
4-1

Requirement

1) Set up your Raspberry Pi

2) Write an assembly-language program to sort an array of 12 signed bytes on the Pi

Setting up the Pi

To familiarize yourself with the Pi, Linux, and how to connect to the Pi

a) If you are an inexperience Linux user, read “Linux and the Pi”

b) Connecting to a Pi from a Mac terminal is straightforward. Windows users should

read the “Running X11 in Windows” to learn how to connect to a Pi from one of the lab

computers or your own using X11 forwarding.

c) If you are rusty on ARM assembly language, review Chapter 6 of Digital Design &

Computer Architecture.

Hardware Setup

Pick up a Raspberry Pi 3 Model B, SD card, USB power supply, and Pi Cobbler cable

from the stockroom. This is yours to keep.

We'll be running a common Linux OS designed for the Raspberry Pi known as Raspbian.

Your 8 GB SD card should already come installed with the NOOBS (New Out Of the

Box) Raspbian installation. If it weren’t installed, you could download yourself using the

setup guide and a SD card writer on your laptop.

https://www.raspberrypi.org/downloads/noobs/

Next, connect your new baby Pi. Pull the microSD card out of the SD card holder and

plug it in to the socket on the back of the Pi.

This first time you use the Pi, you’ll connect it to a monitor, keyboard, and mouse to set it

up. In the future, you can access it over a wireless network from a terminal on your

Microprocessor-Based Systems (E155)

 D. Harris and M. Spencer Fall 2017

Lab 4: Life of Pi

https://www.raspberrypi.org/downloads/noobs/

LABORATORY #4: Pi Setup

4-2

computer. Find an HDMI-DVI monitor cable in the supply cabinet to connect the Pi to a

lab monitor. Plug in the mouse and keyboard to USB ports. Plug in the microUSB

power cord, and your Pi should boot. Note that the Pi autodetects the monitor resolution

at boot time; if you plug in the HDMI cable after booting, you may get lousy resolution

until you reboot. The first time you boot will take a little while.

Configuration

Once the Pi boots up, open a terminal window by clicking on on the terminal icon near

the upper left. Type

sudo raspi-config

This opens a GUI editor that allows you to change certain system settings. Under

Internationalisation Options, choose Keyboard. Accept the default keyboard (e.g.

Generic 105-key (intl) PC). Change the layout to “other” and choose English(US), then

follow the other prompts. Under Advanced Options, enable SSH (to accept network

connections) and the serial peripheral interface (SPI) to use in future labs. Under

Advanced Options, change the host name to something like raspi-XX, with XX being

your initials, to distinguish your Pi from the others on the network. (Note that dashes are

allowed but underscores will cause mailx to fail later in this lab.) Change your password

from the default of ‘raspberry’ to something more secure. Finish and reboot.

Wireless Network Access (what a pain!)

Next we need to configure the Pi to be able to access Claremont-WPA. First, create a

hash of your HMC network password so you won’t have to store it in plain text

(replacing YOUR_PASSWORD with your actual password).

echo -n 'YOUR_PASSWORD' | iconv -t utf16le | openssl md4

The output should look like

(stdin)= a1234exxxxxxxx72f6db0263

Open a new terminal window and edit the secure network configuration file by typing:

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

Change the file to read as follows, substituting your username and the 32-digit hashed

password (preferably cut and pasted). Proofread carefully to avoid frustration.

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev

update_config=1

country=US

network={

ssid="Claremont-WPA"

proto=RSN

key_mgmt=WPA-EAP

pairwise=CCMP TKIP

group=CCMP

identity="YOUR_USER_NAME@hmc"

password=hash:YOUR_HMC_PASSWORD_HASH

LABORATORY #4: Pi Setup

4-3

phase1="peaplabel=0"

phase2="auth=MSCHAPV2"
}

Now edit the network interface file:

sudo nano /etc/network/interfaces

Find the section regarding the wlan0 interface and replace it with:

auto wlan0
allow-hotplug wlan0
iface wlan0 inet dhcp
 pre-up wpa_supplicant -B -Dwext -i wlan0 -c/etc/wpa_supplicant/wpa_supplicant.conf
 post-down killall -q wpa_supplicant

Shut down the network interface and bring it back up:

sudo ifdown wlan0

sudo ifup wlan0

Ignore some known warnings about ioctl invalid arguments.

If all went well, you should be able to reach a server:

ping hmc.edu

Otherwise, check for typos in your interfaces and wpa_supplicant.conf files.

Update and Install Packages

To install packages we’ll use a program called apt-get first to update itself, and then

to install other packages. (Expect some warnings along the way, and possibly no

packages to upgrade.) Now we can install some software that'll be useful in this and

future labs, including the ddd debugger and the festival text-to-speech tool. This

upgrade process will take a while, so go onto the Programming the Pi part of the lab in

another terminal while you wait. Pay attention to the upgrade because it may prompt you

for things.

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install ddd

sudo apt-get install sendmail

For the labs you will need to edit code, so you can use the installed text editor nano, or

install your own favorite one.

Ask the Pi to send you its IP address

You will mostly use the Pi in headless mode, with a wireless connection but no monitor

or keyboard. To connect to a headless Pi, you need to know its IP address.

Type

LABORATORY #4: Pi Setup

4-4

ifconfig

and write down the inet addr that it reports. It should be in the form 134.173.x.y where x

and y are some more digits.

The IP address assigned by DHCP (Dynamic Host Configuration Protocol) and might

change from time to time, especially if the network goes through any reconfiguration.

Thus it is helpful to have a way to get the current IP address. One of the simplest ways to

deal with this is to have the Pi email its IP address to you at startup.

We’ll want the Pi to email us every time it boots up so we’ll add a line to the

/etc/rc.local file. This is just a text file that runs right after boot up, but before

any users log in. Edit the file using the command

sudo nano /etc/rc.local

Add the following lines before the exit statement:

sleep 30

/sbin/ifconfig wlan0 | grep 'inet addr:' | sendmail YOUREMAIL@g.hmc.edu

Restart you Pi with

sudo reboot

to allow the changes to take effect and check that you received an email containing the IP

address (this may take about 4 minutes, and it might appear in your Junk folder).

Access from Windows

Follow the “Running X11 in Windows” instructions to connect to the Pi using X11

forwarding from Windows.

Access from a Mac

From a Mac, you need to install Xquartz instead of Cygwin to display X windows.

www.xquartz.org

Reboot after installing. Then click on xquartz to open a terminal. Type

ssh –Y pi@134.173.38.108

(or whatever IP address you were assigned.)

There’s a risk that your spam/junk filter will catch the message; try looking there if it

doesn’t show up.

Programing the Pi in Assembly

Now write an assembly language program called sort.s to sort 12 signed bytes. See

the appendix for an example to get started. Remember that assembly language code is

nearly unreadable without line-by-line comments. Assemble the program into a binary

executable using GCC:

gcc -g -o sort sort.s

mailto:YOUREMAIL@g.hmc.edu
mailto:pi@134.173.38.108

LABORATORY #4: Pi Setup

4-5

The -g flag allows a debugger to display the assembly language code which is useful for

debugging. -o specifies the name of the executable file.

You can look at the executable using

objdump –D sort

You’ll see that quite a bit of startup code has been added. Although we can run this code

directly, to be able to see the values in the register you’ll want to run it with the ddd

debugger:

ddd sort

ddd provides a lot of useful debugging information. Click just left of the main label and

choose Break to set a breakpoint at the start and another at done. Choose Status ->

Registers to open a window to view the registers. Click on Run to start the program.

Then click on Step repeatedly to step through the program and watch values in the

registers. Check against your expectation at each step to debug. To watch the content of

memory, use the Data -> Memory function. Display 12 hex bytes starting from the base

address &array to show your sorted values.

If you are a command line person, you can use gdb instead.

When you are all done, gracefully power down the pi using

sudo shutdown now

Clean Up After Yourself

Plug the keyboard, mouse, and monitor back into the Windows computer at your station

and make sure it still boots! Put your HDMI to DVI cable back into the supply cabinet.

What to Turn In

• A listing of your program that sorts numbers.

• Explicitly state the test cases you used and the output of the tests on each program.

Be sure your tests would convince a skeptic that your algorithm works.

• How many hours did you spend on the lab? Any comments, suggestions, or

complaints about the assignment? This will not count toward your grade.

LABORATORY #4: Pi Setup

4-6

Appendix A: Sample Code

// sort.s

// 28 September 2015 david_harris@hmc.edu

// sort twelve numbers for E155 lab 4

.text

.global main

main:

 LDR R3, =array // load base address of a into R3

 … more code here

done: NOP // dummy instruction for breakpoint

 BX LR // return from main

.data

array:

 .byte 0x08

 .byte 0x10

 .byte 0xFF

 … more data here

.end

	Requirement
	Setting up the Pi
	Programing the Pi in Assembly
	What to Turn In

	D. Harris and M. Spencer Fall 2017
	Lab 1: Utility Board Assembly

