
6-1

Learning Objectives

By the end of this lab you will have…
• Designed and built a simple IoT device
• Written C libraries to implement the SPI functionality of the ATSAM4S4B
• Interfaced with a temperature sensor module over an SPI link
• Interfaced the ATSAM4S4B with the ESP8266 module over a UART link
• Used the logic analyzer functionality on the scopes in the Digital Lab to debug serial

communication protocols and export captured signal data.
• Written a simple HTML page to control and display data from the peripherals connected

to your µMudd board

Requirements
Build an internet accessible device to control an onboard LED and measure ambient temperature.
Use an ESP8266 with the provided webserver code to host the webpage, use the onboard µMudd
GPIO and SPI peripherals to toggle an LED and to read temperature from a provided sensor chip.
An end-user must be able to turn the LED ON and OFF and view the current temperature from
the webpage. For extra credit, implement the ADC functionality of the MCU to read from an
analog sensor such as a phototransistor and display data from this sensor on the webpage.

In addition to the standard deliverables in your report (summary, schematic, etc.), your report
also must include an example of a SPI read/write interaction with all pertinent data signals
captured using the logic analyzer functionality of the oscilloscopes in the Digital Lab.

At heart, this lab asks you to consult the datasheet to learn how to directly control the SPI memory
mapped peripheral on the µMudd ARM processor, so refrain from consulting the Lab 7
SAM4S4B.h or any other C device drivers for the SAM4S4B.

ESP8266 Web Server
Broadly speaking, everything that you see on the internet is the product of one computer
presenting text to another. The text is often formatted in a special, internet-specific, way
that includes information about how to display it which is referred to as hypertext. (Forgive
the early internet engineers this indulgence; I’m sure it sounded really cool at the time.) Hypertext
is specified using a compact programming language called hypertext markup language or HTML.

Microprocessor-Based Systems (E155)

Lab 6: Internet of Things

6-2

It is transferred over the internet based on a predefined set of agreements between all computers
which is referred to as the hypertext transfer protocol or HTTP. The latter most of these acronyms
should be familiar: whenever you type http:// into a web browser you are informing your computer
that you are attempting to retrieve hypertext from the address that follows.

There are two common tools that interact with HTTP: the web browser, which lives on a receiving
computer, sends internet requests, and renders the received hypertext; and the web server, which
listens for requests from the internet and sends out hypertext in response.

Implementing an HTTP web server on the ARM microcontroller is a non-trivial task. Instead, you
will be using an ESP8266, a small WiFi development board which incorporates a TCP/IP stack as
well as onboard WiFi and an integrated antenna. You are provided an Arduino language program
which hosts an HTTP web server with an HTML page generated by the µMudd.

ESP8266-µMudd Interface
Download the Lab 6 support files from the class web page. Unzip SAM4S4B_lab6 and put all the
files in your lab6_xx directory. You may use the code from the in-class demonstration as a starter
example for developing your code.

ESP8266 development boards are available from the E155 supply closet and should be
preprogrammed with the webserver code. The SSID for the WiFi access points associated with
each board is Lab6_ESP_xx where xx is the number listed on each board.

The ESP8266 board requires 3.3 V power. However, it has an onboard regulator so you can power
the board with between 3-6 V using the V+ and GND pins. If after supplying power to the chip
and waiting for it to initialize you do not see the expected WiFi network appear, you may need to
reprogram the chip with the provided code. Instructions for doing so are provided in Appendix A.

The µMudd must supply a webpage to the ESP8266, and must interpret any web browser requests
from the ESP8266. The devices interface through a 125000 baud serial connection, hosted on pins
PA9 (URXD0) and PA10 (ITXD0) of the ATSAM4S4B and the hardware UART TX and RX lines
of the ESP8266. The protocol is as follows:

1) When the ESP8266 updates the webpage from the µMudd, it sends the most recent request
from the client, within ‘/REQ:’ … ‘\n’. For example, a user accessing the page
http://<server_address>/ledon would result in the request ‘/REQ:ledon\n’ being sent to the
microcontroller. A user accessing the root webpage of the server, http://<server_address>/
would result in the request ‘/REQ:\n’

2) The µMudd then transmits the entire web page to the ESP8266. The ESP8266 expects a
webpage encoded as an HTML file. Therefore the webpage must start with ‘<!DOCTYPE
html><html>’ and end with ‘</html>’. The ESP will wait for either </html> or 200 ms
from the last byte sent over serial before terminating the HTTP request and forwarding the
content to the web browser.

6-3

The ESP8266 will create a WiFi access point named whatever SSID is labeled on the board.
Connect to this WiFi network, and then go to http://192.168.4.1/. Beware that the ESP is slow and
it may sometimes take a few attempts to connect.

Digital Temperature Sensor
The temperature sensor you will interface with for this lab is the DS1722 Digital Thermometer
with SPI/3-Wire Interface from Maxim Integrated. This chip is an example of a simple peripheral
that supports an SPI interface. You will need to get a DS1722 chip from the E155 stock cabinet as
well as a SOIC-8 breakout board. By soldering the chip to the breakout board you will be able to
plug it into your breadboard and easily connect it to your µMudd board. After assembling the
breakout board and soldering on the chip, consult the data sheet to correctly wire up the device.
Wise students will take the time to thoroughly read the data sheet before attempting to interface
with the device!

µMudd Hardware and the Internet of Things
The last component of this lab is to write a program that parses a request from the ESP8266, toggle
the LED state as necessary, read from the SPI temperature sensor, and use this data to generate a
webpage that is transmitted to the ESP8266. We recommend ensuring that the FPGA code on your
board does not interfere with any of the pins which you may want to use for your sensors or else
you will experience undefined behavior.

You will need to write an HTML webpage that displays dynamic temperature data as well as
creating requests to change the state of the LED. There are many ways to do this, but we suggest
the following resources for information on HTML formatting and interactive elements:
http://www.w3schools.com/html/default.asp
http://www.w3schools.com/html/html_forms.asp

The final product of this lab is a simple member of an emerging class of devices called the Internet
of Things. Proponents of these devices argue that everything—from your washing machine to your
car to giant factories—should be connected to the internet so that the shared data can be used to
optimize and improve societal functions. Internet-controlled lighting, and internet-accessible
sensors are two promising domains for the field, and are exemplified in this lab.

Extra Credit: ADC Implementation
Up to one point of extra credit can be earned by writing a library to interface with the memory
mapped ADC peripheral provided on the ATSAM4S4B to read and display data from an analog
sensor on the webpage. One possible simple analog sensor is an ambient light sensor based on an
LPT2023 phototransistor. A sample schematic is shown below. We recommend reading the
LPT2023 datasheet before starting to build this design.

6-4

Figure 1: LPT2023 phototransistor example circuit

Credits
This lab was original developed in 2015 by Alex Alves ’16, and redesigned for the µMudd Mark
5.1 by Erik Meike ’21, Kaveh Pezeshki ’21, and Christopher Ferrarin ’20.

6-5

Appendix A: Configuring the ESP8266
The ESP8266 chips we are using (Adafruit HUZZAH ESP8266 Breakout) should be
preprogrammed with the webserver code. The SSID is written on the chip. If you are having trouble
with seeing the WiFi network, you may have to reprogram it as a last resort. This Appendix details
how to program the chip with the webserver code. Do not modify the code in the .ino file except
to match the SSID with that listed on the label, as the boards will be used by your classmates.

To download the web server onto the ESP8266, you will need to install the following software (as
of 8/30/2019) if you are working on your own computer from home. The software should already
be installed on the Digital Lab computers.

1) The Arduino IDE1
2) Board support for the ESP8266. This requires adding the ESP8266 board manager website2

to the Arduino Board Manager within the Arduino IDE (File > Preferences), and then
adding the ESP8266 board package within (Tools > Boards > Boards Manager).

3) Optional: The ESP8266 Exception Decoder3. ESP8266 crashes are notoriously difficult to
debug, and this tool vastly simplifies the debugging process if you plan to alter the provided
program. Note that this is not a required component of the lab.

The programming process is as follows:
1) Download ESPE155WebServer.ino from the class web page.
2) Open ESPE155WebServer.ino Arduino program with the Arduino IDE
3) Change the WiFi SSID at the top of the file to the name listed on the board.
4) Connect the FTDI cable to your computer and to the header pins on the ESP8266 board,

making sure to connect it in the correct orientation.
5) Find the Serial/COM port for the FTDI programmer and select this under (Tools > Port) in

the Arduino IDE.
6) Select the correct board (Tools Menu). We suggest the following settings:

a. Board: “Adafruit Feather HUZZAH ESP8266”
b. Upload Speed: “115200”
c. CPU Frequency: “80 MHz”
d. Flash Size: “4M (1M SPIFFS)”
e. Debug port: “Disabled”
f. Debug Level: “None”
g. IwIP Variant: “v2 Lower Memory”
h. Erase Flash: “Only Sketch”

7) Compile and upload the script with the “Upload” button. Please note that the ESP will not
program properly unless if the Tx and Rx pins are unconnected.

1 https://www.arduino.cc/en/Main/Software
2 http://arduino.esp8266.com/stable/package_esp8266com_index.json
3 https://github.com/me-no-dev/EspExceptionDecoder

