
Laser Writer
Final Project Report

December 8, 2000
Engineering 155, Micro Processor design

Jerod Meacham
Bryce Nichols

Abstract:

The Laser Writer system uses a single laser beam to project letters onto a flat, smooth
surface across a room. Persistence of vision permits a sufficiently fast moving laser to
trace through a series of discrete points and yield a vector graphic image. The laser beam
is deflected using galvanometers controlled by the FPGA. ROM in the FPGA stores the
discrete points used to construct letters and a shift register stores the last four letters typed
into a set of keypads. Four letters are currently displayed although this does not utilize
the full capabilities of the system. The system as currently implemented displays small
but readable four-letter words.

2

Introduction

This project was driven by the wish to have an amusing toy that could become a portable
physical system. The idea for the project came from recalling a similar device built by
one of our suitemates from our freshman year. He had built a laser display system
controllable with audio signals or by computer. We wished to have a similar device that
was low budget and portable. Also, we were more interested in the drawing capability
than the audio signal display. We knew that to move a laser beam, we either needed to
move the laser itself or deflect the beam with mirrors or opto-electric crystals. We chose
to implement the mirror design.

Our system is controlled solely by the FPGA board with a minimal amount of external
components. The mirror deflection hardware was created with two galvanometers, a
magnetic field, a laser and some mounting brackets. The HC11 board was not used in
order allow the system to be computer independent and thus more portable. A block
diagram of the system is given below.
1

1. The Laser Writer does not actually display curved letters or the “Times New Roman” font.

16-key keypad

16-key keypad

FPGA including shift
register and LogiBLOX
ROM module holding

character drawing
specifications.

4 bit
Digital to
Analog

converter

4 bit
Digital to
Analog

converter

Laser

X coordinate
galvanometer

Y coordinate
galvanometer

dOgS1

Figure 1: Block diagram of Laser Writer system

3

New Hardware

In order to accomplish beam positioning, we needed to find a method to deflect the laser
beam fast enough for a refresh rate that would allow persistence of vision. After doing
some research we found many different components that would allow us to do this. One
such method that we didn’t use due to high cost was opto-electric crystals. These crystals
change their index of refraction with a supplied current. They are very precise and very
fast. The downsides to this method are that it is very expensive, difficult to acquire
components for, and it requires a high current to be passed through the crystals. Another
option was to use small motors to move mirrors. Three different types of these motors
include stepper motors, actuators, and servos. All of these allow precise control but
stepper motors would limit the maximum possible resolution because they are not
continuous in their motion. Good actuators and servos also tend to be rather expensive.
A third option that we found utilized galvanometers.

Galvanometers are typically used to measure an electrical signal by deflecting a light
beam in proportion to the current applied. They consist of a coil attached to a small
mirror that resides within a magnetic field. Current applied to this coil produces a force
and causes the coil (and mirror) to rotate.

In searching for any of these devices to use, we ran across two galvanometers, model
CEC 7-361, for auction on Ebay. Because the description of the items was somewhat
vague, and they are not used in mainstream applications, we were the only bidders and
managed to pick them up for $10 apiece. Later, in talking with one of engineers who
helped design the model we were using, we found that the actual retail cost of these
galvanometers was $528. These galvanometers were designed for use in a high-precision
oscilligraph machine that would include an array of multiple galvanometers. Such a
machine would be used with laser beams and photosensitive paper to record signals in a
fashion similar to a polygraph machine. The galvanometers included lenses to focus an
incoming beam at focal distances of 7 or 11.5 in. Also, we learned that this model of
galvanometer was used by the Wright Patterson Air Force Base in a training simulator to
display profiles of enemy aircraft. Knowing this, we were confident that they would suit
our purpose, however we did not know how to use the devices.

We found a number of specifications on our model of galvanometer. Some of these are
included below.

4

Type

External
Damping

Resistance
Required
(Ohms)

Undamped
Natural

Frequency
(Hz)

Flat
Frequency
Range (Hz)

Terminal
Resistance
(Ohms +-

10%)

Undamped
DC

Sensitivity
(mA/in.)

Undamped
DC

Sensitivity
(in./mA)

7-361 20-2000 8000 0-5000 57 46.1 0.0217

System
Voltage

Sensitivity
(V/in.)

System
Voltage

Sensitivity
(in./V)

Static
Balance

(in./g)

Maximum
Safe Current

(mA)
5.16 0.194 0.005 100

The terms in table 2 are as follows:
Damping Resistance – the value of resistance of the driving source required for

0.64 critical damping
Natural Frequency – the frequency of maximum forced amplitude for an un-

damped galvanometer.
Flat Frequency Range – galvanometers operating under 64% of critical damping

conditions have a flat (within 5 percent) frequency response range in the
frequency stated.

Terminal Resistance – the DC resistance of the coil and suspension measured at
the terminals.

Un-damped DC Sensitivity – the relationship between the magnitude of the
current flowing through the coil and the amplitude of the resulting
deflection at an optical arm distance of 11.5 inches.

System Voltage Sensitivity – the magnitude of open-circuit voltage required of
the source which has a source resistance equal to the damping resistance
required for 0.64 damping to result in one inch of true deflection.

Static Balance – the maximum trace deflection of an 11.5 inch optical arm when
the galvanometer is subjected to a 1 g acceleration change in any plane.

Safe Current – the value of current that may be continuously passed through the
galvanometer without damage.

Also, we learned that the galvanometers require an external magnetic field to function
since they are too small to include a sufficiently large magnet. We purchased two rare-
earth magnets from radio-shack and fixed them to either side of the galvanometers. We
re-positioned the magnets to get the maximum deflection out of the galvanometers since
we had no specifications as to how the magnetic field should be aligned in relation to the
galvanometer. Finally, we learned that the galvanometers deflected based on a varying
current up to 100mA and that the two input terminals were the two terminals on the top
of the galvanometer. A drawing of the galvanometer with key parts labeled is included in
Appendix A.

Table 2: Galvanometer CEC 7-361 specifications

5

We purchased two galvanometers: One for the x coordinates and on for the y
coordinates. We would then send the laser beam into the y galvanometer, it would reflect
at some angle into the x galvanometer, reflect off of that mirror and onto the display
surface. In order for the beam to stay aligned through multiple mirrors even during
deflection, the galvanometers were placed very close together to minimize vertical or
horizontal distance while keeping the same angular deflection. The size of the image
projected is dependent on the distance to the projection surface. A photograph of the
setup is given below in Figure 3.

Figure 3: Laser and galvanometers setup

6

Schematics

The only additional components we used were resistors. We configured one set of
resistors to act as a simple digital to analog converter. The converter works on the
principal of current addition. By sending 5 volts through different valued resistors,
different currents are drawn. Those currents are then tied together such that the output is
an analog representation of the original digital signal. The only thing to keep in mind is
that the resistor values must all be multiples of 2 of each other to ensure linearity. In our
design, we used two 4-bit digital to analog converters for each direction, x and y. This is
because out of each pin the FPGA would only supply a small amount of current. By
doubling the number of pins, we could supply twice the current. This allowed us to have
larger deflection of our galvanometers. A schematic of our digital to analog converter is
given below in figure 4.

20 Ohm

39 Ohm

82 Ohm

160 Ohm

Resistor values that were smaller than those used would theoretically supply more current
but they caused a problem with the FPGA overheating and resistors burning out. Also,
some of the resistor values above, namely 20 and 160 ohms, were created using multiple
resistors in series or parallel.

Figure 4: Digital to analog converter

7

The only other circuit used in the system is given below. It was used to retrieve input
from the keypads. The rows of the keypad are tied high with large resistors so that they
will remain high until pulled low by contact with a low column line during a keypress.
A schematic of the circuit is given below in Figure 4.

4.7k

4.7k

4.7k

4.7k

Vcc

FPGA

Figure 5: Keypad and circuit.

8

FPGA Design

Our design uses eight outputs for the laser control, four outputs for the columns of the
two keypads, and eight input lines for reading the rows of the keypads. There are
actually 16 outputs for the laser control due to having two sets of outputs for increased
current, but in terms of actual signals, there are eight laser control output lines. The
general function of the FPGA circuit is to store the past four keypresses in registers, and
display the characters for those keys by looking up coordinates from a ROM module.
The ROM is a LogiBLOX module with eight bit addressing and 256 eight bit words. The
words are divided into sections of eight, for storing eight points per each of 32 characters.
A five bit counter is used to step through the sequence of points for the four characters
currently in the registers. The top two bits of the counter determine which character is
being displayed. Those bits are used in a module called “keysel” that returns the value in
the register denoted by the bits. That five bit value is combined with the lower three bits
of the counter to determine the current ROM address. The three lower bits of the counter
cause the address to step through eight values, which are the individual points in a
character. The output of the ROM is the value of the word addressed. There are two four
bit portions of each word. The first is the x coordinate in binary, and the second is the y
coordinate in binary. The x portion of the output is translated based on the character that
the output is part of. The first character is not translated and the other three are translated
by a multiple of the register number.

The logic for storing keypresses involves sequential logic that when a key is pressed,
stores the keypress in the first register, the first register’s contents in the second register,
etc. The key press detection logic polls the column lines of the keypads, pulling them

address

counter

Data selection

LogiBLOX
ROM

translate
output

data1

data2

data3

data4

Data selection

Figure 6: Display logic

9

low in sequence, and checks to see if any of the row lines are low. If there’s a key
pressed, the row for that key will go low when the column for that key is being polled.
The key press logic determines the key based on which column is low and which row is
low. A bit is added to the four bit value for the key to signify which keypad the key was
on. That gives five bits per key, enough for 32 keys which is enough to use all of the 32
characters stored in the ROM module.

10

Results

We accomplished our goal of creating a system to draw simple vector graphics. We were
able to specialize and extend the system in order to accept input and display four letters.

There were several challenging aspects of this project. The first that arose was finding
devices to do the beam deflection. We were fortunate to find the galvanometers at such a
low price, but we had to do some extra work to get them functioning. We had no
information about the devices to start out with, and it took a long conversation with one
of the designers to learn some of the more obscure specifications. This made the
hardware part of the design quite difficult, yet as a result, we were able to use very
precise scanning devices.

The second difficulty was in driving the galvanometers. After getting the galvanometer
and laser setup built, we didn’t have a lot of time left to work with. We tried to find DAC
chips and had trouble getting the ones we wanted. We tested one, and could not get it to
work. We decided to just build our own DAC circuit, which had its own issues, since it’s
difficult to find the proper resistor values for this. Finally, we spent some time trying to
amplify the current out of the DAC so we could get the full range of motion out of the
galvanometers. Had we had more time we would have gotten this to work, but a lack of
experience in designing actual amplifying circuits prevented this.

Despite these difficulties, we did create a working design, and the results were
satisfactory. There are traces between letters since the system doesn’t have a beam
blocking system. The letters are visible even at distances of 20 to 30 feet in a dark room.
The letters are very small at close distances, since the galvanometers deflect by such a
small amount. This is good, since the display will work at larger distances, and also, the
system could be extended to display more letters, since they can be drawn so small.

We are especially pleased with the portability of the system. We could convert the
system to run off of batteries, and build a custom board for the FPGA and external
circuitry and the whole system could be made quite small. The platform with
galvanometers and laser currently has a footprint of about four by seven inches. The
largest component needed to make the system battery powered would be the batteries
themselves.

On the whole, we are satisfied with the results, and excited by the possibilities for this
system.

11

References

Various data and information from James Pace appended in Appendix A.

Parts List

Part Source Vendor Part # Price Paid
Various Resistors Radio Shack Varied $7.99
2 Galvanometers Private Ebay

auction
CEC 7-361 $10.00 each

($558.00 retail)
Laser pointer Fry’s Electronics Generic 5mW $15.00

12

Appendix A

13

14

15

16

Appendix B

toplevel.v

module letters(A, DO);
input [7:0] A;
output [7:0] DO;
endmodule

module toplevel(clk, reset, out, out2, rows, cols, rows2);

input clk, reset;

input [3:0] rows;
input [3:0] rows2;
output [3:0] cols;

output [7:0] out;
output [7:0] out2;

reg [4:0] counter;
reg [4:0] data1, data2, data3, data4;

wire [7:0] uninvout;
wire slowclk;

wire [4:0] sel;
wire [4:0] sel2;
 // translate letters based on position
assign out[7:4] = uninvout[7:4] + {counter[4:3], 2'b00};

assign out[3:0] = uninvout[3:0];

assign out2 = out; // duplicate output

clkdiv slower(clk, reset, slowclk); // slows the clock

dualkeypad keyp(slowclk, reset, rows, cols, rows2, data1, data2, data3, data4);

 // look up a register
keysel keys(slowclk, reset, counter[4:3], sel, data1, data2, data3, data4);

letters readdata(.A({sel, counter[2:0]}), .DO(uninvout));

always @(posedge slowclk or posedge reset)
if (reset) counter <= 5'b00000;
else counter <= counter + 1;

endmodule

clkdiv.v
module clkdiv(clk, reset, slowclk);

input clk;
input reset;
output slowclk;

reg [11:0] count;

always @(posedge clk or posedge reset)
if (reset) count <= 0;
else count <= count + 1;

assign slowclk = count[5];
endmodule

17

dualkeyp.v

module dualkeypad(slowclk, reset, rows, cols, rows2, data1, data2, data3, data4);
input slowclk;
input reset;
input [3:0] rows;
output [3:0] cols;
input [3:0] rows2;

output [4:0] data1, data2, data3, data4;
reg [4:0] data1, data2, data3, data4;

reg state;
reg [3:0] cols;
reg [3:0] key;
reg [3:0] key2;

always @(posedge slowclk or posedge reset)
if (reset) begin

state <= 0;
cols <= 4'b0111;
data1 <= 5'b00000;
data2 <= 5'b00000;
data3 <= 5'b00000;
data4 <= 5'b00000;

end else if (&rows & &rows2) begin // poll the columns
state <= 0;
cols <= {cols[0], cols[3:1]};

end else if (~state) begin
state <= 1;
if (&rows) begin // shift in new data

data1 <= data2;
data2 <= data3;
data3 <= data4;
data4 <= {1, key2}; // second keypad

end else if (&rows2) begin // a bit of rows is low
data1 <= data2;
data2 <= data3;
data3 <= data4;
data4 <= {0, key}; // first keypad

end
end

always @(rows or cols)
case ({rows, cols}) // map a row and column to

8'b0111_0111: key <= 'hC; // a key value
8'b1011_0111: key <= 'hD;
8'b1101_0111: key <= 'hE;
8'b1110_0111: key <= 'hF;

8'b0111_1011: key <= 'h3;
8'b1011_1011: key <= 'h6;
8'b1101_1011: key <= 'h9;
8'b1110_1011: key <= 'hB;

8'b0111_1101: key <= 'h2;
8'b1011_1101: key <= 'h5;
8'b1101_1101: key <= 'h8;
8'b1110_1101: key <= 'h0;

8'b0111_1110: key <= 'h1;
8'b1011_1110: key <= 'h4;
8'b1101_1110: key <= 'h7;
8'b1110_1110: key <= 'hA;
default: key <= 'h0;

endcase

always @(rows2 or cols)
case ({rows2, cols})

8'b0111_0111: key2 <= 'hC;

18

8'b1011_0111: key2 <= 'hD;
8'b1101_0111: key2 <= 'hE;
8'b1110_0111: key2 <= 'hF;

8'b0111_1011: key2 <= 'h3;
8'b1011_1011: key2 <= 'h6;
8'b1101_1011: key2 <= 'h9;
8'b1110_1011: key2 <= 'hB;

8'b0111_1101: key2 <= 'h2;
8'b1011_1101: key2 <= 'h5;
8'b1101_1101: key2 <= 'h8;
8'b1110_1101: key2 <= 'h0;

8'b0111_1110: key2 <= 'h1;
8'b1011_1110: key2 <= 'h4;
8'b1101_1110: key2 <= 'h7;
8'b1110_1110: key2 <= 'hA;
default: key2 <= 'h0;

endcase
endmodule

keysel.v

module keysel(clk, reset, sel, d, data1, data2, data3, data4);
input clk, reset;
input [1:0] sel;
output [4:0] d;
input [4:0] data1, data2, data3, data4;
reg [4:0] d;

always @(sel) // use a binary number to select the register or character
case(sel)

0: d <= data1;
1: d <= data2;
2: d <= data3;
3: d <= data4;

endcase
endmodule

19

Appendix C

;
; memfile mem.mem for LogiBLOX symbol letters
; Created on Monday, November 20, 2000 01:57:59
;
; Header Section
RADIX 10
DEPTH 256
WIDTH 8
DEFAULT 0
;
; Data Section
; Specifies data to be stored in different addresses
; e.g., DATA 0:A, 1:0
RADIX 16
; now store only 8 points per symbol, instead of 16
DATA 00, 04, 24, 20, 22, 02, 22, 20, ;A
00, 04, 00, 20, 22, 02, 22, 20, ;b
00, 04, 24, 04, 00, 20, 00, 20, ;C
00, 20, 22, 24, 22, 02, 00, 20, ;d
00, 02, 22, 21, 01, 00, 20, 20, ;e
00, 04, 24, 04, 02, 22, 02, 00, ;F
00, 20, 24, 04, 02, 22, 40, 40, ;g
00, 02, 04, 02, 22, 24, 22, 20, ;H
00, 10, 14, 04, 24, 14, 10, 20, ;I
00, 10, 14, 04, 24, 14, 10, 10, ;J
00, 02, 04, 02, 24, 02, 20, 20, ;K
00, 01, 02, 03, 04, 00, 10, 20, ;L
00, 02, 04, 22, 44, 42, 40, 40, ;M
00, 02, 04, 12, 20, 22, 24, 20, ;N
00, 04, 24, 20, 00, 04, 24, 20, ;O
00, 02, 04, 24, 22, 02, 04, 00, ;P
20, 22, 24, 04, 02, 22, 20, 30, ;q
00, 02, 04, 24, 22, 02, 20, 20, ;R
00, 20, 22, 02, 04, 24, 04, 02, ;S
10, 12, 14, 04, 24, 14, 12, 10, ;T
00, 04, 02, 00, 20, 24, 22, 20, ;U
10, 04, 10, 24, 10, 04, 10, 24, ;V
00, 04, 02, 00, 22, 40, 44, 40, ;W
00, 12, 24, 12, 04, 12, 20, 20, ;X
10, 12, 04, 12, 24, 12, 10, 10, ;Y
00, 12, 24, 04, 24, 12, 00, 20, ;Z
00, 00, 00, 00, 10, 10, 10, 10, ;width 1 space
00, 00, 00, 00, 20, 20, 20, 20, ;width 2 space
00, 04, 24, 20, 04, 24, 00, 20, ;square with x in it
00, 04, 24, 20, 04, 24, 00, 20, ;square with x in it
00, 88, 08, 80, 88, 00, 08, 00, ;medium square with x
00, FF, 0F, F0, FF, 00, 0F, 00, ;big square with x
; end of LogiBLOX memfile

