
Digital Logic Game
Final Project Report
December 9, 2000

E-155

Michael James Messina and Richard Trinh

Abstract:

Beginning computer engineering students occasionally have difficulty grasping the concepts of
digital logic. Standard digital logic exercises can become tiresome and repetitive, so a fun, new
method of teaching digital logic could help students understand. This project prototypes a digital
logic game consisting of an array of LEDs, hexadecimal score display, a keypad, a microcontroller,
and FPGA. Two patterns and one of six logic functions are pseudo-randomly selected. The player
has some amount of time to perform that function with the two patterns and enter it with the
keypad. The FPGA determines if the answer is correct, and adjusts the score and difficulty
appropriately. The player wins when he correctly answers ten patterns.

 NOT OR AND XOR

Digital Logic Game 2

Introduction

The team has designed and built a game displayed on an array of LEDs that teaches the

player about digital logic. The player is shown two pseudo-randomly generated patterns of lit

LEDs on a 3 × 3 grid. The player is also shown a set of four LEDs that corresponds to six possible

pseudo-randomly generated digital logic operations: OR, AND, XOR, NOR, NAND, XNOR. The

player then tries to perform the selected digital logic operation on the two given patterns, then

inputs the result onto a third 3 × 3 grid using a keypad. The player has some amount of time to

complete and submit the answer pattern, and this amount of time is based on the player’s current

score. The remaining time available to complete the pattern is displayed as a binary countdown.

The player earns one point for each correctly answered pattern, and wins when he has a score of A.

A functional block diagram is shown in Figure 1. The HC11 pseudo-randomly generates

two patterns and chooses a logic function. The FPGA polls the keypad for a key press, toggles the

corresponding LED in the grid, determines the correctness of answers and score, outputs the game

data to the LED array and the score to the hexadecimal display, and determines when the player

wins the game.

Keypad FPGA

EVB/
HC11

Hexadecimal
Display

LED
Array

Polling

Key Press

Display
data

ScorePseudo-random
game data

Figure 1: Functional Block Diagram

Digital Logic Game 3

 Schematics

Below are the final breadboarded schematics. Figure 2 shows the schematics for the

keypad, Figure 3 for the hexadecimal display, Figure 4 for the pattern LED array, and Figure 5 for

the logic function LEDs.

Figure 3: Hexadecimal Display Schematic

Pin A1

Pin B1

Pin C1

Pin D1

Pin E1

Pin F1

Pin G1

Vdd1

Pin 82

Pin 83

Pin 80

Pin 78

Pin 77

Pin 81

Pin 79

Hexadecimal
Display

FPGA

330 ohm

5 V

Figure 2: Keypad Schematic

Pin 46

Pin 47

Pin 48

Pin 49

Pin 50

Pin 51

R0

C0

R3

R1

R2

C1

C2

5 V

Keypad

4.7 k ohm

Pin 45

Digital Logic Game 4

Figure 5: Logic Function LED Schematic

5 V

Pin 57

Pin 58

Pin 59

Pin 60

330 ohm

NOT

OR

AND

XOR

Figure 4: LED Array Schematic

5 V

Pin 39

Pin 40

Pin 44

4.7 k ohm

4.7 k ohm

4.7 k ohm

Pin 19

Pin 20

Pin 23

Pin 24

Pin 25

Pin 26

Pin 27

Pin 28

Pin 29
330 ohm

330 ohm

330 ohm

330 ohm

330 ohm

330 ohm

330 ohm

330 ohm

330 ohm

Digital Logic Game 5

Microcontroller Design

An HC11 was used to generate pseudo-random patterns for the game. The input to the

system was the Port A zero pin (PA0). The HC11 polls this pin in a simple loop. When the pin is

high, a pattern is generated, which is discussed below. This pin is connected to the FPGA output

“GETPAT” and is high when the S0 state in the FPGA is reached (see FPGA Design). The patterns

are then generated.

The algorithm used followed the idea of a linear shift register implemented in assembly. A

pseudo-random pattern of 31 bits needed to be generated, since at least 21 bits of pattern were

needed for the game. This required a seed-value of 5 bits long. According to a web page written by

Clive Maxfield, the “taps” for such a register are the are the second and the last bits. The algorithm

in assembly was implemented as follows:

1. Use the last 5 bits of the timer ($100E) as a seed value and put it in an accumulator.

2. Determine bit 5 (using 7:0 convention) by an XOR operation of bits 0 and 3.

3. Shift the accumulator right by one bit.

4. Place bit 0 into the next bit of the pattern bytes in memory ($D100-$D103)

5. Perform Steps 2-5 as needed until 32 bits are determined.

After the pattern generation, the Serial Peripheral Interface (SPI) is set up for serial data

transfer to the FPGA. The HC11 is set up as the master, and thus drives the transfer using SCK and

uses the MOSI pin to hold each bit of data. These pins are outputs from the HC11 and connect to

the FPGA inputs “SCK” and “MOSI” (see FPGA Design). Once the pattern is sent, the HC11

begins polling PA0 until the next GETPAT signal from the FPGA is sent.

Digital Logic Game 6

FPGA Design

The team has written Verilog code to control the game LEDs and the keypad. There are

twelve Verilog modules: main, FSM, counter, scorekeep, countdown, keypad, anspatterntoggle,

display, clkdiv, determinecorrectpattern, shiftreg, and segdisp. The timing of the game are

controlled with a finite state machine in the module FSM. Other game functions, such as providing

a countdown timer, determining the correct answer pattern, keeping score, and displaying the score

are controlled with the modules countdown, determinecorrectpattern, scorekeep, and segdisp,

respectively. The module display controls the 31 game LEDs, and the modules keypad and

anspatterntoggle control the function of the keypad. The module clkdiv slows the clock by 4096

times to prevent blending in the multiplexing of the LED display. The module shiftreg processes

the pseudo-random input from the HC11 which helps to create the game patterns and logic

function. The module main unifies the other modules.

Controlling the 27 pattern LEDs can be divided into two distinct tasks. The first task

consists of controlling the two patterns given to the player. These patterns are created using a

pseudo-random pattern generator via the HC11. The second task of controlling the LEDs consists

of controlling the 9 LEDs of the answer pattern whose input is determined by input from the

keypad. The 27 pattern LEDs currently use three PNP transistors to multiplex in a 3 × 9 array,

requiring 12 pins on the FPGA to drive them.

The keypad module determines when a key is pressed through the method of polling, a

technique used to reduce the number of pins required on the FPGA and to reduce the amount of

logic required for a keypad with a discrete switch for each button on the keypad. For our game, we

use buttons on 4 rows and 3 columns of the keypad, requiring 7 pins on the FPGA. Once key

presses are recognized, the anspatterntoggle module interprets them and toggles the 9 LEDs of the

Digital Logic Game 7

answer pattern between being lit and unlit. The layout of the keypad is shown in Figure 6. The

keys labeled T toggle the LEDs for the answer pattern, the key labeled S submits the displayed

answer pattern, the key labeled N requests the next pattern to continue the game, and the black keys

are unused.

The finite state machine has four states, S0 through S3. The state transition diagram is

shown in Figure 7. In S0, the program waits for a pseudo-random pattern and remains in S0 until

one is received. Once received, the pattern is sent to the display and the program moves to S1,

where it waits for input from the player. It is in this state that the player can toggle and submit the

LEDs of the answer pattern. Once the player submits or the countdown timer reaches zero without

a submission, the program moves to S2, where it blinks the correct answer in the LEDs of the

answer pattern. During the transition from S1 to S2, the program also increments the score and

adjusts the countdown timer if the player submitted the correct pattern. Each time the player

scores, the countdown for the next pattern is reduced by four seconds, effectively making the game

progressively more difficult, ranging from 56 to 20 seconds. The program remains in S2 until the

player requests the next pattern by pressing the N button, upon which the program returns to S0. In

order for the game to not start immediately, the program moves to S2 upon reset, effectively

SN

T T T

T

T T

T

T

T

Figure 6: Keypad Layout

Digital Logic Game 8

making the player press the N button to begin the game. When the player correctly answers ten

patterns, the program asserts win, the hexadecimal displays an A, and the LEDs display + s. At this

point, when the player requests the next pattern, none is given and the program moves to S3 where

it remains until reset.

Figure 7: State Transition Diagram

S0
Wait for

pseudo-random
pattern

S1

Wait for
player input

S3

Display WIN
pattern

S2

Blink correct
answer pattern

Pattern received

submitorcount = 1
Score incremented appropriately

win = 1
and blinkdone

win = 0
and blinkdone

Pattern not
received

submitorcount = 0

Reset

Digital Logic Game 9

Results

At the time of project checkoff, the game functioned correctly when supplied with a pre-

determined pattern, but could not generate a pseudo-random pattern because of two major problems

with our implementation. The first problem was that the enabling bit of the SPI initialization was

simply not enabled. That caused the SPI wires to simply float and no data to be sent to the FPGA.

After the code was modified to enable SPI, the patterns were sent as expected.

The second major problem was that the HC11 locked after generating pseudo-random

numbers after a few seconds. This was caused when the first bit of each random byte was written.

The first bit required no shifts, so this was taken care of after the label FIRST. Previous to this, Y

was pushed on the stack to keep track of what bit in the random byte was to be writen. Y could then

be used to count down the number of shifts. In the code after the FIRST label, however, the code

failed to pull Y back off the stack, and every time the first bit of a byte was written, the stack

increased. This eventually caused a stack overflow and the HC11 froze. The problem was solved

by simply pulling Y from the stack at the proper time.

After these problems were diagnosed and corrected, the team re-implemented the design.

The game now generates two pseudo-random patterns and selects a logic function, toggles the

LEDs of the answer pattern as determined by input from the keypad, appropriately increments the

score, displays the correct answer, and moves to a win state when the score is A. A problem does

exist however. It seems that a non-negligible amount of the patterns are all zeros. This problem

does not appear to be in the HC11 code, so it is probably in the FPGA code. This problem was not

fixed, but its effect on the game are not serious.

Overall, the team is satisfied that the game performs according to the original proposal, with

a few minor changes. The team originally intended for the score to decrement when an incorrect

Digital Logic Game 10

answer was submitted or when the countdown timer reached zero. Additionally, the score would

start at 7 and the game would end when the score reached 0 or F. The scoring paradigm is

arbitrary, and the team later felt that the player should not lose points. Therefore, the scoring

system was changed so that it started at 0 and ended at A. Another change to the original proposal

was that after connecting the circuitry and testing the keypad, the team determined that the key

presses did not need to be debounced, so the team no longer pursued that feature.

Considerations for future work on this project include implementing additional game

features, such as sound or a larger array of LEDs.

Digital Logic Game 11

References
[1] Clive Maxfield. “The Ouroboros of the digital consciousness: linear-feedback-shift registers”. EDN Access.

January 4,1996. http://www.ednmag.com/ednmag/reg/1996/010496/01df4.htm
[2] Motorola. M68HC11 Reference Manual, Revision 3.1991.

Parts List

The project required no components from outside the Microprocessors Laboratory.

Parts required include:

? 27 diffuse red LEDs, 3 diffuse green LEDs, 1 diffuse yellow LED

? 1 keypad

? 1 hexadecimal seven-segment display

? 1 FPGA board

? 1 HC11 evaluation board

? 1 perforated circuit board

? 1 breadboard

Digital Logic Game 12

Appendices

1. Microcontroller Code

0001 *Code by Michael James Messina
0002 *December 4, 2000
0003 *This code generate pattern when portA[0] is high
0004
0005 d104 RBYTE EQU $D104 RBYTE holds running byte in shift reg
0006 ffb2 OUTLHF EQU $FFB2 these next three are for debugging
0007 ffb5 OUTRHF EQU $FFB5
0008 ffc4 CRLF EQU $FFC4
0009 100e TIME EQU $100E our seed rbyte will be the timer
0010 1009 DDRD EQU $1009 PORT D DATA DIRECTION
0011 1028 SPCR EQU $1028 SPI CONTROL
0012 1029 SPSR EQU $1029 SPI CONTROL
0013 102a SPDR EQU $102A SPI DATA
0014 1000 PORTA EQU $1000 Port A will be used to poll for signal from FPGA
0015
0016 d000 ORG $D000
0017 d000 b6 10 00 POLL LDAA PORTA
0018 d003 84 01 ANDA #$01
0019 d005 81 00 CMPA #$00
0020 d007 27 f7 BEQ POLL if porta[0]=0 then go back to POLL
0021
0022 d009 86 00 LDAA #$00
0023 d00b ce d1 00 LDX #$D100 X will hold which p-random byte we are filling
0024 d00e 18 ce 00 00 LDY #$0000 Y will hold the offset within that byte
0025 d012 86 00 LDAA #$00 Clear all random bytes
0026 d014 b7 d1 01 STAA $D101 We don't want repeated patterns
0027 d017 b7 d1 00 STAA $D100
0028 d01a b7 d1 02 STAA $D102
0029 d01d b7 d1 03 STAA $D103
0030 d020 b6 10 0e LDAA TIME Timer gives seed 5 bit number
0031 d023 84 1f ANDA #$1F
0032 d025 b7 d1 04 STAA RBYTE Called running byte really running 5bits
0033 d028 b7 d1 04 STAA $D104 For debugging purpose (check random numbers)
0034 d02b b6 d1 04 NEXTRB LDAA RBYTE
0035 d02e 84 01 ANDA #$01 Take the last bit of the running byte (RBYT E)
0036 d030 f6 d1 04 LDAB RBYTE
0037 d033 c4 08 ANDB #$08 and bit 3 (7:0)
0038 d035 57 ASRB move bit to bit 0
0039 d036 57 ASRB
0040 d037 57 ASRB
0041 d038 1b ABA the 0th bit will be the XOR of the bits
0042 d039 84 01 ANDA #$01 this bit will be the bit 5 (put it
0043 d03b 48 LSLA in bit 6 and then shift entire byte)
0044 d03c 48 LSLA
0045 d03d 48 LSLA
0046 d03e 48 LSLA
0047 d03f 48 LSLA
0048 d040 ba d1 04 ORA RBYTE add the bit in
0049 d043 47 ASRA shift byte right to get next running byte
0050 d044 b7 d1 04 STAA RBYTE
0051 d047 84 01 ANDA #$01 Now we want new 0th bit to be added to random byte
0052 d049 18 3c PSHY Save current Y in order to use Y as a count for s hifting
0053 d04b 18 8c 00 00 CPY #$0000 If Y=0 then no shift is necessary
0054 d04f 27 24 BEQ FIRST
0055 d051 48 SHIFT LSLA Otherwise there is at least one shift
0056 d052 18 09 DEY Decrement the number of shifts
0057 d054 18 8c 00 00 CPY #$0000 See if 0 shifts left
0058 d058 26 f7 BNE SHIFT if not shift again
0059 d05a aa 00 ORA 0,X otherwise add the bit to the p -random byte in proper location
0060 d05c a7 00 STAA 0,X
0061 d05e 18 38 PULY Restore Y
0062 d060 18 08 INY Increment it (next bit requires 1 more shift)
0063 d062 18 8c 00 08 CPY #$0008 8 shifts => we are on next p-random byte
0064 d066 26 0a BNE SAMEB otherwise we are on the same byte
0065 d068 18 ce 00 00 LDY #$0000 if on next byte #shifts=0
0066 d06c 08 INX let X p oint to next p-random byte
0067 d06d 8c d1 04 CPX #$D104 if X>d103 we have a 32 bit p-random number in [d100:d103]
0068 d070 27 0e BEQ DONE and we are done
0069 d072 7e d0 2b SAMEB JMP NEXTRB otherwise calculate next running byte
0070
0071 d075 aa 00 FIRST ORA 0,X set the first bit of the current RNDBYTE
0072 d077 a7 00 STAA 0,X
0073 d079 18 38 PULY restore Y
0074 d07b 18 08 INY next bit will have to be shifted once

Digital Logic Game 13

0075 d07d 7e d0 2b JMP NEXTRB calculate next running byte
0076 d080 b6 d1 00 DONE LDAA $D100
0077 * TAB
0078 * JSR OUTLHF
0079 * TBA
0080 * JSR OUTRHF
0081 * JSR CRLF
0082 * LDAA $D101
0083 * TAB
0084 * JSR OUTLHF
0085 * TBA
0086 * JSR OUTRHF
0087 * JSR CRLF
0088 * LDAA $D102
0089 * TAB
0090 * JSR OUTLHF
0091 * TBA
0092 * JSR OUTRHF
0093 * JSR CRLF
0094 * LDAA $D103
0095 * TAB
0096 * JSR OUTLHF
0097 * TBA
0098 * JSR OUTRHF
0099 * JSR CRLF
0100 * JMP POLL
0101 **************************************
0102 * SPI Initialization *
0103 *Info taken from Lab 6 solutions *
0104 **************************************
0105 *Configures the SPI:
0106 *Bits 7,6: Always 0
0107 *Bit 5: 1, Slave Select=>ignore ssbar
0108 *Bit 4: 1, SCK, =>master
0109 *Bit 3: 1, MOSI, =>master
0110 *Bit 2: 0, MISO, ignore for master
0111 *Bit 1,0: 0, SCI, because ?????
0112 **************************************
0113 d083 86 38 LDAA #%00111000
0114 d085 b7 10 09 STAA DDRD
0115 **************************************
0116 *SPI Initialization Continued *
0117 **************************************
0118 *Bit 7: SPIE (SPI interrupt enable)=0 (disable interrupts)
0119 *Bit 6: SPE (SPI enable)=1 (enable SPI)
0120 *Bit 5: DWOM (PortD wired-OR)=0 (Disable DWOM)
0121 *Bit 4: MSTR (SPI Master Mode)=1 (SPI is master)
0122 *Bit 3,2 CPOL ,CPHA (clock polarity and phase)=11 for SCK active on rise
0123 *Bit 1,0 SPR1 ,SPR0 (clock setting)=00 for 1Mbit/sec (fast enough)
0124 **************************************
0125
0126 d088 86 5c LDAA #%01011100
0127 d08a b7 10 28 STAA SPCR
0128
0129 *************************************
0130 *Send to FPGA
0131 * With SPI initialized we can
0132 * send the 3 bytes to FPGA
0133 *************************************
0134 d08d fe d1 00 LDX $D100
0135 d090 bc d1 03 NXTB CPX $D103
0136 d093 27 10 BEQ FINISH
0137 d095 a6 00 LDAA 0,X
0138 d097 b7 10 2a STAA SPDR writes to spi data
0139 d09a b6 10 29 WAIT LDAA SPSR
0140 d09d 84 80 ANDA #$80 this bit indicates SPI transfer of byte complete
0141 d09f 27 f9 BEQ WAIT wait until byte is complete
0142 d0a1 08 INX
0143 d0a2 7e d0 90 JMP NXTB
0144 d0a5 7e d0 00 FINISH JMP POLL
0145
0146

Digital Logic Game 14

2. Verilog Code

//Author: Michael James Messina/Richard Trinh
//Date: December 3, 2000

module main(clk,reset,r,c,rowchoose,displayrow,func,leds,segs,SCK,MOSI,GETPAT);

input clk,reset;
input [3:0] r;
input SCK,MOSI; //from the HC11
output [2:0] c;
output [2:0] rowchoose;
output [8:0] displayrow;
output [3:0] func;
output [7:0] leds;
output [6:0] segs;
output GETPAT;
wire slowclk,blink,resetflag,submit,correct,win,patternreceived;

wire [8:0] anspattern,correctanspattern;
wire [20:0] pattern;
wire [3:0] key;
wire [3:0] score;
//assign pattern=21'b101100011110101000001; //test pattern
//assign patternreceived=1;

FSM fsm(clk,reset,patternreceived,submit,correct,score,resetflag,blink,blinkdone,leds,win,GETPAT);
clkdiv cd(clk,reset,slowclk);
keypad kp(slowclk,reset,r,c,key);
display disp(slowclk,reset,pattern,anspattern,rowchoose,displayrow,func,win);
determinecorrectpattern dcp(clk,reset,pattern,correctanspattern);
anspatterntoggle apt(slowclk,reset,key,correctanspattern,blink,anspattern,correct,submit,blinkdone);
segdisp sd(clk,reset,score,segs);
shiftreg sr(SCK, reset, resetflag, MOSI, pattern, patternreceived);

endmodule

//

module FSM(clk,reset,patternreceived,submit,correct,score,resetflag,blink,blinkdone,countout,win,GETPAT);
//The following is the "standard" FSM setup
//S0:get pattern:no display; ends when pattern done
//S1:allow user to input answer (countdown): display;
// ends with user-submit or countdown done; inc/dec score
//S2: flash correct pattern; ends after 5 seconds
//repeat
input clk,reset;
input submit,patternreceived,blinkdone,correct;
output resetflag,blink;
output win;
output [7:0] countout; //output of countdown to LEDs
output [3:0] score; //keeps the score for the game
output GETPAT;
reg [1:0] state,nextstate;
wire resetflag,blink,win;
reg [20:0] pattern;
wire gocount,countdone; //go count makes countdown go, countdone tells FSM to take anspattern as is
wire submitorcount; //high when either user presses submit or count is done => answer is submitted
parameter S0=2'b00;
parameter S1=2'b01;
parameter S2=2'b10;
parameter S3=2'b11;
reg [3:0] score; //for holding score to send to output
reg inc; //holds increment command for sk below
scorekeep sk(clk,reset,inc,score); //module for keeping score for game (see next module)
countdown cd(clk,reset,gocount,score,countout);
assign win=(score==4'b1010);
assign gocount=(state==S1);
assign countdone=(countout==0);
assign submitorcount=(countdone | submit); //the pattern will be taken if submit is pushed or count done
assign resetflag=((state==S1)& patternreceived); //reset the shift regi ster module (to reset patrec)
assign blink=(state==S2); //blink if in state 2
assign GETPAT=(state==S0);

//State Register
always@(posedge clk or posedge reset)

if (reset) state<=S2;
else state<=nextstate;

//State Logic
always@(state or submitorcount or blinkdone or correct or win or patternreceived)

Digital Logic Game 15

case (state)
S0: begin

inc<=0; //we don't want to increment in S0
if (patternreceived) nextstate<=S1;
else nextstate<=S0; //if the pattern has completed transfer goto S1

 //otherwise stay in S0
end

S1: begin
if (submitorcount) //if submit (B) has been pushed or count is done

begin
inc<=(correct); //send inc signal to sk module to

//increment score
nextstate<=S2; //then goto S2

 end
 else
 begin
 inc<=0; //otherwise don't set inc
 nextstate<=S1; //and stay in S1
 end
 end

S2: begin
inc<=0; //we don't want to increment in S2 either
if (blinkdone)

begin
if(win) nextstate<=S3; //if score=10 win!
else nextstate<=S0; //else go to next pattern

end
else nextstate<=S2; //otherwise stay in S 2

end

S3: begin
inc<=0;
nextstate<=S3;

end
default:

begin
nextstate<=S0; //by default, stay in S0
inc<=0; //again, no incrementing in S0

end
endcase

endmodule

//

module counter (clk,reset,count);
input clk,reset;
output [20:0] count;
reg [20:0]count;
always@(posedge clk or posedge reset)

if (reset) count<=0;
else count<=count+1;

endmodule

//

module scorekeep(clk,reset,inc,score); //this holds the score
input clk,reset,inc;
output [3:0] score;
reg [3:0] score;
always@(posedge clk or posedge reset)

if (reset) score<=0;
else if (inc) score<=score+1;
else score<=score;

endmodule

//

module countdown(clk,reset,gocount,score,countout);

input clk,reset,gocount;
input [3:0] score; //level is represented by score (0 through 9)
output [7:0] countout;

reg [5:0] count;
reg [19:0] timer; //instead of using a clkdiv and dividing more, we will just use another divider
wire slowclk; //this will give us a pulse once a second
wire [5:0] countout;
wire [5:0] value;

Digital Logic Game 16

wire asynchreset;

assign slowclk=timer[19]; //one 'count' each second (approx)
assign value={(4'b1110-score[3:0]),2'b00}; //each level will have 4 seconds less than the previous

 //for 1st level time=60 seconds for 10 level time=20 seconds)
assign countout={2'b00,(value-count)}; //e.g level=0111 =>value=011100 (28 seconds for level 7)
=>output=28-count
assign asynchreset=~gocount;

always@(posedge clk or posedge reset)
if (reset) timer<=0;
else if (~gocount) timer<=0;
else timer<=timer+1;

always@(posedge slowclk or posedge reset or posedge asynchreset)
if (reset) count<=0;
else if (asynchreset) count<=0;
else count<=count+1;

endmodule

//

module keypad (clk,reset,r,c,key); //taken from lab4 solutions with minor changes

input reset,clk;
input [3:0] r; //input rows from keypd
output [2:0] c; //output columns to keypad
output [3:0] key; //output of pressed key (for later decoding)

reg [2:0] c;
reg [3:0] key;
reg gotkey;
always@(posedge clk or posedge reset)

if (reset)
begin
c<=3'b011; //start column polling at col0
key<=4'b0000; //no key pressed
gotkey<=0;
end

else if (&r) //if all rows high, no key is being pressed
begin
gotkey<=0;
c<={c[0],c[2:1]}; //shift the columns to the right
key<=key;
end

else if (~gotkey)
begin
c<=c;
gotkey<=1;
case ({r,c})

7'b0111_011: key<=4'b0001;
7'b1011_011: key<=4'b0100;
7'b1101_011: key<=4'b0111;
7'b1110_011: key<=4'b 1010;//A=Next pattern
7'b0111_101: key<=4'b0010;
7'b1011_101: key<=4'b0101;
7'b1101_101: key<=4'b1000;
7'b0111_110: key<=4'b0011;
7'b1011_110: key<=4'b0110;
7'b1101_110: key<=4'b1001;
7'b1110_110: key<=4'b1011; //B=Submit answer
default: key<=4'b0000;

endcase
end

else if (gotkey)
begin
key<=0; //we only want the key to be taken once
end

endmodule

//

module anspatterntoggle(clk,reset,key,correctanspattern,blink,anspattern,correct,submit,blinkdone);

input clk,reset;
input [3:0] key;
input blink;
input [8:0] correctanspattern;
output [8:0] anspattern;

Digital Logic Game 17

output submit,blinkdone,correct;

reg [8:0] anspattern;
reg [8:0] correctansspattern;
wire submit,correct;

reg blinkdone; //==1 when user wants next pattern
reg [7:0] timer; //this is used for the blinking state to be on 1/2 sec off 1/2 sec

//we are using a slow clock (1/4096) so we want to divide by 128 more
//to get about 0.5 sec each

reg on; //holds which part we are in for the blinking state

assign submit=(key==4'b1011);
assign correct=(correctanspattern==anspattern);

always@(posedge clk or posedge reset)
if (reset)

begin
anspattern<=9'b000000000; //all LEDs off
timer<=0;
on<=1; //we want the blinking state to start off (better looking)
blinkdone<=0;
end

else if (~blink)
begin //this implies the the user is inputting leds to toggle

timer<=0;
on<=0;
blinkdone<=0;
case(key)
4'b0000: anspattern<=anspattern;
4'b0001: anspattern[8]<=anspattern[8]^1'b1; //when keys 1-9 are
4'b0010: anspattern[7]<=anspattern[7]^1'b1; //pressed the corresponding
4'b0011: anspattern[6]<=anspattern[6]^1'b1; //bit will be toggled
4'b0100: anspattern[5]<=anspattern[5]^1'b1; // by XORing with 1
4'b0101: anspattern[4]<=anspattern[4]^1'b1;
4'b0110: anspattern[3]<=anspattern[3]^1'b1;
4'b0111: anspattern[2]<=anspattern[2]^1'b1;
4'b1000: anspattern[1]<=anspattern[1]^1'b1;
4'b1001: anspattern[0]<=anspattern[0]^1'b1;
default: anspattern<=anspattern; //all other keys will leave

//the pattern unchanged
endcase

end
else if (blink) //the correct pattern will be displayed blinking

begin
if (key==4'b1010)

begin
anspattern<=0;
timer<=0;
on<=0;
blinkdone<=1;

end
else //Next pattern button has not been pressed

begin
blinkdone<=0;
timer<=timer+1;
if (timer[7]==1)

begin
timer<=0;
if (on==1)

begin
on<=0;
anspattern<=0;

end
else //on=0

begin
 anspattern<= correctanspattern;
 on<=1;
end

end
else

begin
anspattern<= anspattern;
on<=on;

end
end

end
endmodule

//

Digital Logic Game 18

module display(clk,reset,pattern,anspattern,rowchoose,ledrow,func,win);

input clk,reset,win;
input [20:0] pattern; //this is the pattern from the HC11
input [8:0] anspattern;
output [2:0] rowchoose; //this will choose the current output row
output [8:0] ledrow;
output [3:0] func;

reg [2:0] rowchoose;
reg [8:0] ledrow;
reg [3:0] func;

always@ (posedge clk or posedge reset)

if (reset)
begin
rowchoose<=3'b110; //start with one of the rows on

 //(the zero, these transistors NOT the base value)
ledrow<=0; //clear the ledrow
func<=0; //clear the function
end

else
begin
rowchoose<={ rowchoose[0], rowchoose[2:1]};
if (~win)

case (rowchoose)
3'b110: ledrow<=~{pattern[20:18],pattern[11:9], anspattern[8:6]};

//the patterns are 9 bits long
3'b011: ledrow<=~{pattern[17:15],pattern[8:6], anspattern[5:3]};

//but only 3 go in each row
3'b101: ledrow<=~{pattern[14:12],pattern[5:3], anspattern[2:0]};
default: ledrow<=9'b111111111;

endcase
else //win! pattern= pluses

case (rowchoose)
3'b110: ledrow<=~(9'b010010010); //the patterns are 9 bits long
3'b011: ledrow<=~(9'b111111111); //but only 3 go in each row
3'b101: ledrow<=~(9'b010010010);
default: ledrow<=9'b111111111;

endcase
case (pattern[2:0])

3'b000: func<=~(4'b0100); //OR OR and NOR are duplicated
3'b001: func<=~(4'b0001); //XOR
3'b010: func<=~(4'b0010); //AND
3'b011: func<=~(4'b0100); //OR
3'b100: func<=~(4'b1001); //XNOR
3'b101: func<=~(4'b1010); //NAND
3'b110: func<=~(4'b1100); //NOR
3'b111: func<=~(4'b1100); //NOR
default: func<=~(4'b0000); //should never happen

endcase
end

endmodule

//

module clkdiv(clk,reset,slowclk); //taken from lab4 solutions

input clk,reset;
output slowclk;

reg [11:0] count;

always@(posedge clk or posedge reset)
if (reset) count=0;
else count=count+1;

assign slowclk=count[11];

endmodule

//

module determinecorrectpattern(clk,reset,pattern,correctpattern);
//This module takes the pattern (from HC11) of 2 X 9 bit patterns and 3 bit function code
//and determines the correct answer

Digital Logic Game 19

input clk,reset;
input [20:0] pattern;
output [8:0] correctpattern; //the correct answer pattern

wire [8:0] pat1,pat2; //will hold the two patterns
wire [2:0] func; //will hold the function encoding
reg [8:0] correctpattern; //will hold correct answer pattern

assign pat1=pattern[20:12]; //divide up pattern into individual patterns
assign pat2=pattern[11:3]; // and the fu nction to perform
assign func=pattern[2:0];

always@(posedge clk or posedge reset)
if (reset)

correctpattern<=0;
else

case (func)
3'b000: correctpattern<= (pat1 | pat2);//OR
3'b001: correctpattern<= (pat1 ^ pat2);//XOR
3'b010: correctpattern<= (pat1 & pat2);//AND
3'b011: correctpattern<= (pat1 | pat2);//OR
3'b100: correctpattern<=~(pat1 ^ pat2);//XNOR
3'b101: correctpattern<=~(pat1 & pat2);//NAND
3'b110: correctpattern<=~(pat1 | pat2);//NOR
3'b111: correctpattern<=~(pat1 | pat2);//NOR
default: correctpattern<=0;

endcase

endmodule

//

module shiftreg (clk, reset, resetflag, datain, pattern, patternreceived);

input clk, reset, resetflag, datain;
output [20:0] pattern; // Holds the 21-bit pattern from HC11
output patternreceived; // Set when the 21 bits have been received from HC11

wire patternreceived;
reg [20:0] pattern;
reg [4:0] count;

assign patternreceived=((count==24)& ~resetflag); //pattern is finished when 21st bit received
 //patrec means we are ready to use pattern

always@(posedge clk or posedge reset)
if (reset)

begin
count<=0;

 pattern<=0;
 end
else

begin
 pattern <= {pattern[19:0], datain};
 if (count==24) count<=0; //reset count when HC11 is done (3 bytes worth)
 else count<=count + 1;
 end

endmodule

//

module segdisp (clk,reset,score,segs);

input clk,reset;
input [3:0] score;
output [6:0] segs;

reg [6:0] segs;

parameter ZERO= 7'b 0000001;
parameter ONE= 7'b 1001111;
parameter TWO= 7'b 0010010;
parameter THREE=7'b 0000110;
parameter FOUR= 7'b 1001100;
parameter FIVE= 7'b 0100100;
parameter SIX= 7'b 0100000;
parameter SEVEN=7'b 0001111;
parameter EIGHT=7'b 0000000;
parameter NINE= 7'b 0000100;
parameter A= 7'b 0001000;
parameter B= 7'b 1100000;
parameter C= 7'b 0110001;

Digital Logic Game 20

parameter D= 7'b 1000010;
parameter E= 7'b 0110000;
parameter F= 7'b 0111000;

always@(posedge clk or posedge reset)
if (reset) segs<=7'b1111111;
else

case(score)
0: segs<=ZERO;
1: segs<=ONE;
2: segs<=TWO;
3: segs<=THREE;
4: segs<=FOUR;
5: segs<=FIVE;
6: segs<=SIX;
7: segs<=SEVEN;
8: segs<=EIGHT;
9: segs<=NINE;
10: segs<=A;
11: segs<=B;
12: segs<=C;
13: segs<=D;
14: segs<=E;
15: segs<=F;

endcase
endmodule

Digital Logic Game 21

3. Flyer on How to Play

Digital Logic Game

by Michael James Messina and Richard Trinh
December 2000

To play the Digital Logic Game, first press the Reset button. When you’re ready to play, press the

N key on the keypad. You will see two patterns appear in the red LEDs and a digital logic function

represented by the yellow and green LEDs. There are six possible logic functions: OR, AND,

XOR, NOR, NAND, and XNOR. The goal of the game is to use the T keys to toggle the LEDs in

the right-most array of red LEDs to match the correct pattern for the two displayed patterns and

logic function. When you think you have the right answer, submit it with the S key before the

binary countdown reaches zero. If you’re right, you earn 1 point. Then press the N key again

when you’re ready for the next pattern. You win when you get 10 points. But be careful, the game

gets harder as you go along!

SN

T T T

T

T T

T

T

T

Keypad Layout

 NOT OR AND XOR

