa #$80
 bne CHECKDATA
 rts

*check for data from the serial port
*regA = 0 if no data
*regA = 0x80 if data
TESTDATA:

ldaa SPSR
anda #%10000000
rts

*wait for data from the serial port
*put in it register A

32

GETDATA: jsr CHECKDATA
 ldaa SPDR
 rts

