Digital Logic Game
Fina Project Report
December 9, 2000
E-155

Michad James Messina and Richard Trinh

NOT OR AND XOR

Abstract:

Beginning computer engineering students occasionally have difficulty grasping the concepts of
digital logic. Standard digital logic exercises can become tiresome and repetitive, so afun, new
method of teaching digital logic could help students understand. This project prototypes a digital
logic game consisting of an array of LEDs, hexadecimal score display, a keypad, a microcontroller,
and FPGA. Two patterns and one of six logic functions are pseudo-randomly selected. The player
has some amount of time to perform that function with the two patterns and enter it with the
keypad. The FPGA determinesif the answer is correct, and adjusts the score and difficulty
appropriately. The player wins when he correctly answers ten patterns.

Introduction

The team has designed and built a game displayed on an array of LEDs that teaches the
player about digital logic. The player is shown two pseudo-randomly generated patterns of lit
LEDsona3 x 3 grid. The player isalso shown a set of four LEDs that correspondsto six possible
pseudo-randomly generated digital logic operations. OR, AND, XOR, NOR, NAND, XNOR. The
player then tries to perform the selected digital logic operation on the two given patterns, then
inputs the result onto athird 3 x 3 grid using akeypad. The player has some amount of time to
complete and submit the answer pattern, and this amount of time is based on the player’s current
score. The remaining time available to complete the pattern is displayed as a binary countdown.
The player earns one point for each correctly answered pattern, and wins when he has a score of A.

A functiona block diagram is shown in Figure 1. The HC11 pseudo-randomly generates
two patterns and chooses alogic function. The FPGA polls the keypad for a key press, toggles the
corresponding LED in the grid, determines the correctness of answers and score, outputs the game
datato the LED array and the score to the hexadecimal display, and determines when the player

wins the game.

Polling Display
| ' LED
Keypad | N FPGA | Array
Key Press
Pseudo-random Score
game data
EVB/ Hexadecimal
HC11 Display

Figure 1: Functional Block Diagram

Digital Logic Game

Schematics

Below are the final breadboarded schematics. Figure 2 shows the schematics for the
keypad, Figure 3 for the hexadecimal display, Figure 4 for the pattern LED array, and Figure 5 for

the logic function LEDs.

5V
D3 4.7 k ohm

= E Pinas M
. e I
R2 — ‘I’: :

[PnpT |—{ Pn49 M
Cc1 ———— Jﬁ
c2 Im— . Pin 77
Figure2: Keypad S‘chew| /\/\ [Anro |

Hexadecimal FPGA
Display

Figure 3: Hexadecimal Display Schematic

Digital Logic Game

5V

/

4.7 k ohm
.

"
|/ N
“il

4.7 k ohm
4.7 k ohm

Pin 44

330 ohm
5

330 ohm
5

330 ohm

330 ohm
5
330 ohm
.J_/\ __ﬁ n2s

330 ohm
IS

330 ohm
5

330 ohm

5)
330 ohm

2999999 P Q
9222999 %[%

Figure4: LED Array Schematic

5

<
|

330 ohm

OR _@ Pin 58

Figure5: Logic Function LED Schematic

Digital Logic Game

Microcontroller Design

An HC11 was used to generate pseudo-random patterns for the game. The input to the
system was the Port A zero pin (PAO). The HC11 polls this pin in asimple loop. When the pinis
high, a pattern is generated, which is discussed below. This pin is connected to the FPGA output
“GETPAT” and is high when the SO state in the FPGA is reached (see FPGA Design). The patterns
are then generated.

The algorithm used followed the idea of a linear shift register implemented in assembly. A
pseudo-random pattern of 31 bits needed to be generated, since at least 21 bits of pattern were
needed for the game. This required a seed-value of 5 bits long. According to aweb page written by
Clive Maxfield, the “taps’ for such aregister are the are the second and the last bits. The agorithm
in assembly was implemented as follows:

1. Use the last 5 bits of the timer ($100E) as a seed value and put it in an accumulator.

2. Determine bit 5 (using 7:0 convention) by an XOR operation of bits0 and 3.

3. Shift the accumulator right by one bit.

4, Place bit 0 into the next hit of the pattern bytes in memory ($D100-$D103)

5. Perform Steps 2-5 as needed until 32 bits are determined.

After the pattern generation, the Serial Peripheral Interface (SPI) is set up for seria data
transfer to the FPGA. The HC11 is set up as the master, and thus drives the transfer using SCK and
uses the MOSI pin to hold each bit of data. These pins are outputs from the HC11 and connect to
the FPGA inputs “SCK” and “ MOSI” (see FPGA Design). Once the pattern is sent, the HC11

begins polling PAO until the next GETPAT signal from the FPGA is sent.

Digital Logic Game 5

FPGA Design

The team has written Verilog code to control the game LEDs and the keypad. There are
twelve Verilog modules. main, FSM, counter, scorekeep, countdown, keypad, anspatterntoggle,
display, clkdiv, determinecorrectpattern, shiftreg, and segdisp. Thetiming of the game are
controlled with afinite state machine in the module FSM. Other game functions, such as providing
a countdown timer, determining the correct answer pattern, keeping score, and displaying the score
are controlled with the modules countdown, determinecorrectpattern, scorekeep, and segdisp,
respectively. The module display controls the 31 game LEDs, and the modul es keypad and
angpatterntoggle control the function of the keypad. The module clkdiv slows the clock by 4096
times to prevent blending in the multiplexing of the LED display. The module shiftreg processes
the pseudo-random input from the HC11 which helps to create the game patterns and logic
function. The module main unifies the other modules.

Controlling the 27 pattern LEDs can be divided into two distinct tasks. The first task
consists of controlling the two patterns given to the player. These patterns are created using a
pseudo-random pattern generator viathe HC11. The second task of controlling the LEDs consists
of controlling the 9 LEDs of the answer pattern whose input is determined by input from the
keypad. The 27 pattern LEDs currently use three PNP transistors to multiplex ina 3 x 9 array,
requiring 12 pins on the FPGA to drive them.

The keypad module determines when akey is pressed through the method of polling, a
technique used to reduce the number of pins required on the FPGA and to reduce the amount of
logic required for a keypad with a discrete switch for each button on the keypad. For our game, we
use buttons on 4 rows and 3 columns of the keypad, requiring 7 pins on the FPGA. Once key

presses are recognized, the anspatterntoggle modul e interprets them and toggles the 9 LEDs of the

Digital Logic Game 6

answer pattern between being lit and unlit. The layout of the keypad is shown in Figure 6. The
keys labeled T toggle the LEDs for the answer pattern, the key labeled S submits the displayed
answer pattern, the key labeled N requests the next pattern to continue the game, and the black keys

are unused.

TTT-
TTT-
TTT-
g N

Figure 6: Keypad Layout

The finite state machine has four states, SO through S3. The state transition diagram is
shown in Figure 7. In S0, the program waits for a pseudo-random pattern and remainsin SO until
oneisreceived. Once received, the pattern is sent to the display and the program movesto S1,
where it waits for input from the player. It isin this state that the player can toggle and submit the
LEDs of the answer pattern. Once the player submits or the countdown timer reaches zero without
a submission, the program moves to S2, where it blinks the correct answer in the LEDs of the
answer pattern. During the transition from S1 to S2, the program also increments the score and
adjusts the countdown timer if the player submitted the correct pattern. Each time the player
scores, the countdown for the next pattern is reduced by four seconds, effectively making the game
progressively more difficult, ranging from 56 to 20 seconds. The program remainsin S2 until the
player requests the next pattern by pressing the N button, upon which the program returnsto SO. In

order for the game to not start immediately, the program moves to S2 upon reset, effectively

Digital Logic Game 7

making the player press the N button to begin the game. When the player correctly answers ten
patterns, the program asserts win, the hexadecimal displaysan A, and the LEDs display + s. At this

point, when the player requests the next pattern, none is given and the program moves to S3 where

it remains until reset.

Pattern not Wait for Pattern received it 1
ived Wait for
receiv pseudo-random . submitorcount = 0
L 5 pattern player input

win=0 _
and hlinkdone submitorcount = 1

Score incremented appropriately

Display WIN

Blink correct
answer pattern

pattern
win=1
and blinkdone

Figure 7: State Transition Diagram

Digital Logic Game 8

Results

At the time of project checkoff, the game functioned correctly when supplied with a pre-
determined pattern, but could not generate a pseudo-random pattern because of two major problems
with our implementation. The first problem was that the enabling bit of the SPI initialization was
simply not enabled. That caused the SPI wiresto ssimply float and no datato be sent to the FPGA.
After the code was modified to enable SPI, the patterns were sent as expected.

The second major problem was that the HC11 locked after generating pseudo-random
numbers after afew seconds. This was caused when the first bit of each random byte was written.
The first bit required no shifts, so this was taken care of after the label FIRST. Previous to this, Y
was pushed on the stack to keep track of what bit in the random byte was to be writen. Y could then
be used to count down the number of shifts. In the code after the FIRST label, however, the code
failled to pull Y back off the stack, and every time the first bit of a byte was written, the stack
increased. This eventually caused a stack overflow and the HC11 froze. The problem was solved
by smply pulling Y from the stack at the proper time.

After these problems were diagnosed and corrected, the team re-implemented the design.
The game now generates two pseudo-random patterns and selects a logic function, toggles the
LEDs of the answer pattern as determined by input from the keypad, appropriately increments the
score, displays the correct answer, and moves to awin state when the scoreis A. A problem does
exist however. It seems that a non-negligible amount of the patterns are all zeros. This problem
does not appear to bein the HC11 code, so it is probably in the FPGA code. This problem was not
fixed, but its effect on the game are not serious.

Overdl, the team is satisfied that the game performs according to the origina proposal, with

afew minor changes. The team originally intended for the score to decrement when an incorrect

Digital Logic Game 9

answer was submitted or when the countdown timer reached zero. Additionally, the score would
start at 7 and the game would end when the score reached 0 or F. The scoring paradigm is
arbitrary, and the team later felt that the player should not lose points. Therefore, the scoring
system was changed so that it started at O and ended at A. Another change to the original proposal
was that after connecting the circuitry and testing the keypad, the team determined that the key
presses did not need to be debounced, so the team no longer pursued that feature.

Considerations for future work on this project include implementing additional game

features, such as sound or alarger array of LEDs.

Digital Logic Game 10

References

[1] Clive Maxfield. “The Ouroboros of the digital consciousness: linear-feedback-shift registers’. EDN Access.
January 4,1996. http://www.ednmag.com/ednmag/reg/1996/010496/01df4.htm
[2] Motorola. M68HC11 Reference Manual, Revision 3.1991.

Parts List

The project required no components from outside the Microprocessors Laboratory.
Parts required include:

? 27 diffusered LEDs, 3 diffuse green LEDs, 1 diffuse yellow LED

? 1 keypad

? 1 hexadecimal seven-segment display

? 1 FPGA board

? 1 HCI11 evaluation board

? 1 perforated circuit board

? 1 breadboard

Digital Logic Game

11

1. Microcontroller Code

dooo

doo7

doo9
doob
dooe
do12
do14
do17
dola
doid
d020
doz3
do2s5
do28
do2b
do2e
do3o
do33
do35
do36
do37
do3s
do39
do3b
do3c
do3d
do3e
do3f

do40
do43
do44
do47
do49
do4b
doaf

do51
do52
dos4
do58
do5a
do5c
do5e
doe6o
do62
d066
do68
do6c
doed
do70
do72

do75
do77
do79
do7b

01

00

00

00

08

00

*Code

by M chael

*Decenber 4, 2000

*Thi s code generate pattern when

RBYTE
QUTLHF
QUTRHF
CRLF
TI MVE
DDRD
SPCR
SPSR
SPDR
PORTA

PCOLL

EQU $D104
EQU $FFB2
EQU $FFB5
EQU $FFC4
EQU $100E
EQU $1009
EQU $1028
EQU $1029
EQU $102A
EQU $1000

ORG $D000

LDAA PORTA
ANDA #$01
CWPA #$00
BEQ POLL

LDAA #3$00
LDX #$D100
LDY #$0000
LDAA #3$00
STAA $D101
STAA $D100
STAA $D102
STAA $D103
LDAA TI ME
ANDA #$1F
STAA RBYTE
STAA $D104
NEXTRB LDAA
ANDA #$01
LDAB RBYTE
ANDB #$08
ASRB

ASRB

ASRB

ABA

ANDA #$01
LSLA
LSLA
LSLA
LSLA
LSLA
CRA
ASRA
STAA RBYTE
ANDA #$01
PSHY

CPY #$0000
BEQ FIRST
SH FT LSLA
DEY
CPY
BNE

RBYTE

#$0000
SHI FT
0, X
0, X

#$0008
SAVEB
#$0000

#$D104
DONE
JwP

BEQ
SAMEB

FI RST
STAA 0, X
PULY

I NY

CRA

Appendices

James Messi na

port A[0] is high
RBYTE hol ds running byte in shift reg
these next three are for debuggi ng
our seed rbyte will be the tiner
PORT D DATA DI RECTI ON
SPI CONTROL
SPI CONTROL
SPI DATA
Port A will be used to poll for signal from FPGA

if porta[0]=0 then go back to POLL

X w Il hold which p-randombyte we are filling
Y will hold the offset within that byte
Cear all random bytes

W don't want repeated patterns

Timer gives seed 5 bit nunber

Called running byte really running 5bits

For debuggi ng purpose (check random nunbers)
RBYTE

Take the last bit of the running byte (RBYT E)

and bit 3 (7:0)
nove bit to bit O

the Oth bit will be the XOR of the bits
this bit will be the bit 5 (put it
inbit 6 and then shift entire byte)

add the bit in
shift byte right to get next running byte
Now we want new Oth bit to be added to random byte
Save current Y in order to use Y as a count for s hifting
If Y=0 then no shift is necessary
QG herwise there is at |east one shift
Decrenent the nunber of shifts
See if 0 shifts left
if not shift again
otherwi se add the bit to the p -randombyte in proper |ocation

Restore Y

Increment it (next bit requires 1 nore shift)

8 shifts => we are on next p-random byte

otherwi se we are on the same byte

if on next byte #shifts=0

let X point to next p-random byte

if X>d103 we have a 32 bit p-random nunber in [d100:d103]
and we are done

NEXTRB otherwi se cal culate next running byte
0, X set the first bit of the current RNDBYTE
restore Y

next bit will have to be shifted once

Digital Logic Game

12

0075 d07d 7e dO 2b JMP NEXTRB cal cul ate next running byte

0076 d080 b6 d1 00 DONE LDAA $D100

0077 * TAB

0078 * JSR QUTLHF

0079 * TBA

0080 * JSR QUTRHF

0081 * JSR CRLF

0082 * LDAA $D101

0083 * TAB

0084 * JSR QUTLHF

0085 * TBA

0086 * JSR QUTRHF

0087 * JSR CRLF

0088 * LDAA $D102

0089 * TAB

0090 * JSR QUTLHF

0091 * TBA

0092 * JSR QUTRHF

0093 * JSR CRLF

0094 * LDAA $D103

0095 * TAB

0096 * JSR QUTLHF

0097 * TBA

0098 * JSR QUTRHF

0099 * JSR CRLF

0100 * JMP POLL

Olol EE R R EE RS SRR SRR SRR RS EEEEREEEEEEEEERESES
0102 * SPl Initialization *
0103 *Info taken fromLab 6 solutions *
0104 LR R R R RS S SR SRR RS EEE RS R EEREEEEEEEEERESES]
0105 *Configures the SPI:

0106 *Bits 7,6: Always 0

0107 *Bit 5: 1, Slave Select=> gnore sshar
0108 *Bit 4: 1, SCK, =>nmster

0109 *Bit 3. 1, MOSI, =>master

0110 *Bit 22 0, MSO ignore for naster

0111 *Bit 1,0: 0, SCI, because ?????

0112 EE R R R R RS SRR SRR RS EEEEEEREEREEEEEEEEESESES
0113 d083 86 38 LDAA #%©0111000

0114 do85 b7 10 09 STAA DDRD

0115 EE R R R R RS SRR SRR RS EEEE SRR R EREEEEEEEEESESES]
0116 *SPl Initialization Continued *
0117 EEEEEE RS SRR S SRR SR EEEEEREEEEEEEEEEESESES]
0118 *Bit 7: SPIE (SPlI interrupt enable)=0 (disable interrupts)
0119 *Bit 6: SPE (SPI enable)=1 (enable SPI)
0120 *Bit 5. DWOM (PortD wired-OR) =0 (Di sable DNV
0121 *Bit 4: MSTR (SPI Master Mdde)=1 (SPl is master)
0122 *Bit 3,2 CPOL ,CPHA (clock polarity and phase)=11 for SCK active on rise
0123 *Bit 1,0 SPRL , SPRO (cl ock setting)=00 for 1Mit/sec (fast enough)
0124 EE R R RS RS EE RS EEE SRR RS EEEEREEEEEEEEESESES
0125

0126 d088 86 5c LDAA #%©1011100

0127 d08a b7 10 28 STAA SPCR

0128

0129 LR R R RS S SRR S SRR R SRR R EEEEEEEEEEEES]
0130 *Send to FPGA

0131 * Wth SPI initialized we can
0132 * send the 3 bytes to FPGA

0133 EEEEE RS S SRR S EEE R EEEEEEEREEEEEEEEEES]
0134 do8d fe d1 00 LDX $D100

0135 d090 bc d1 03 NXTB CPX $D103

0136 d093 27 10 BEQ FI NI SH

0137 d095 a6 00 LDAA 0, X

0138 d097 b7 10 2a STAA SPDR wites to spi data
0139 d09a b6 10 29 WAIT LDAA SPSR

0140 d09d 84 80 ANDA #$80 this bit indicates SPI transfer of byte conplete
0141 doof 27 f9 BEQ WAI T wait until byte is conplete
0142 doal 08 I NX

0143 d0a2 7e dO 90 JMP NXTB

0144 doa5 7e dO 00 FINI SH JMP POLL

0145

0146

Digital Logic Game

2. Veilog Code

/1 Author: M chael Janes Messina/Richard Trinh
// Date: Decenber 3, 2000

nodul e nai n(cl k, reset, r, c, rowchoose, di spl ayrow, f unc, | eds, segs, SCK, MOSI , GETPAT) ;

input clk,reset;

input [3:0] r;

i nput SCK, MOSI; //fromthe HCL1
output [2:0] c;

output [2:0] rowchoose;

output [8:0] displayrow

output [3:0] func;

output [7:0] |eds;

output [6:0] segs;

out put CETPAT,;

wire slowclk, blink, resetflag, subnit, correct,w n, patternreceived;

wire [8:0] anspattern,correctanspattern;

wire [20:0] pattern;

wire [3:0] key;

wire [3:0] score;

//assign pattern=21'b101100011110101000001; //test pattern
//assign patternrecei ved=1;

FSM fsn(cl k, reset, patternrecei ved, subnit, correct, score, resetfl ag, blink, bl i nkdone, | eds, wi n, GETPAT) ;
cl kdi v cd(clk,reset, sl owcl k) ;

keypad kp(slowcl k, reset, r,c, key);

di splay disp(slowlk,reset, pattern, anspattern, rowhoose, di spl ayrow, func, wi n);

determ necorrectpattern dcp(clk,reset, pattern,correctanspattern);

anspatterntoggl e apt(slowclk, reset, key, correctanspattern, blink, anspattern,correct, subm t, blinkdone);

segdi sp sd(clk,reset, score, segs);
shiftreg sr(SCK, reset, resetflag, MOSI, pattern, patternreceived);

endnodul e

IR NN NNy,

nodul e FSM cl k, reset, patternrecei ved, subm t, correct, score, resetfl ag, blink, bl i nkdone, count out, wi n, GETPAT) ;
/1 The following is the "standard" FSM setup

//S0:get pattern:no display; ends when pattern done
//Sl:allow user to input answer (countdown): display;

/1 ends with user-submt or countdown done; inc/dec score
/1S2: flash correct pattern; ends after 5 seconds
/1 repeat

input clk,reset;

i nput subnit, patternreceived, bl i nkdone, correct;

out put resetflag, blink;

out put w n;

output [7:0] countout; //output of countdown to LEDs
output [3:0] score; //keeps the score for the gane
out put CETPAT,;

reg [1:0] state, nextstate;

wire resetflag, blink,w n;

reg [20:0] pattern;

wire gocount, countdone; //go count makes countdown go, countdone tells FSMto take anspattern as is
wire submtorcount; /1 hi gh when either user presses subnit or count is done => answer is subnitted

par armet er S0=2' b0O;
par amet er S1=2' b01;
par amet er S2=2' b10;
par amet er S3=2'bl1;

reg [3:0] score; //for holding score to send to output
reg inc; //holds increment command for sk bel ow
scorekeep sk(clk,reset,inc,score); //modul e for keeping score for ganme (see next nodul e)

countdown cd(clk, reset, gocount, score, countout);
assign W n=(score==4'b1010);

assi gn gocount =(st at e==S1);

assi gn count done=(count out ==0) ;

assign subnitorcount=(countdone | submit); //the pattern will be taken if submt is pushed or count done

assign resetflag=((state==S1)& patternreceived); //reset the shift regi ster nodule (to reset
assi gn blink=(state==S2); //blink if in state 2
assi gn GETPAT=(st at e==S0) ;
/] State Register
al ways@ posedge cl k or posedge reset)
if (reset) state<=S2;
el se st at e<=next st at e;

//State Logic
al ways@state or submitorcount or blinkdone or correct or win or patternreceived)

Digital Logic Game

14

case (state)
SO:

begi n
inc<=0; //we don't want to increnent in SO
if (patternreceived) next st at e<=S1;
el se next st at e<=S0; /1if the pattern has conpleted transfer goto Sl
//otherwi se stay in SO
end
S1: begi n
if (submtorcount) //if submt (B) has been pushed or count is done
begi n
inc<=(correct); //send inc signal to sk nodule to
//increnment score
next st at e<=S2; //then goto S2
end
el se
begi n
i nc<=0; //otherwi se don't set inc
next st at e<=S1; /land stay in Sl
end
end
S2: begi n
i nc<=0; //we don't want to increnent in S2 either
if (blinkdone)
begi n
i f(wn) nextstate<=S3; /1if score=10 win!
el se next st at e<=S0; //else go to next pattern
end
el se next st at e<=S2; //otherwi se stay in S2
end
S3: begi n
i nc<=0;
next st at e<=S3;
end
defaul t:
begi n
next st at e<=3S0; / /by default, stay in SO
i nc<=0; //again, no incrementing in SO
end

endcase
endnodul e

PELETEELELEEE i rr i i i r i r i r i rrn r i r i r i r i ri r i r i r i nrrrn

nodul e counter (clk,reset,count);
input clk,reset;
out put [20:0] count;
reg [20:0]count;
al ways@ posedge cl k or posedge reset)
if (reset) count<=0;
el se count <=count +1;

endnodul e
IR NNy

nodul e scorekeep(cl k, reset,inc,score); //this holds the score
input clk,reset,inc;
output [3:0] score;
reg [3:0] score;
al ways@ posedge cl k or posedge reset)
if (reset) score<=0;
else if (inc) score<=score+l,;
el se score<=score;
endnodul e

IR NN NNy,
nodul e count down(cl k, reset, gocount, score, countout) ;

input clk,reset, gocount;
input [3:0] score; //level is represented by score (0O through 9)
output [7:0] countout;

reg [5:0] count;

reg [19:0] timer; //instead of using a clkdiv and dividing nore, we will just use another divider
wire slowclk; //this will give us a pul se once a second

wire [5:0] countout;

wire [5:0] value;

Digital Logic Game 15

wire asynchreset;

assign slowcl k=tiner[19]; //one 'count' each second (approx)
assign val ue={(4' b1110-score[3:0]), 2' b00}; /leach level will have 4 seconds |ess than the previous

//for 1st level time=60 seconds for 10 level time=20 seconds)

assi gn count out ={2' b00, (val ue-count)}; //e.g level =0111 =>val ue=011100 (28 seconds for |evel 7)
=>out put =28- count
assi gn asynchr eset =~gocount ;

al ways@ posedge cl k or posedge reset)
if (reset) tinmer<=0;
else if (~gocount) timer<=0;
el se tiner<=tinmer+1;

al ways@ posedge slowcl k or posedge reset or posedge asynchreset)
if (reset) count<=0;
else if (asynchreset) count<=0;
el se count <=count +1;

endnodul e

PEEETEEELTEE i rrrrr i i r i r i r i r i r o r i r i r i r i n i r i r i r i r i r i nrnrn

nodul e keypad (clk,reset,r,c, key); //taken fromlab4 solutions with mnor changes

i nput reset, clk;

input [3:0] r; //input rows from keypd

output [2:0] c; //output colums to keypad

output [3:0] key; //output of pressed key (for |ater decoding)

reg [2:0] c;

reg [3:0] key;

reg gotkey;

al ways@ posedge cl k or posedge reset)

if (reset)
begi n
c<=3' b011; //start colum polling at colO
key<=4' b0000; //no key pressed
got key<=0;
end
else if (&) /1if all rows high, no key is being pressed
begi n
got key<=0;
c<={c[0],c[2:1]}; //shift the colums to the right
key<=key;
end
else if (~gotkey)
begi n
c<=c;
got key<=1;
case ({r,c})
7' b0111_011: key<=4'b0001;
7' b1011_011: key<=4'b0100;

7' b1101_011: key<=4'b0111;
7' b1110_011: key<=4'b 1010;//A=Next pattern
7' b0111_101: key<=4'b0010;
7' b1011_101: key<=4'b0101;
7' b1101_101: key<=4'b1000;
7' b0111_110: key<=4'b0011;
7' b1011_110: key<=4'b0110;
7' b1101_110: key<=4'b1001;
7'b1110_110: key<=4'b1011; //B=Submit answer
default: key<=4'b0000;
endcase
end
else if (gotkey)
begi n
key<=0; //we only want the key to be taken once
end

endnodul e

FELLTEELELIEE i rr r i i i r i r i r i r i r i r o r o r i r i r i n ri r i n i i r i rrrn

nodul e anspatterntoggl e(cl k, reset, key, correctanspattern, blink, anspattern, correct, submt, blinkdone);

input clk,reset;

input [3:0] key;

i nput blink;

input [8:0] correctanspattern;
output [8:0] anspattern;

Digital Logic Game

out put subnit, blinkdone, correct;

reg [8:0] anspattern;
reg [8:0] correctansspattern;
wire subnit,correct;

reg blinkdone;
reg [7:0] tinmer;

reg on;

/1==1 when user wants next pattern

//this is used for the blinking state to be on 1/2 sec off 1/2 sec

//we are using a slow clock (1/4096)

//to get about 0.5 sec each
//holds which part we are in for the blinking state

assi gn subnit =(key==4'b1011);
assign correct=(correctanspattern==anspattern);

al ways@ posedge cl k or posedge reset)
if (reset)

begi n

anspat t er n<=9' b000000000; //all
ti mer<=0;
on<=1;

bl i nkdone<=0;
end

else if (~blink)
begin //this inplies the the user is inputting leds to toggle

ti mer<=0;
on<=0;

bl i nkdone<=0;
case(key)
4' b0000:

LEDs of f

anspattern<=anspattern;

' b0001: anspattern[8]<=anspattern[8]~1' bl;
' b0010: anspattern[7]<=anspattern[7]~1' b1;
' b0011: anspattern[6]<=anspattern[6]"1' bl;
' b0100: anspattern[5] <=anspattern[5]~1' bl;

//we want the blinking state to start off (better | ooking)

' b0110: anspattern[3]<=anspattern[3]"1' bl;

' b0111:

anspattern[2] <=anspattern[2] 1" bl;

' b1000: anspattern[1]<=anspattern[1]”1' bl;
' b1001: anspattern[O] <=anspattern[0]~1' bl;

else if (blink)

endnodul e

efaul t: anspattern<=anspattern; /lall other keys wll
endcase
end
//the correct pattern wll
begi n
if (key==4'b1010)
begi n
anspat t er n<=0;
ti mer<=0;
on<=0;
bl i nkdone<=1;
end
el se //Next pattern button has not been pressed
begi n
bl i nkdone<=0;
timer<=tiner+1;
if (tinmer[7]==1)
begi n
timer<=0;
if (on==1)
begi n
on<=0;
anspat t er n<=0;
end
el se //on=0
begi n
on<=1;
end
end
el se
begi n
anspat t er n<=anspattern;
on<=on;
end
end
end

4
4
4
4
4' b0101: anspattern[4] <=anspattern[4]"1' bl;
4
4
4
4
d

so we want to divide by 128 nore

//when keys 1-9 are

!/ pressed the correspondi ng
//bit will be toggled

/1 by XORing with 1

| eave

//the pattern unchanged

be di spl ayed blinking

anspattern<=correctanspattern;

PELETEEELE LT r i i r i r i r i r i r o r i r o r i r i r i n i r i r i r i n i i r i n i nrrrn

Digital Logic Game

17

nodul e di spl ay(cl k, reset, pattern, anspattern, rowchoose, | edrow, f unc, wi n);

input clk,reset,wn;

input [20:0] pattern; //this is the pattern fromthe HCl11

input [8:0] anspattern;

output [2:0] rowchoose; //this will choose the current output row
output [8:0] |edrow,

output [3:0] func;

reg [2:0] rowchoose;
reg [8:0] |edrow,
reg [3:0] func;

al ways@ (posedge cl k or posedge reset)
if (reset)

begi n
rowchoose<=3'b110; //start with one of the rows on

/1 (the zero, these transistors NOT the base val ue)

| edr ow<=0; //clear the |edrow
f unc<=0; //clear the function
end

el se
begi n
rowchoose<={ rowchoose[0], rowchoose[2: 1] };
if (~wn)

case (rowhoose)

3'b110: | edrow=~{ pattern[20: 18], pattern[11:9], anspattern[8:6]};

//the patterns are 9 bits |ong

3'b011: | edrow=~{ pattern[17:15], pattern[8:6], anspattern[5:3]};

//but only 3 go in each row

3'b101: | edrow=~{ pattern[14:12],pattern[5:3], anspattern[2:0]};

default: |edrow=9" b111111111;
endcase
else //win! pattern= pluses
case (rowchoose)

3'b110: | edrow<=~(9' b010010010); //the patterns are 9 bits long
3'b011: |edrow<=~(9'b111111111); //but only 3 go in each row

3' b101: | edrow=~(9' b010010010);
default: |edrow=9'b111111111;

endcase

case (pattern[2:0])
3' b000: func<=~(4'b0100); /I1OR
3' b001: func<=~(4'b0001); /1 XOR

3'b010: func<=—(4' b0010); //AND
3'b011: func<=-(4' b0100); //OR

3'b100: func<=—(4' b1001); //XNCR
3'b101: func<=—(4' b1010); //NAND
3'b110: func<=—(4' b1100); //NCR
3'b111: func<=—(4' b1100); //NCR
d

efault: func<=~(4'b0000); //should never happen

endcase
end

endnodul e

PELETEEELT LT rnrr i i r i r i r e r i r o r i r o r i r i r i r o r i r i n i i r e n i nrnrn

nmodul e cl kdiv(clk,reset,slowlk); //taken fromlab4 sol utions

input clk,reset;
out put sl owcl k;

reg [11: 0] count;

al ways@ posedge cl k or posedge reset)
if (reset) count=0;
el se count =count +1;

assi gn sl owcl k=count [11] ;

endnodul e

PELETEELELTEE i rrr o r i p i r o r i r i r i n i rrr n o rr r i r i r i n i ri r i n i i r i nrrrn

nodul e determ necorrectpattern(clk, reset, pattern,correctpattern);

//This nodul e takes the pattern (fromHClL1l) of 2 X 9 bit patterns and 3 bit function code

//and determnes the correct answer

Digital Logic Game

OR and NOR are duplicated

18

input clk,reset;
input [20:0] pattern;

output [8:0] correctpattern; //the correct answer pattern

wire [8:0] patl,pat2; //will hold the two patterns

wire [2:0] func; //will hold the function encoding

reg [8:0] correctpattern; //will hold correct answer pattern

assi gn pat 1=pattern[20:12]; //divide up pattern into individual patterns
assign pat2=pattern[11:3]; /1 and the function to perform

assign func=pattern[2:0];

al ways@ posedge cl k or posedge reset)
if (reset)
correct pattern<=0;
el se
case (func)
' b000: correctpattern<= (patl | pat2);//OR
3'b001: correctpattern<= (patl ~ pat2);//XOR
3'b010: correctpattern<= (patl & pat2);//AND
3'b011: correctpattern<= (patl | pat2);//OR
3'b100: correctpattern<=~(patl ~ pat2);//XNOR
3'b101: correctpattern<=~(patl & pat2);//NAND
3
3
d

w

'b110: correctpattern<=~(patl | pat2);//NOR
'b1l11l: correctpattern<=~(patl | pat2);//NOR
efault: correctpattern<=0;

endcase

endnodul e

IR NN
nodul e shiftreg (clk, reset, resetflag, datain, pattern, patternreceived);

input clk, reset, resetflag, datain;

output [20:0] pattern; /1 Holds the 21-bit pattern from HCL1

out put patternreceived; /1 Set when the 21 bits have been received from HCl1

wire patternreceived;

reg [20:0] pattern;

reg [4:0] count;

assign patternrecei ved=((count==24) & ~resetfl ag); //pattern is finished when 21st bit received

// patrec neans we are ready to use pattern
al ways@ posedge cl k or posedge reset)

if (reset)
begi n
count <=0;
patt er n<=0;
end
el se
begi n
pattern <= {pattern[19:0], datain};
if (count==24) count<=0; //reset count when HCll is done (3 bytes worth)
el se count<=count + 1;
end

endnodul e

IR NN NN
nodul e segdi sp (clk, reset, score, segs);

input clk,reset;

input [3:0] score;

output [6:0] segs;

reg [6:0] segs;

paranmeter ZERO= 7' b 0000001;

parameter ONE= 7'b 1001111,
parameter TWO= 7'b 0010010;
par anet er THREE=7'b 0000110;
paranmeter FOUR= 7'b 1001100;
paraneter FIVE= 7'b 0100100;
paraneter SIX= 7'b 0100000;
paraneter SEVEN=7'b 0001111;
par anet er El GHT=7'b 0000000;
paranmeter NI NE= 7' b 0000100;
parameter A= 7' b 0001000;
paraneter B= 7' b 1100000;
parameter C= 7' b 0110001;

Digital Logic Game

paraneter D= 7' b 1000010;
paraneter E= 7' b 0110000;
paranmeter F= 7'b 0111000;

al ways@ posedge cl k or posedge reset)
if (reset) segs<=7'b1111111;

el se
case(score)

0: segs<=ZERQ
1: segs<=ONE;
2: segs<=TWO
3: segs<=THREE
4: segs<=FOUR;
5: segs<=Fl VE;
6: segs<=SI X
7: segs<=SEVEN
8: segs<=El GHT;
9: segs<=N NE;
10: segs<=A
11: segs<=B
12: segs<=C
13: segs<=D
14: segs<=E
15: segs<=F

endcase
endnodul e

Digital Logic Game

3. Flyer on How to Play

Digital Logic Game

by Michaegl James Messinaand Richard Trinh
December 2000

NOT OR AND XOR

To play the Digital Logic Game, first press the Reset button. When you're ready to play, pressthe
N key on the keypad. You will seetwo patterns appear in the red LEDs and a digital logic function
represented by the yellow and green LEDs. There are six possible logic functions: OR, AND,
XOR, NOR, NAND, and XNOR. The goal of the gameisto usethe T keysto toggle the LEDsin
the right-most array of red LEDs to match the correct pattern for the two displayed patterns and
logic function. When you think you have the right answer, submit it with the S key before the
binary countdown reaches zero. If you'reright, you earn 1 point. Then pressthe N key again
when you're ready for the next pattern. Y ou win when you get 10 points. But be careful, the game

gets harder as you go aong!

TTT-
TTT-
TTT-
g N

Keypad Layout
Digital Logic Game 21

