
The Laser Target Game
Final Project Report
December 9, 2000

E155

Zehao Chang and Ben Schmidel

Abstract:

With increasing presence of guns at our schools, more and more children may be inclined to shoot
down their classmates. What better way is there to relieve the potentially deadly tension than a fast-paced
but non-violent laser target game? This project is the design and implementation of a laser target game,
which consists of target board that serves as a user interface, photo-detection circuitry, and an FPGA to
control the game-play. Using a laser pointer, the player hits any of the nine target areas to start the game.
The player then has sixty seconds to shoot as many targets as possible. At the end of the game, the player
can reflect on his performance by looking at the score display.

2

Introduction
The goal of the game is to shoot as many targets as possible in sixty seconds. There are nine target

areas, each with a ring of alternating red and green LEDs surrounded by a photodiode in the center. The
gun used in the game is simply a laser pointer. On powering on the game, the player will be greeted by a
pre-game sequence of all red LEDs followed by all green LEDs. Shooting any of the nine targets initiates
the game. A random red LED ring will now be lit, designating the target that is to be hit. Upon hitting the
correct target, the green LED ring corresponding to the target will light up, providing feedback to the
player. The score is incremented every time a target is hit. A new target is then chosen and the game waits
again for the player to successfully shoot it. During this time, the game keeps track of the number of
successful hits and the time remaining. Once the timer reaches zero, an end game LED sequence will
clearly indicate to the player that the game has ended. The game returns to the pre-game sequence but
retains the score of the last player. The score is reset to zero when a new game is initiated.

Figure 1: The target panel

The photodiodes situated in the center of each of the target ring are the sensing devices the player
must hit. They are interfaced with the FPGA through op-amp circuitry that will determine whether or not to
assert the “target-hit” signal. The FPGA controls the flow of the game by receiving input from the photo-
detection circuit, randomly selecting targets to be hit, and sending the correct outputs to the LEDs and
seven-segment displays.

3

Figure 2: System block diagram

4

New Hardware

We used Vishay Siliconix BPW43 photodiodes as our photodetectors. The
photodiodes provide good sensitivity at 650nm, which is ideal for detecting the output
from a laser pointer. The peak sensitivity is at 900nm, which is expected since most
photodiodes are intended to work in the infrared range. The following plot shows its
spectral response characteristics:

Figure 3: Photodiode response curves

These devices output a small current (in the order of microAmperes) proportional to the amount of
light entering them. In our circuit, we use an op-amp to convert the current output to voltage linearly.

For more information about this photodiode please visit:
http://www.vishay.com/temporary/datasheets/optoelectronics/detectors/bpw43.html

GND

 +

 -

Op-Amp

Output

Photodiode

1 MOhm

Figure 4: Current-to-Voltage converter for photodiode

5

Schematics

We used analog circuitry to detect whether a target has been hit and send a binary TTL signal to
our FPGA. There will be one sensor at each of our nine target areas, as well as one reference sensor. Each
of the target photodiode’s output is converted to voltage using the following op-amp circuit as discussed in
the previous section (Figure 4).

The purpose of the reference detector is to provide a dynamic threshold for when to assert the
“target-hit” signal. It is necessary that this voltage be slightly higher than the output of the current-to-
voltage op-amp since to prevent fluctuations and non-uniformity of room lighting from triggering our
system. Yet the threshold must be low enough such that the laser pointer can trigger a high in the
comparator. Under typical room lighting conditions, the photo-detection circuitry outputs around 2V and
increases to 4.5V when a laser pointer shines on it. We then chose the correct resistor value that increases
our reference voltage level to 3V.

To obtain this reference voltage we modify the circuit to add a small current to the output from the
reference photodiode.

Each of the target’s output will then be compared with the reference voltage using an op-amp
comparator circuit. The comparator will output a TTL high (5V) if the target output voltage is higher than
the reference or a TTL low (0V) otherwise. This converts the analog photodiode output to digital signals
that can be sent as input to the FPGA to tell it which target has been hit.

All nine detection circuits are identical, and the reference voltage is distributed to each of them.
The complete detection circuitry is shown in figure 7.

GND

 +

 -

741 Op-Amp

Reference
Voltage

Reference Photodiode

1 MOhm

3 MOhm

 +

 -
311 Op-Amp
Comparator

Reference
Voltage

Target voltage
output

5V

GND

Target hit
signal (to
FPGA)

1 MOhm

Figure 5: Reference voltage generator

Figure 6: Voltage comparator circuit

6

VCC

VEE
741

R = 1 MOhm

5V

GND

VCC

VEE

741

R = 1 MOhm

5V

GND
R = 3 MOhm

VCC

VEE

311

5V

GND R = 1 MOhm

VCC

VEE

741

R = 1 MOhm

5V

GND

VCC

VEE

311

5V

GND R = 1 MOhm

VCC

VEE

741

R = 1 MOhm

5V

GND

VCC

VEE
311

5V

GND R = 1 MOhm

To FPGA

To FPGA

To FPGA

Figure 7: The complete photo-detection circuit

The LED rings consist of LEDs connected in parallel, each LED with its own current-limiting
resistor. A single FPGA pin is able to provide enough current to power a ring of six LEDs. Thus no
transistor switches are needed to power the target rings.

R = 330 Ohm

R = 330 Ohm

R = 330 Ohm

R = 330 Ohm

R = 330 Ohm

R = 330 Ohm

Output from FPGA

Figure 8: LED ring circuit

Both seven-segment displays (for score and timer) are two-way multiplexed in a common anode
configuration. A PNP-transistor is needed at the anode to provide enough current to the multiplexed
display.

•
•
•

•
•
•

Nine target
detectors total

Reference
Detector

7

2N3906

5V

2N3906

5V

R = 330 Ohm

R = 330 Ohm

R = 330 Ohm

R = 330 Ohm

R = 330 Ohm

R = 330 Ohm

R = 330 Ohm

R = 330 Ohm

R = 330 Ohm

R = 330 Ohm

R = 330 Ohm

R = 330 Ohm

Anode 1

Anode 2

Segment A

Segment B

Segment C

Segment D

Segment E

Segment F

R = 330 Ohm

R = 330 OhmSegment G

R = 1 kOhm

R = 1 kOhm

Figure 9: Multiplexed display

Appendix A shows which pins of the FPGA connects to each of the breadboard circuitry described above.

8

FPGA Design

The FPGA serves as the heart of the game. Input to the FPGA simply consists of a nine-bit bus
with each bit corresponding to a unique target photodiode. A high bit is taken to mean that the light
incident on the photodiode is above a preset threshold. Thus targeting a photodiode with a laser should
cause the corresponding FPGA input bit to transition from low to high. This input bus is then converted
into convenient boolean quantities indicating whether a new game should start if the current game has
ended or whether the active target has been hit. The “start-game” signal is determined by checking to see
whether any of the inputs from the target are high, since shooting any target should start a new game. The
“target-hit” signal is determined by checking to see whether the target with the lit red LED ring is
providing a high input bit.

Outputs from the FPGA include two nine-bit busses that are used to power target’s red and green
LEDs. Each bit corresponds to a unique target and lights six of that targets same-color LEDs. The game
provides a score tabulation and a countdown game timer displayed on two seven-segment displays. Each
display is multiplexed using an 8 ms clock such that its two digits are alternately powered. The FPGA
outputs a seven-bit bus to each of the multiplexed displays and the two clock signals used to drive the
anode of each seven-segment display. Since each segment of the display is connected to the cathode, a low
output bit towards the segments will cause a segment to be lit. The anode signals are inverses of each other
and have a period of 8 ms. The eight most significant bits of the game counter are wired to the LEDs on the
FPGA board as an additional indication of time.

A block diagram of the verilog top-level module can be seen in Fig. 11. This diagram depicts the
relationship between all key hardware modules. A few modules instantiated solely within GameFSM,
however, are not depicted. System inputs and outputs can be clearly seen from this diagram.

Hardware Module Descriptions:

DebounceFSM:
This module debounces the input signal “hit” and provides output in the form of the debounced

signal “hitConfirmed.” The finite state machine used to debounce the input is depicted in Fig. X. It simply
verifies that the input signal “hit” is high for two consecutive clock cycles before setting “hitConfirmed”
high. When the input signal goes low, the output is set to low at the next rising edge of the clock. It was
found that the input, if not properly debounced, is a source of failure. The detectors were found to provide
a microsecond-width pulse sixty times a second, indicating that electrical and optical noise in the room is
likely to affect the operation of the photo-detection circuitry. Debouncing input from this circuitry using an
8 ms clock successfully filtered out these pulses.

GameFSM:
This module is responsible for implementing the game rules. The finite state machine implied by

this module can be seen in Fig. 10. Text in the figure enclosed by parentheses and including an assignment
arrow (?) indicate variable assignments made during the transition from one state to another. Text within
the state “bubble” indicates variable assignments maintained as long as that state is the current state. The
labeled states are essential to the game. Pregame FSM and Postgame FSM, however, are optional additions
that make the verilog more complex but make the game more visually appealing. The Pregame FSM is
implemented it as a two-state finite state machine where one state lights all targets red while the other lights
all targets green. The two states alternate every half-second until a start-game signal is detected, at which
point the current state transitions to state S4. Pregame FSM simply serves to provide the game player with
some entertaining visual effects while at the same time indicating that the game is operational and waiting
for a new game to start. Postgame FSM is a purely optional display of visual effects, with the purpose of
entertaining the game player and informing him that his current game is over. It also serves to provide a
delay between the end of the current game and Pregame FSM so that the player does not accidentally
trigger the start of a new game while trying to score last-second points. It is implemented as a nine-state

9

Reset

SI
Initialize

Score

S2
Light Target

Red

S3
Light Target

Green

S4
All LEDs

Off

TimeFlag = 1

StartGame = 1

TimeFlag = 0

Pre-Game
FSM

TimeFlag = 1

TimeFlag = 0

TargetHit = 1 /
GameOver = 0

TargetHit = X /
GameOver = 1

Post-Game
FSM

TargetHit = 0 /
GameOver = 0

StartGame = 0

(Score ? Score + 1)

(Score ? 0)
(RestartGame ? pulse)

(StartTimer ? pulse)

(StartTimer ? pulse)

(Next Target ? Rand)

finite state machine that sequentially lights all the targets’ red LEDs in a snaking pattern, followed by
lighting all the targets’ green LEDs following a reverse snaking pattern.

Timing for this module is achieved through the use of timing modules GetTimerBig,
GetTimerSmall. The user score is encoded for a seven-segment display using the module SevenSegDisplay
and output as “scoreSegs.” Similarly, the game time remaining is encoded for a seven-segment display and
output as “timerSegs.”

Figure 10: The GameFSM state transition diagram

10

GameTimerBig:
This module is used to specify the length of a game. When the input signal “restartGame” is

pulsed, the module begins counting down from approximately sixty seconds. When the counter reaches
zero, counting stops and the output flag “gameOver” is set high. The eight most significant bits of the
counter are output as “leds.” Furthermore, the amount of time remaining is also converted into a
multiplexed seven-segment display encoding and output as timerSegs. A game is begun when
“restartGame” transitions from high to low and persists until the next rising edge of the “gameOver” flag.

GameTimerSmall:
This module is used for small-scale, in-game timing. When the input signal “startTimer” is

pulsed, the module begins counting down from approximately half a second. After approximately a
sixteenth of a second has elapsed, the output flag “timeFlagS” is set high. When the counter reaches zero
counting stops and the output “timeFlag” is set high. This timer is used by GameFSM to time state
transitions.

GetClocks:
This module is used to obtain the slower clocks needed for input debouncing and seven segment display
multiplexing. Currently these clocks both have periods of 8.192 ms, but using two separate clocks makes it
easy to independently change debouncing and multiplexing times in the future.

GetRand:
This module aids in the selection of a random target. The output “rand” equivalent to a microsecond
counter modulus nine. GameFSM chooses a new target based upon the timing of user input. Since user
input is essentially random on the order of microseconds, “rand” is a simple yet effective way of choosing
new targets.

SevenSegDisplay:
This module was initially written for Lab 3 and modified for use with this project. It encodes two decimal
numbers for multiplexed display on a dual seven-segment display. Depending on the value of “clk,” the
output “segs” will either be an encoding of the input “data1” or “data2.

11

1 MHz Clk

Game
FSM

Debounce
FSM

Get
Clocks

Get
Rand

Is
Target
Hit?

Start
New

Game?

Reset

Reset
Reset

Reset

9

9

9

Target Input
Target Hit

Start Game

mpClk

Debounce
Clk

Rand

Hit Conf.

Game
FSM

Figure 11: Block diagram of verilog top-level module

12

Results

The above picture shows the physical appearance of
our final project. The laser target game is a success since it
works very well and is fun to play, as evinced by the happy
player shown on the right.

The breadboard circuitry and verilog for the FPGA
required tinkering to work as intended, but there were no major
problems. The soldering of components onto the target board,
however, was odious time consuming. We originally
envisioned a ring of eight red and eight green LEDs per target,
but we quickly reduced that number to six as we realized the
amount of soldering we had to do.

The use of the HC11 for scoring and timing as stated in our proposal was abandoned because we
found the FPGA to be capable of both tasks elegantly. In addition, we also decided not to control the laser
such that only pulses may be fired, as we found the continuous pressing of the trigger detracted the player
from the fun of the game. In addition, the size of each photodiode is small enough such that very accurate
shooting is required, and we felt that the game would be too hard if the player is restricted to pulses.

Parts List

Part Source Vendor Part # Quantity Price
Vishay Siliconix
BPW43 Photodiodes

Arrow Electronics
(www.arrow.com)

BPW43 20 $11.60

Ultrabright Red LED Digikey
(www.digikey.com)

HLMP3750A-ND 100 $14.65

Ultrabright Green LED Digikey
(www.digikey.com)

HLMP3950A-ND 100 $16.82

741 Op Amp Stock Room 10
311 Comparator Stock Room 9
Prepunched Perfboard Prof. Harris 1

13

Appendix A – FPGA pin assignments

14

Appendix B – Verilog Code

// Written by Ben Schmidel, 11/30/00
// File: tlm.v
// email: bschmide@hmc.edu

// Top level module for the laser target game

module TLM(reset, clk, targetInput, targetOutputRed, targetOutputGreen, mpClk, mpClk_b,
scoreSegs, timerSegs, leds);

input reset; // global reset
input clk; // 1 MHz clock signal
input [8:0] targetInput; // one-hot encoding (photodetectors)
output [8:0] targetOutputRed; // one-hot encoding (red LEDs)
output [8:0] targetOutputGreen; // one-hot encoding (green LEDs)
output mpClk; // clk used for hex-display multiplexing
output mpClk_b; // inverse of mpClk (b stands for "bar")
output [6:0] scoreSegs; // 7-seg display encoded score
output [6:0] timerSegs; // 7-seg display encoded game-time remaining
output [7:0] leds; // 8 most sig. bits of the game timer

wire [3:0] rand; // "random" number selecting next target
wire debounceClk; // clk used for target debouncing
wire startGame; // possible game-start indication
wire startGameConfirmed; // definite game-start signal (debounced startGame)
wire targetHit; // indicates a possible successful hit
wire targetHitConfirmed; // definite successful hit (debounced targetHit)

GetRand randTarget(reset, clk, rand);
GetClocks clks(reset, clk, debounceClk, mpClk);
assign mpClk_b = ~mpClk;

// any target can be used to start the game
assign startGame = | targetInput;

// only a hit on the active target counts
assign targetHit = |(targetInput & targetOutputRed);

DebounceFSM start_fsm(reset, debounceClk, startGame, startGameConfirmed);
DebounceFSM target_fsm(reset, debounceClk, targetHit, targetHitConfirmed);
GameFSM game(reset, clk, mpClk, startGameConfirmed, targetHitConfirmed, rand,

targetOutputRed, targetOutputGreen, scoreSegs, timerSegs, leds);

endmodule

15

// Written by Ben Schmidel, 11/30/00
// File: getclocks.v
// email: bschmide@hmc.edu

// If clk has a frequency of 1MHz, debounceClk and mpClk
// will have periods of 8.192 ms. debounceClk is used to
// debounce input from the target and mpClk is used to
// multiplex output to seven-segment displays. Though
// one clock could serve both purposes, having separate
// clocks makes it easier to change debounce time or
// multiplexing speed at a later date.

module GetClocks(reset, clk, debounceClk, mpClk);

input reset;
input clk;
output debounceClk;
output mpClk;

reg [12:0] counter;

always @ (posedge clk or posedge reset)

if (reset)
counter <= 0;

else
counter <= counter + 1;

// debounceClk will have a period 2^13 - 1 times that of clk
assign debounceClk = counter[12];
assign mpClk = counter[12];

endmodule

16

// Written by Ben Schmidel, 11/30/00
// File: debouncefsm.v
// email: bschmide@hmc.edu

// debounceFSM is a finite-state machine that debounces a signal
// to confirm it is high. If two successive highs are sampled,
// the output is high. Otherwise the output is low.

module DebounceFSM(reset, debounceClk, hit, hitConfirmed);

input reset;
input debounceClk;
input hit;
output hitConfirmed;

reg [1:0]state;
reg [1:0]nextState;

parameter S0 = 2'b00;
parameter S1 = 2'b10;
parameter S2 = 2'b01;

// state register
always@(posedge debounceClk or posedge reset)

if (reset)
state <= S0;

else
state <= nextState;

// next state logic
always @ (state or hit)

case (state)
S0: if (hit) nextState <= S1;

else nextState <= S0;

S1: if (hit) nextState <= S2;
else nextState <= S0;

S2: if (hit) nextState <= S2;
else nextState <= S0;

default: nextState <= S0;
endcase

// output logic
assign hitConfirmed = state[0];

endmodule

17

// Written by Ben Schmidel, 11/30/00
// File: gametimersmall.v
// email: bschmide@hmc.edu

// Performs all short-term game timing. When startTimer pulses,
// the timer starts. Half a second later, the timer stops and
// timeFlag is set high. Restarting the timer will set timeFlag low.
// timeFlagS goes high a sixteenth of a second after start timer
// transitions from high to low.

module GameTimerSmall(reset, startTimer, clk, timeFlag, timeFlagS);

input reset;
input startTimer; // flag used to start the timing process
input clk;
output timeFlag, timeFlagS; // flags indicating a given time has elapsed

reg [19:0] gameCounter;

parameter HALFSEC_TIMER = 20'b1000_0000_0000_0000_0000;

always @ (posedge clk or posedge reset)

if (reset)
gameCounter <= 0;

else if (startTimer)
gameCounter <= HALFSEC_TIMER; // init counter

else if (gameCounter > 0)
gameCounter <= gameCounter - 1; // count down

else
gameCounter <= gameCounter;

assign timeFlag = (gameCounter == 0);
assign timeFlagS = (gameCounter <= 20'b0111_0000_0000_0000_0000);

endmodule

18

// Written by Ben Schmidel, 11/30/00
// File: gametimerbig.v
// email: bschmide@hmc.edu

// times the span of the game and provides a flag to say when the
// current game has ended. The gameOver flag will be set high
// approximately sixty seconds after the input restartGame
// transitions from high to low. The time remaining is displayed in
// binary on the eight FPGA board LEDs. It is also output for multiplexed
// display on a seven segment display.

module GameTimerBig(reset, restartGame, clk, mpClk, state, gameOver, leds, timerSegs);

input reset;
input restartGame; // flag that starts the counter
input clk;
input mpClk; // multiplexing clock
input [3:0] state;
output gameOver; // indicates the counter has finished
output [7:0] leds; // 8 most sig. bits of the counter
output [6:0] timerSegs; // 7-seg encoding of the counter

wire secondClk;

reg [3:0] timerData1;
reg [3:0] timerData2;
reg [3:0] nextTimerData1;
reg [3:0] nextTimerData2;

reg [26:0] gameCounter;
reg [26:0] nextGameCounter;

parameter COUNTER_START = 26'b11_1100_1111_1111_1111_1111_1111;

// Maintain the game counter
always @ (posedge clk or posedge reset)

if (reset)
gameCounter <= 0;

else if (restartGame)
gameCounter <= COUNTER_START;

else if (gameCounter > 0)
gameCounter <= gameCounter - 1;

else
gameCounter <= 0;

assign gameOver = ((gameCounter == 0) && (state[2] | state[1]));
assign leds = gameCounter[26:19];

assign secondClk = gameCounter[19];

// Maintain seven segment display output
always @ (posedge secondClk or posedge reset)

19

if (reset) begin
timerData1 <= 0;
timerData2 <= 0;

end
else if (restartGame) begin

timerData1 <= 6;
timerData2 <= 0;

end
else if (timerData2 == 0) begin

if (timerData1 > 0) begin
timerData1 <= timerData1 - 1;
timerData2 <= 9;

end
else begin

timerData1 <= 0;
timerData2 <= 0;

end
end
else begin

timerData1 <= timerData1;
timerData2 <= timerData2 - 1;

end

SevenSegDisplay timer(mpClk, timerData1, timerData2, timerSegs);

endmodule

20

// Written By Ben Schmidel, 9/20/00
// File: sevensegdisplay.v
// Lab 3 Verilog Source -- Adapted in part from
// the verilog example "seven-seg-disp" given in E155 lecture
// email: bschmide@hmc.edu
// Initially written for Lab 3
// Modified 9/29/00 for Lab 4
// Modified again for final project on 12/2/00

// This module represents a hexidecimal encoder. When the clock is high, the 7-bit bus
// segs encodes the binary number data1. When clk is low, segs encodes the binary number
// data2. Our final project only requires the use of decimal numbers, so only values from 0 to 9
// will be encoded.

module SevenSegDisplay(clk, data1, data2, segs);

input clk;
input [3:0] data1;
input [3:0] data2;
output [6:0] segs;
wire [4:0] data;
reg [6:0] segs;

parameter ZERO = 7'b000_0001;
parameter ONE = 7'b100_1111;
parameter TWO = 7'b001_0010;
parameter THREE = 7'b000_0110;
parameter FOUR = 7'b100_1100;
parameter FIVE = 7'b010_0100;
parameter SIX = 7'b010_0000;
parameter SEVEN = 7'b000_1111;
parameter EIGHT = 7'b000_0000;
parameter NINE = 7'b000_0100;

// multiplex to select the desired input data
assign data = clk ? data1 : data2;

// asynchronous hex encoder
always @ (data)

case (data)
0: segs <= ZERO;
1: segs <= ONE;
2: segs <= TWO;
3: segs <= THREE;
4: segs <= FOUR;
5: segs <= FIVE;
6: segs <= SIX;
7: segs <= SEVEN;
8: segs <= EIGHT;
9: segs <= NINE;

default: segs <= ZERO;
endcase

endmodule

21

// Written by Ben Schmidel, 11/30/00
// File: getrand.v
// email: bschmide@hmc.edu

// rand will be a number between 0 and 8, inclusive. rand
// increments every millionth of a second (if clk has a
// frequency of 1MHz). If rand is used to select a new target
// whenever the current target is hit, the new target should be
// sufficiently random due to the uncertainty in the length of time
// between successful target hits.

module GetRand(reset, clk, rand);

input reset;
input clk;
output [3:0] rand;

reg [3:0] rand;

always @ (posedge clk or posedge reset)

if (reset)
rand <= 0;

else if (rand == 8)
rand <= 0;

else
rand <= rand + 1;

endmodule

22

// Written by Ben Schmidel, 11/30/00
// File: gamefsm.v
// email: bschmide@hmc.edu

// This module is the heart of the laser target game. It is responsible
// for implementing all of the game rules. It is currently designed to
// wait for a start-game signal. Upon this signal, a game timer is started.
// A target is randomly selected and illuminated red. This state persists
// until it is determined that the player has hit that target. When this
// happens, the target is illuminated green for half a second. Then
// all LEDs are turned off for half a second and a new target is chosen.
// This process repeats until the game timer reaches zero (and the gameOver
// flag is set high). At this point, some post-game visuals are displayed to
// indicated that the current game has ended. After completion, the game goes
// back to waiting for a start-game signal.

module GameFSM(reset, clk, mpClk, startGame, targetHit, rand, targetOutputRed,
targetOutputGreen, scoreSegs, timerSegs, leds);

input reset;
input clk;
input mpClk; // multiplexing clock
input startGame; // start game flag
input targetHit; // target hit flag
input [3:0] rand; // random number from 0 to 8
output [8:0] targetOutputRed; // target area red LEDs
output [8:0] targetOutputGreen; // target area green LEDs
output [6:0] scoreSegs; // seven segment display encoded score
output [6:0] timerSegs; // seven segment display encoded timer
output [7:0] leds; // 8 most sig. bits of game timer

wire gameOver; // flag indicating game has ended
wire timeFlag, timeFlagS; // flag indicating short timer has ended

reg eFlag; // flag used during post-game visuals
reg nexteFlag;
reg restartGame; // flag used to restart the game timer
reg startTimer; // flag used to start short timer
reg [8:0] targetOutputRed;
reg [8:0] targetOutputGreen;
reg [8:0] nextTargetOutputRed;
reg [8:0] nextTargetOutputGreen;
reg [3:0] scoreData1;
reg [3:0] scoreData2;
reg [3:0] nextScoreData1;
reg [3:0] nextScoreData2;

reg [3:0] state;
reg [3:0] nextState;

// State Encodings
parameter SI = 4'b0101; // initial state only reached by reset
parameter S0 = 4'b0000;
parameter S1 = 4'b0001;
parameter S2 = 4'b0010;

23

parameter S3 = 4'b0011;
parameter S4 = 4'b0100;

// states used to flash LEDs when a game ends
parameter SE0 = 4'b0111;
parameter SE1 = 4'b1000;
parameter SE2 = 4'b1001;
parameter SE3 = 4'b1010;
parameter SE4 = 4'b1011;
parameter SE5 = 4'b1100;
parameter SE6 = 4'b1101;
parameter SE7 = 4'b1110;
parameter SE8 = 4'b1111;
parameter SE9 = 4'b0110;

// Instantiate modules used by this module
GameTimerBig gtb(reset, restartGame, clk, mpClk, state, gameOver, leds, timerSegs);
GameTimerSmall gts(reset, startTimer, clk, timeFlag, timeFlagS);
SevenSegDisplay score(mpClk, scoreData1, scoreData2, scoreSegs);

// State Change Logic: Sets the next stage and its corresponding outputs
always @ (posedge clk or posedge reset)

if (reset) begin
state <= SI;
targetOutputRed <= 9'b111111111;
targetOutputGreen <= 9'b111111111;
scoreData1 <= 0;
scoreData2 <= 0;
eFlag <= 0;

end
else begin

state <= nextState;
targetOutputRed <= nextTargetOutputRed;
targetOutputGreen <= nextTargetOutputGreen;
scoreData1 <= nextScoreData1;
scoreData2 <= nextScoreData2;
eFlag <= nexteFlag;

end

// Next State Logic
always @ (state or startGame or timeFlag or gameOver or targetHit or eFlag or timeFlagS)

case (state)
// perform reset initializations
SI: begin

nextState <= S0;
startTimer <= 1;
restartGame <= 0;
nexteFlag <= 0;

end

// pre-game visuals -- wait for start game flag

24

S0: if (startGame) begin
nextState <= S4;
startTimer <= 1;
restartGame <= 1;
nexteFlag <= 0;

end
else if (timeFlag) begin

nextState <= S1;
startTimer <= 1;
restartGame <= 0;
nexteFlag <= 0;

end
else begin

nextState <= S0;
startTimer <= 0;
restartGame <= 0;
nexteFlag <= 0;

end

// pre-game visuals -- wait for start game flag
S1: if (startGame) begin

nextState <= S4;
startTimer <= 1;
restartGame <= 1;
nexteFlag <= 0;

end
else if (timeFlag) begin

nextState <= S0;
startTimer <= 1;
restartGame <= 0;
nexteFlag <= 0;

end
else begin

nextState <= S1;
startTimer <= 0;
restartGame <= 0;
nexteFlag <= 0;

end

// wait for current target to be hit
S2: if (gameOver) begin

nextState <= SE0;
startTimer <= 1;
restartGame <= 0;
nexteFlag <= 0;

end
else if (targetHit) begin

nextState <= S3;
startTimer <= 1;
restartGame <= 0;
nexteFlag <= 0;

end
else begin

nextState <= S2;
startTimer <= 0;
restartGame <= 0;

25

nexteFlag <= 0;
end

// flash hit-target green
S3: if (timeFlag) begin

nextState <= S4;
startTimer <= 1;
restartGame <= 0;
nexteFlag <= 0;

end
else begin

nextState <= S3;
startTimer <= 0;
restartGame <= 0;
nexteFlag <= 0;

end

// choose next target; pause before illuminating
S4: if (timeFlag) begin

nextState <= S2;
startTimer <= 1;
restartGame <= 0;
nexteFlag <= 0;

end
else begin

nextState <= S4;
startTimer <= 0;
restartGame <= 0;
nexteFlag <= 0;

end

// Perform post-game visual effects (OPTIONAL)

SE0: if (timeFlagS) begin
if(eFlag) begin

nextState <= S0;
startTimer <= 1;
restartGame <= 0;

end
else begin

nextState <= SE1;
startTimer <= 1;
restartGame <= 0;

end
nexteFlag <= eFlag;

end
else begin

nextState <= SE0;
startTimer <= 0;
restartGame <= 0;
nexteFlag <= eFlag;

end

SE1: if (timeFlagS) begin
if(eFlag) begin

26

nextState <= SE0;
startTimer <= 1;
restartGame <= 0;

end
else begin

nextState <= SE2;
startTimer <= 1;
restartGame <= 0;

end
nexteFlag <= eFlag;

end
else begin

nextState <= SE1;
startTimer <= 0;
restartGame <= 0;
nexteFlag <= eFlag;

end

SE2: if (timeFlagS) begin
if(eFlag) begin

nextState <= SE1;
startTimer <= 1;
restartGame <= 0;

end
else begin

nextState <= SE3;
startTimer <= 1;
restartGame <= 0;

end
nexteFlag <= eFlag;

end
else begin

nextState <= SE2;
startTimer <= 0;
restartGame <= 0;
nexteFlag <= eFlag;

end

SE3: if (timeFlagS) begin
if(eFlag) begin

nextState <= SE2;
startTimer <= 1;
restartGame <= 0;

end
else begin

nextState <= SE4;
startTimer <= 1;
restartGame <= 0;

end
nexteFlag <= eFlag;

end
else begin

nextState <= SE3;
startTimer <= 0;
restartGame <= 0;
nexteFlag <= eFlag;

27

end

SE4: if (timeFlagS) begin
if(eFlag) begin

nextState <= SE3;
startTimer <= 1;
restartGame <= 0;

end
else begin

nextState <= SE5;
startTimer <= 1;
restartGame <= 0;

end
nexteFlag <= eFlag;

end
else begin

nextState <= SE4;
startTimer <= 0;
restartGame <= 0;
nexteFlag <= eFlag;

end

SE5: if (timeFlagS) begin
if(eFlag) begin

nextState <= SE4;
startTimer <= 1;
restartGame <= 0;

end
else begin

nextState <= SE6;
startTimer <= 1;
restartGame <= 0;

end
nexteFlag <= eFlag;

end
else begin

nextState <= SE5;
startTimer <= 0;
restartGame <= 0;
nexteFlag <= eFlag;

end

SE6: if (timeFlagS) begin
if(eFlag) begin

nextState <= SE5;
startTimer <= 1;
restartGame <= 0;

end
else begin

nextState <= SE7;
startTimer <= 1;
restartGame <= 0;

end
nexteFlag <= eFlag;

end
else begin

28

nextState <= SE6;
startTimer <= 0;
restartGame <= 0;
nexteFlag <= eFlag;

end

SE7: if (timeFlagS) begin
if(eFlag) begin

nextState <= SE6;
startTimer <= 1;
restartGame <= 0;

end
else begin

nextState <= SE8;
startTimer <= 1;
restartGame <= 0;

end
nexteFlag <= eFlag;

end
else begin

nextState <= SE7;
startTimer <= 0;
restartGame <= 0;
nexteFlag <= eFlag;

end

SE8: if (timeFlagS) begin
if(eFlag) begin

nextState <= SE7;
startTimer <= 1;
restartGame <= 0;

end
else begin

nextState <= SE9;
startTimer <= 1;
restartGame <= 0;

end
nexteFlag <= eFlag;

end
else begin

nextState <= SE8;
startTimer <= 0;
restartGame <= 0;
nexteFlag <= eFlag;

end

SE9: begin
nextState <= SE8;
startTimer <= 1;
restartGame <= 0;
nexteFlag <= 1;

end

default: begin
nextState <= S0;
startTimer <= 0;

29

restartGame <= 0;
nexteFlag <= 0;

end
endcase

// Output Logic, it determines the next Red or Green output
always @ (state or startGame or rand or timeFlag or targetHit or scoreData1 or scoreData2 or

targetOutputRed or targetOutputGreen or eFlag)

case (state)
// perform reset initializations
SI:
begin

nextTargetOutputGreen <= 0;
nextTargetOutputRed <= 0;
nextScoreData1 <= 0;
nextScoreData2 <= 0;

end

// pre-game visuals -- wait for start game flag
S0:
if (startGame)
begin

nextTargetOutputGreen <= 0;
nextTargetOutputRed <= 0;
nextScoreData1 <= 0;
nextScoreData2 <= 0;

end
else if (timeFlag) begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
// light all red LEDs
nextTargetOutputGreen <= 9'b111_111_111;
nextTargetOutputRed <= 0;

end
else begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= targetOutputGreen;
nextTargetOutputRed <= targetOutputRed;

end

// pre-game visuals -- wait for start game flag
S1:
if (startGame)
begin

nextScoreData1 <= 0;
nextScoreData2 <= 0;
nextTargetOutputGreen <= 0;
nextTargetOutputRed <= 0;

end
else if (timeFlag) begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;

30

nextTargetOutputGreen <= 0;
// light all green LEDs
nextTargetOutputRed <= 9'b111_111_111;

end
else begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= targetOutputGreen;
nextTargetOutputRed <= targetOutputRed;

end

// wait for current target to be hit
S2:
if (targetHit) begin

nextTargetOutputGreen <= targetOutputRed;
nextTargetOutputRed <= 0;
// increment score
if (scoreData2 == 9) begin

nextScoreData1 <= scoreData1 + 1;
nextScoreData2 <= 0;

end
else begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2 + 1;

end
end
else begin

nextTargetOutputGreen <= targetOutputGreen;
nextTargetOutputRed <= targetOutputRed;
nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;

end

// flash hit-target green
S3:
begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
if (timeFlag) begin

nextTargetOutputGreen <= 0;
nextTargetOutputRed <= 0;

end
else begin

nextTargetOutputGreen <= targetOutputGreen;
nextTargetOutputRed <= targetOutputRed;

end
end

// choose next target; pause before illuminating
S4:
begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
if (timeFlag) begin

nextTargetOutputGreen <= 0;
case (rand)

31

0: nextTargetOutputRed <= 9'b100_000_000;
1: nextTargetOutputRed <= 9'b010_000_000;
2: nextTargetOutputRed <= 9'b001_000_000;
3: nextTargetOutputRed <= 9'b000_100_000;
4: nextTargetOutputRed <= 9'b000_010_000;
5: nextTargetOutputRed <= 9'b000_001_000;
6: nextTargetOutputRed <= 9'b000_000_100;
7: nextTargetOutputRed <= 9'b000_000_010;
8: nextTargetOutputRed <= 9'b000_000_001;
default:
 nextTargetOutputRed <= 9'b101_010_101;
endcase

end
else begin

nextTargetOutputGreen <= targetOutputGreen;
nextTargetOutputRed <= targetOutputRed;

end
end

// Perform post-game visual effects (OPTIONAL)

SE0:
if (eFlag) begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 9'b111_111_111;
nextTargetOutputRed <= 0;

end
else begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 0;
nextTargetOutputRed <= 9'b100_000_000;

end

SE1:
if (eFlag) begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 9'b011_111_111;
nextTargetOutputRed <= 9'b100_000_000;

end
else begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 0;
nextTargetOutputRed <= 9'b110_000_000;

end

SE2:
if (eFlag) begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 9'b001_111_111;
nextTargetOutputRed <= 9'b110_000_000;

32

end
else begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 0;
nextTargetOutputRed <= 9'b111_000_000;

end

SE3:
if (eFlag) begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 9'b000_111_111;
nextTargetOutputRed <= 9'b111_000_000;

end
else begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 0;
nextTargetOutputRed <= 9'b111_001_000;

end

SE4:
if (eFlag) begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 9'b000_110_111;
nextTargetOutputRed <= 9'b111_001_000;

end
else begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 0;
nextTargetOutputRed <= 9'b111_011_000;

end

SE5:
if (eFlag) begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 9'b000_100_111;
nextTargetOutputRed <= 9'b111_011_000;

end
else begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 0;
nextTargetOutputRed <= 9'b111_111_000;

end

SE6:
if (eFlag) begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 9'b000_000_111;
nextTargetOutputRed <= 9'b111_111_000;

33

end
else begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 0;
nextTargetOutputRed <= 9'b111_111_100;

end

SE7:
if (eFlag) begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 9'b000_000_011;
nextTargetOutputRed <= 9'b111_111_100;

end
else begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 0;
nextTargetOutputRed <= 9'b111_111_110;

end

SE8:
if (eFlag) begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 9'b000_000_001;
nextTargetOutputRed <= 9'b111_111_110;

end
else begin

nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;
nextTargetOutputGreen <= 0;
nextTargetOutputRed <= 9'b111_111_111;

end

default:
begin

nextTargetOutputGreen <= targetOutputGreen;
nextTargetOutputRed <= targetOutputRed;
nextScoreData1 <= scoreData1;
nextScoreData2 <= scoreData2;

end

endcase

endmodule

