Serial Communication Through an Asynchronous FIFO
Buffer

Final Project Report
December 9, 2000
E155

Nick Bodnaruk and Andrew Ingram

Abstract:

For our clinic, we need to be able to use serial communication with a PC to exchange data with an
asynchronous FIFO Buffer on aPCB. In order to gain insight in this process, we set out to use the HC11
and two FPGASs, one acting as the FIFO and another as atrandator, to send data through the FIFO and back
toitself. The FIFO hasfour stages of memory, and is not controlled by aclock. The translator FPGA
converts serial datato parallel and vice-versa. The HC11 successfully sent four eight bit words, but due to
control problems, only received seven of the bits sent for each word.

Introduction

As members of the Sun Microsystems clinic team, we have been asked to design
and fabricate a demonstration PCB that contains an asynchronous FIFO. It will need to
be able to communicate with a PC viaa serial connection, among other requirements. To
gain experience with the intricacies of serial communication and how a FIFO works, we
decided to use the HC11 microcontroller and two other FPGAs for to perform these
functions. The HC11 sends serial datato atransator FPGA, which converts the datainto
parallel data, and sends it to the FIFO FPGA. To take data out of the FIFO, the trandator
takes the data from the FIFO’ s last stage, and sendsiit serially back to the HC11. A block

diagram of our system is shown below.

RECEIVE

Peréallel data

Serial Data

_
Serial Data
=

TRANSMIT 1

TRANSMIT 2

The following sections describe how each component functions and how they
were designed, as well as how the integration of everything was achieved. The HC11
used its Serial Peripheral Interface for communication and was controlled using assembly
language. The FPGASs were programmed with a combination of schematics and verilog

code.

Schematics

Thisisthe overall design of our system, including pinouts and the name of each

signal. Each signal and its purpose are described in the following sections.

/0

HC11 FIFO

DATA IN [0]
DATA IN [1]
DATA IN [2]
DATA IN [3]
DATA IN [4]
DATA IN [5]
DATA IN [6]
DATA IN[7]
DATA OUT [0]
DATA OUT [1]
DATA OUT [2]
DATA OUT [3]
DATA OUT [4]
DATA OUT [5]
DATA OUT [6]
DATA OUT [7]

RECEIVE

TRANSMIT 1

VV V V VYV VY

TRANSMIT 2

ECLK

MOSI

MISO

>
l
dl
ol
>
l
dl
ol
i
ol
>
l
dl
ol
>
l

DONE

Microcontroller Design

For our project, we used the Motorola MC68HC11 microcontroller in place of a
PC equipped with a serial port for sending and receiving data to and from our FIFO. The
implementation was fairly simple, although we did have one problem that we were
unable to solve. We simply stored in memory the data elements that we wished to send
to our FIFO. For ease of use in sending them out to the FIFO, they were stored in
consecutive memory locations on the zero page on the HC11. This allowed usto ssmply
use the X register as a pointer to which data item should be sent out over the built in
serial peripheral interface (SPI) to the I/O FPGA. After each data item was sent out, we
incremented X, which ensures that we would subsequently send the next dataitem in our
Set.

As mentioned above, datais written to and read from the I/O FPGA using the SPI.
Data was sent out from the HC11 to the FPGA over the MOS! interface, and data was
read back into the FPGA over the MISO line. We configured the SPI control register so
that the HC11 was set as master, the serial clock (ECLK) idles high, and that the rising
edge of ECLK wasthe active edge. We believe that ECLK idling high is partly
responsible for problems we will discuss later. It is possible to set ECLK toidle low, but
according to Cady, the SSbar (Slave Select) signal “ must be deasserted and reasserted
between each successive serial byte”. We were unsure of any other implications of doing
this, and so decided to have ECLK idle high.

Since the serial dataregistersin the HC11 and the slave can be thought of as one
circular register, we must write data out of the serial port in order to read data from our

FPGA. In order to prevent the FPGA from accepting this as valid data, we have another

signa (RECEIVE) that is sent out over the parallel port that alerts the FPGA that the data
isnot valid. Additionally, we have two other signals that are generated on the HC11:
TRANSMIT 1 and TRANSMIT 2. TRANSMIT 1 causes the I/O FPGA to latch the data
at the output of the FIFO. TRANSMIT 2 enables the shift register to shift the data back to
the HC11, and it also aerts the FIFO control that we have removed a data item from the
FIFO.

Data items were sent out four at atime to the I/O FPGA, where they were then
sent to the FIFO. After all data was sent, the HC11 branches to the “sent” label of the
code (see appendix C), and then retrieves all four of the data items consecutively. We
have two delay loopsin our code (hold and hold2) that ensure that the data transfers are
finished before we try to begin another transfer.

Because we are interfacing with a FIFO, we expect to receive the same data back
and in the same order that we sent it out in. Once we get the data back from the I/O
FPGA, we store it in memory so that it can be compared to the data that we wrote to the

FIFO.

FPGA Design

The control circuitry we are using was created by Sun Microsystems and is called
the asP* protocol, which stands for Asynchronous Symmetric Persistent Pulse Protocol.
A single control stageis shown in Appendix B, under the One_Stage Control Verilog
code. It isasynchronous because there is no clock input, and symmetric because when
any number of stages are placed together, they are exactly the same in either direction
(left to right and vice versa). Persistent pulse refersto the local handshake signal s that
convey information between each stage. When no datais being passed or received they
stay at a constant logic level, but when an event occurs they pulse to the opposite logic
level for a short amount of time. This does present a problem when attempting to place a
single dataitem in the FIFO, and its resolution will be discussed shortly.

As can be seen from the FIFO FPGA in Appendix A, the FIFO we implemented
has four stages. The local handshake signals are the connections between SEIn_ and
SEQut_, and FIn and FOut. The F signal indicates whether the previous stageisfull or
not, while the SE signal pulses to change the previous full stage to empty, while also
changing the next stage from empty to full. Thisway, the full signal travels until it hits
either the end of the FIFO or another full stage. The MV signal is an empty indicator,
and acts as the enable for the memory elements that hold and transfer the data, while al'so
driving the LED empty indicators.

To place asingle dataitem in the FIFO, there must be away to indicate to the
control circuitry that only one stage is becoming full. Thisisaccomplished by sending a
pulse to FIn of thefirst stage, which is created by the pulse generator PG, shown in

Appendix B. When the input goes from LOW to HIGH, the output isinitially LOW,

goesto HIGH for a short amount of time, and then returnsto LOW. Notice the similarity
between the pulse generator logic and a stage of the control circuitry. The reason for this
isto create a pulse that is of the same duration as the control’ s handshake pulse. This
ensures that only one stage will become full, sinceif the pulse was longer, the control
would see this as more data being added.

The FIFO has a data depth of eight bits, and we used enabled SR latches as the
memory elements. These latches are shown in the 3LATCH module in Appendix A. The
IN signal shown in the schematic controls when the first stage of the FIFO goes from
empty to full, while the OUT signal controls when the last stage goes from full to empty.
The MV signals are sent to output pins to drive LEDs, to view which stages are empty.
Datais presented to the FIFO at the DIN inputs, and the last stage’ s data is output at the
DOUT pins.

The second FPGA we used (1/0 FPGA, shown in Appendix A) acted asthe
translator between the FIFO and the HC11. Examining first the receiving aspect, the
three control signals are ECLK, RECEIVE, and MOSI. ECLK isthe seria clock that
cycleseight times. When RECEIVE is high, the first shift register (SHIFTREGL1) will
shift in the serial data given by MOSI. Otherwise, the shift register will do nothing. This
convertsthe serial datainto paralel for the FIFO. Also, when half of the datais shifted
in, aDONE signal is generated. The counter used for thisisthree bits, so that it will
overflow back to zero when eight bits are shifted. Thissignal isinput into the 6DELAY
module, where it is delayed by six cycles of the 1/O FPGA’s clock (running at 1IMHz).
This delays the signal enough to ensure that the shifting is done before it tells the FIFO to

make one stage full.

The other function of the I/0 FPGA isto take the parallel datafrom the FIFO’'s
last stage and send it serially to the HC11. Thisisaccomplished through SHIFTREG2
(shown in appendix B), which is controlled by ECLK, TRANSMIT1, and TRANSMIT2.
Since ECLK isactive high, we took itsinverse and combined it with TRANSMIT1 to
form the clock input for the registers. TRANSMIT2 controls whether the registers will
shift data serially or take data from the FIFO. With 2 low, sending 1 high causes datato
be taken into the registers. Then, sending 2 high and 1 low, when ECLK cycles eight
times the data will be shifted out through MISO to the HC11. The TRANSMIT2 signal
isalso the input to the FIFO OUT signal, causing the last stage to transition from full to

empty.

Results

We sent four eight-bit data words to the FIFO, where they were stored
successfully and the FIFO wasfilled up. However, when trying to take the data out of
the FIFO and send it back to the HC11, the FIFO emptied correctly, but asingle bit was
lost in each word during the serial communication. Thiswill be discussed shortly. With
the exception of one data bit not being received, we accomplished our goals as presented
in our project proposal, namely the construction of an asynchronous FIFO on an FPGA
and communicating with it serially.

The first mgjor problem we ran into was to actually implement an asynchronous
FIFO such that it functioned correctly. It turned out that the FIFO is extremely sensitive
to timing issues, such that the placement of logic determinesif it will work or not. For
example, just by using the floorplanner to move afew LUTS, we were able to break the
FIFO. Thisisthe main reason why we did not incorporate the FIFO and trand ator onto a
single FPGA, since the FIFO did not function, even though the logic for the FIFO was
placed in exactly the same positions.

The other problem, which we were unable to correct in time, was the loss of a
data bit. We were trying to control one set of flip flops with two clock signals, one to
latch the data, and one to shift it out serially. Doing this proved difficult, and ultimately
not quite possible for us. We got close, but we ended up missing a data bit when it was
shifted from the second 1/0 shift register. This resulted in $14 becoming $28, $03
becoming $06, and al other data items being shifted one too many times to the left. This
was caused by the manner in which we tried to implement the two-clocked register: we

tried to combine the two clocks into one clock that would then control the flip flops.

We did this by inverting the ECLK, and then ORing it with the parallel
TRANSMIT1 signal that was generated by the HC11 (see Appendix B). However, when
ECLK isinverted, this causes the positive edge to be moved forward by half acycle.
Thus, when we go to shift data back into the HC11, the first bit comes earlier than the
HC11 is expecting it, and so thisfirst bit ismissed in the transfer. Thisin effect doubles
the value of the data received, since the MSB is not received.

A possible solution that we were unable to implement would be to have
TRANSMIT1 be high normally, and pulse low when latching data from the FIFO. Then,
you would only need to AND TRANSMIT1 and ECLK together, thus preserving the
positive edge of ECLK at the same position. Then, the data sent through M1SO will
occur at the expected time for the HC11, and al eight data bits would be received

correctly.

10

References

[1] Cady, Fredrick M. Software and Hardware Engineering: MotorlaM68HC11, Oxford
University Press, 1997.

[2] Molnar, CharlesE., et al. Two FIFO Ring Performance Experiments. Palo Alto: Sun
Microsystems, Inc. 1999.

11

Appendix A: FPGA Schematics

Asynchronous FIFO FPGA

SEQUT PR OME_STAGE_COMTROL OME_STAGE_CONTROL ONE_STAGE_CONTROL OME_STAGE_COMTROL
LOCERET uz Lz g 10
11 Edlog code Edlog code wenlog code Edlog code
ETUT_SEIN_ EUT_SEIN_ ETUT_SEIN_ ETUT_SEIN_
Wedlag code
PR I~ B PULEE FIM FOUT I FIM FOUT I FIM FOUT [FIM FOUT |
| -igus -gur Bur gus

LOC=FE0 Fa Lt Ll ""—| ""—|

| | | |

o o o
1
LOC=FEA LOC=P52 LOC=P&5 LOC=P&
H1 Hz H= Ha
i L_{ENRBLE L_{ENABLE L_{ENRBLE L_{ENABHLE
DIN[7:0) PATATO] A DATATO] GF) PATATD])| DATATDO] GO
DINT L1 DINS DN+ M3 DINZ ALR] L]n] SLATCH SLATEH SLATCH SLATCH
Vi SR D Ay S 5 B
ILEs LI ILE] JLE: N3 LI 1M1 L
Sl OE| E| E| [g g z
LOC=Fa= — Loc=faz — — Loc=Pya — LOC=PYT
LOCc=Fa3 LOc=Fa1 LOC=PTE

LOC=p20

In/Out (1/0) FPGA

TFRE REBE
UF
LOC=P56 U1z T
WeTliog code
—_— (RE=ET
TFAT LK %UFG LK auT
LOC=P13 — | L
=
GLELAY 2
LOC=F45
U16 [e L
LOC=F72
e Mliog coe
RESET] [T TRANEE,
TFAT ECLE D" ECLE DINEF0] S FEmE bEuF
arr 1 L
LOC=F72 BUFG ——
TFAT Rl =11 DoME|—
lLUL=|-‘ 1BUF Sl e WEP fewa femwz fews e GUTT [0 UTS PO UTS PO UT+ O UTA PO UTZ POUT1 BOUTD
AT 1] |L~:_ SHIFTREG1
COT=F54 AIE

4NA0.
et |
A0,
et |
481G
et |
480
i |
A,
i |
AN,
e |
ANAg.,
et |
480
et |
[
k-huF
[
La T3
[
LT3
[
LBuF
[
L3 T3
[
-huF
I
L T3
[
Ly T3

L1 LH L
L] LE] - M1 (MO UT? pUTE puTS puTe pUTE pUTZ PUT1 puTo
OBl E| E| E| Bl E| E HEARARARARARARE
= = = = = = E = o o o o o o o o
LOCEF18 —LOCSEF2E TTOCEP26 LOCEFZe8— TLOCSF36 T LCOCEF40
LOC=F12 LOC=F24 LOC=PZ7 LOC=F29 LOC=PF32 LOC=F44
LOC=PZ0 LOC=FP25 LOC=P35 LOC=F39

13

iy P —

3LATCH Module

[

LI1g
-
BATR

ELATCH
N7

o

i e

=l

EL&TOH
Lig

Lk ok

o

ELATCH
LIx]

ety Fgi

DaTal

=l

ELATCH
Lz

e

BATR

o

ELATCH
L3

‘g e
EHAALE

o

ELATCH
LI25

il e

=]

ELATCH
LIZR

At

TR

ELATCH

— 2 [7:0]

Appendix B: Verilog Code

nodul e One_Stage_Control (FIn, FQut, SEQut , SEIn_, W) ;

/1 This nodule is a single stage of the FIFO control |ogic

/1 The F signals transmt the stage’'s full status, while the SE
/1 signals are the handshake pul ses that act to change the FIFO
/1 fullness

input FIn, SEIn_;
out put FQut, SEQut_, W,

wre Ful |, Enpty;

assign SEQut _ = ~(FIn & (~Full));
assign Empty = ~(Full & SEIn_);
assign FQut = ~Enpty;

assign Full = ~(Enpty & SEQut);

assign W = ~Ful|;

endnodul e
= EMPTY B FULL

ECUT - - —JSEIN

= =

£ -2 =

g 0 0

% FJ X [%] 2

Fiff— _._4!“.11@._ o eFOWT

nmodul e Pul se_Gen (SIG PULSE) ;

/1 This nodule is a | evel to pulse converter. Wen the incom ng signal
/1 (SIG goes high, the output pulses high for a snall anount of tine.
/1 Because the logic for this nobdule is very simlar to the control

/1 logic, the pulse is of the correct length to indicate only one

/!l data itemis entering the FIFO

i nput SIG;
out put PULSE ;

wire Hand, E, F;

assign Hand = ~(SIG & ~(F));
assign F = ~(Hand & E);
assign E = ~(F & SIG;
assign PULSE = ~(Hand);

endnodul e

15

nodul e El atch (Enable, Data, Q ;
/1 This nodule creates a sinple SR Latch usi ng NAND gat es
i nput Enable ;

i nput Data ;

out put Q ;

wire Set, Reset, Qbar;

assign Set = ~(Enable & ~(Data));
assign Reset = ~(Enable & Data);
assign Qhar = ~(Set & Q;

assign Q = ~(Reset & Qpar);
endnmodul e

nmodul e shiftregl (eclk, reset, sin, receive, q, done)

/1 This nmodule takes the serial data fromthe HCl1l, and converts it
/1 into a parallel output for the FIFO

i nput eclk ; /1 serial clock

i nput reset ;

i nput sin ; /1 serial data in

input receive ; [/ selects if register is receiving

output [7:0] q ;

out put done ; /1 tells when the shift register is half ful
reg [2:0] count ; /1 3-bit count signa

reg [7:0] q ; /1 The shift register

al ways @ posedge ecl k or posedge reset)
if (reset) count <= 3'b0;
else if (receive) begin

g[0] <= sin; /1 \When receive is high, shift for every
g[1] <= q[0]; /'l clock tick

a[2] <= q[1];

qa[3] <= da[2];

qa[4] <= q[3];

a[5] <= a[4];

q[6] <= a[5];

a[7] <= q[6];

count <= count +1;

end

assign done = count[2]; // done goes high when the shift register
/1 is half full
endnmodul e

16

nodul e Si xDelay (in, sclk, reset, out) ;

/1 This nodul e causes a delay of six sclk cycles between in and out
/1l 1ts purpose is to make sure the FIFO does take the data before it
/1 is done being shifted into the register

i nput in ; /1 input

i nput sclk ; /1 system cl ock
i nput reset ;

out put out ; /1 out put

reg [5:0] shift

al ways @ posedge scl k or posedge reset)
if (reset) shift <= 6'b0;
el se begin

shift[0] <= in;

shift[1] <= shift[O0];

shift[2] <= shift[1];

shift[3] <= shift[2];

shift[4] <= shift[3];

shift[5] <= shift[4];

end

assign out = shift[5];

endnodul e

17

nodul e Shiftreg2 (eclk, reset, transnmtl, transmt2, |ast, sout) ;

/1 This nodul e converts the parallel output of the FIFOto the serial
/1 input needed for the HCl1l. Two transnit control signals are needed,
/1 one to tell the registers to take data fromthe FIFQ, and another

/1 to enable the serial shifting of the data.

i nput eclk ; /1 serial clock
i nput reset ;
input transmtl ; /1l First transmit signal, to indicate to take
/1 data out of last FIFO stage
i nput transmt2 ; /1 Second transmit signal, to tell registers to
shift
input [7:0] last ; /1 Data fromlast stage of FIFO
out put sout ; /1 Serial out data
wre inclk ; /1 Conbined clock (~eclk OR transnitl)
reg [7:0] q ; /1 Shift Register
assign inclk = ~eclk | transmti;
/1 When transnitl goes high and transmt2
/1 is low, this will cause the register to

/!l to take on the FIFO s data. Otherwi se, with
/1 transmt2 high, the data will be shifted out
/1 serially.

al ways @ posedge inclk or posedge reset)

if (reset) g <= 8'b0O;

else if (transnit2) begin

q[0] <= 1'bo;
q[1] <= q[0];
q[2] <= q[1];
q[3] <= q[2];
ql4] <= q[3];
q[5] <= q[4];
q[6] <= q[5];
q[7] <= q[6];
end

el se q <= l ast;
assign sout = q[7];

endnodul e

18

Appendix C: Assembly Code

*Ni ck Bodnaruk and Andrew | ngram

*12-3-00

*This code interfaces the HC11 with the mcrops FPGA board via the SPI 1/0O
*subsystem of the HCll. It sends data to a FIFO on the FPGA, which then sends *the
data back to the HCl11 for verification.

ddrd EQU $1009 *use EQU statenents to make code nore readable
spcr EQU $1028
spsr EQU $1029
spdr EQU $102A
parallel EQU $1004

dat al EQU $14
dat a2 EQU $03
data3 EQU $20
datad EQU $42

org $d000

*rather than use FCB format, this nakes clear what the data itens are, and
*makes it easier to change them

| daa #dat al
st aa $01
| daa #dat a2
st aa $02
| daa #dat a3
staa $03
| daa #dat a4
staa $04

| daa #9©0111000 *configure port D data register
staa ddrd

| daa #9©1011100 *configure SPI control register

staa spcr

I dy #$0001

t op:
cpy #$0005 *when y= 5 all four data itenms have been sent
beq sent *if all data is sent, branch to recieve portion

| dab #$01 *store 0001 in accumulator b
stab parallel *wite to the parallel port, tells FPGA that data is valid

| daa spsr *read spsr to clear the flag

|l daa 0,y

staa spdr *wite to SPI data register

staa 32,y *store output to nenory to check data
hol d: |daa spsr *wait until transfer is finished

anda #$80

beq hol d

iny *increnment y

| dx #$0000 *give FPGA tine to pass data into FIFO before next data
wait: inx

cpx #$0010 *conpare x to 16, to give FPGA tine

bne wait

bra top

19

sent: |dy #$0001

get: cpy #$0005 *when y= 5 all data is recovered
beq done *if all data is received, we are done
| dab #$02 *set bit one to 1
stab parall el *wite to parallel, tells FPGA to latch data fomthe FIFO
| dab #$04 *set bit two to 1
stab parall el *wite to parallel
| daa #$77 *write bogus data to the serial port so we can read from FPGA
staa spdr
hol d2: | daa spsr *wait while transfer finishes
anda #3$80
beq hol d2
| daa spdr *read data fromthe serial port
staa 16,y *store read data with an offset of 16 fromy
| dab #$00 *return parallel port to zeros

stab parall el

iny *increnment y
bra get
done: swi * all data has been retrieved

20

