
4-1

Learning Objectives
By the end of this lab you will have…

• Gained familiarity with writing and debugging ARM assembly code
• Refreshed your understanding of the Keil Microcontroller Development Kit (MDK)

Requirements
Write an assembly-language program to sort an array of 12 signed bytes on the ATSAM4S4B

Setting up the Programmer
Pick up a J-Link EDU Mini Programmer from the MicroPs Cabinet. Plug the JTAG ribbon cable
directly into the port on your µMudd 5.1 board labeled JTAG – SAM. The socket on the µMudd
board is polarized so you can only insert the cable one way. The socket on the J-Link is not
polarized. Insert it with the cable running toward the middle of the J-Link board. This allows you
to program the microcontroller directly. Power your board with the power supply as you have done
in previous labs.

The J-Link EDU Mini is inexpensive so you might wish to buy your own from AdaFruit to avoid
the crowds in the lab.

 Setting up Keil
If you want to run on your own Windows laptop, you can download and install the free Keil MDK-
Lite-ARM tools.

1. Download the tools from https://www.keil.com/demo/eval/arm.htm. You will be asked for
your contact information, and will also need to indicate that you are using the SAM4S
family.

Microprocessor-Based Systems (E155)

Lab 4: Sort in ARM Assembly

4-2

2. Install the device drivers for the SAM4S series microcontrollers on your computer.
Download the Device family pack for the SAM4S series from
http://www.keil.com/dd2/microchip/atsam4s4b/

3. Launch Keil µVision from the start menu.
4. Choose Project à New µVision Project and name the project ‘SortSAM’. Save it in a

new folder in your Charlie Directory.
5. In the ‘Select Device for Target’ window, navigate to, or simply search for, the

ATSAM4S4B microcontroller (Microchip à SAM4 Series à ATSAM4S à
ATSAM4S4B (dep…)). Select this device, and click OK.

6. In the ‘Manage Run-Time Environment’ window, expand ‘CMSIS’. Select the
checkbox in the ‘CORE’ row, then click Resolve, then OK.

7. Expand Target 1 in the left-hand Project pane. Select it, then navigate to Options for
Target ‘Target1’ under the Project menu (or press ALT+F7).

8. In the ‘Options for Target ‘Target 1’’ window, under the Debug tab, open the dropdown
menu by ‘Use:’ and choose ‘J-LINK/J-TRACE Cortex’ as your programmer. Then click
‘Settings’.

9. In the ‘Cortex JLink/JTrace Target Driver Setup’ window, under the Flash Download
tab, select ‘Erase Full chip’. Click OK, then OK again. This fully rewrites the program
and data memory every time you build your code onto the microcontroller.

Writing the Code
1. In the Project pane, right-click on ‘Source Group 1’, and select ‘Add New Item to Group

‘Source Group 1’’. Create a an assembly file (‘Asm File’) named sort.s.
2. Download sort.s from the E155 web page or paste the code found in Appendix A in the

sort.s file. This assembly program starts by loading an array of decimals into the data
memory of the microcontroller and handles the code execution such that you can build a
standalone assembly file without a .c file to run it, as you did in E85.

3. Finish writing the assembly language program to sort 12 signed bytes (the ones on the
“ARR DCD…” line). Remember that assembly language code is nearly unreadable without
line-by-line comments. If needed, use online reference sheets for ARM Thumb2 Assembly
language or refer to Chapter 6 of Digital Design and Computer Architecture.

Running and Testing your Code
1. With the programmer and µMudd board set up, choose Build Target under the Project

menu (or click the build icon on the top panel; or press F7). Scroll through the Build
Output panel at the bottom to look for warnings and errors.

2. Next, click the Load icon next to the Build icons in order to download the program onto
the device’s memory (or press F8).

3. Navigate to Debug à Start/Stop Debug Session to invoke the Debugger (or press
CTRL+F5). Under the View menu, select Memory Window. Within the memory window,
you can choose to view the decimal values of the bytes in memory by right -clicking, which
makes debugging much easier. Step through the program with the step icons on the top
panel. You will be able to see the values in the registers in the left-hand window change as
you step through the program, and you can search for the address you want to look at in

4-3

the bottom-right-hand memory window, which displays all the values in the program’s
memory. This information is crucial for debugging.

4. To test your code, try various cases with the array in the “ARR DCD…” line. Rebuild and
start a new Debug Session every time you make changes. To view the actual values in the
array (and watch them change when your assembly code works) search for the 0x20000000
address in the Memory Window, which is where the given assembly code stores the array.

Clean Up After Yourself

Return the J-Link programmer to the cabinet and clear your workbench.

What to Turn In
• A listing of your program that sorts numbers.
• Explicitly state the test cases you used and the output of the tests on each program. Be sure

your tests would convince a skeptic that your algorithm works.
• How many hours did you spend on the lab? Any comments, suggestions, or complaints about

the assignment? This will not count toward your grade.

Credits
This lab was originally developed by Professors David Harris and Matthew Spencer in 2017 and
redesigned for the µMudd Mark 5.1 by Tejus Rao ’22 and Kaveh Pezeshki ’21 in Spring 2019.

4-4

Appendix A: Starter Assembly Code

; sort.s
; E155 Lab 4 Starter code 2019
;
; Reset handler copies an array from program memory into data memory where it can be
sorted
;

;Directives
 THUMB ;This is the variant of ARM Assembly language that the ATSAM4S4B uses

;Exporting _Vectors for linker
 AREA RESET, DATA, READONLY
 EXPORT __Vectors
__Vectors
 DCD 0x20001000 ;stack pointer when stack is empty
 DCD Reset_Handler
 ALIGN

; Reset_Handler is called when code starts
 AREA MYCODE, CODE, READONLY
 ENTRY
 EXPORT Reset_Handler

Reset_Handler
 B loadarray
loadarray ;moves array from program memory to data memory
 LDR R3, =ARR ;load base address of array in program memory into R3
 LDR R4, =0x20000000 ;load new base address of array into R3, in data memory
 MOV R6, #0 ;current element index to be copied
loaditeration ;moves a single element of array from program -> data memory
 CMP R6, #12 ;if R5 >= 12, array has been copied, so jump to sort
 BGE sort ;once the array has been copied, sort the array
 LDR R7, [R3, R6, LSL #2] ;load first element of arr into R7, left shifting as
word-addressing
 STRB R7, [R4, R6] ;storing this element in data memory
 ADD R6, R6, #1 ;incrementing index
 B loaditeration

sort
 LDR R3, =0x20000000 ;load base address of array into R3
 ...YOUR CODE HERE
done
 B done
;creates an array of decimals in the order specified (separate values with commas)
ARR DCD 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
; replace this with your test array YOUR TEST ARRAYS HERE
 ALIGN
 END

