
SIGNALTAP II TUTORIAL
E155: Microprocessors

Matthew Watkins

Setting up SignalTap II
1. Open or create your project file in Quartus II. If not already done, create the base design,

build, and assign pins.
2. If you are using the Web Edition of Quartus II, you will need to enable the Talk Back feature.

Select ToolsOptions…, go to the Internet Connectivity page. Select TalkBack Options…
and check Enable sending TalkBack data to Altera. Close Quartus II and reopen so that
this change will be recongnized.

3. Add SignalTap II file. FileNew and select SignalTap II Logic Analyzer File.
4. When the SignalTap II window opens up, save the SignalTap II file (FileSave As…)
5. Click Ok regarding Input “Data and Trigger” is empty.
6. Click Yes to add file to current project.
7. Click Yes to enable SignalTap II File for current project

a. To disable SignalTap at a later time, go to AssignmentsSettings, select SignalTap
II Logic Analyzer and uncheck enable.

8. Add nodes of interest to project. In the Setup tab double-click where it says Double-click to
add nodes. Under filter select SignalTap II: pre-synthesis (if the signal is not shown, you
might also look under SignalTap II: post-fitting) and click List. Once you have added the
desired nodes, click Ok.

9. Back in the main SignalTap II window, click the … button next to Clock in the Signal
Configuration: section. Select the signal that you want to serve as the clock for the SignalTap
II module (this is the clock that all data will be sampled off of) and click Ok.

10. For simple triggering (more complex triggering will be discussed later), in the Setup tab

make sure that Basic is showing under the Trigger Conditions column. Right-click on a
particular signal and select the condition specifying when you’d like to trigger the sampling.
The below screenshot shows an example where sw[3] is set to trigger on a rising edge.

11. At this point make sure that your board is powered on and connected to the USB Blaster via

the JTAG port. Under the Hardware section, click Setup… and select USB-Blaster under
Currently selected hardware:.

12. Back in the main Quartus II window compile and program your design. (ProcessingStart
Compilation followed by ToolsProgrammer and program your board.)

Using SignalTap II
1. After following the above steps and programming the board, switch back to the SignalTap II

Window.
2. Select ProcessingRun Analysis (F5).
3. Select the Data tab to see the available signals. The Status column of the Instance pane

should say “Waiting for trigger.”
4. Perform the triggering event (such as toggling sw[3] from low to high). The data window

should now display the data levels for all listed signals.
5. To repeat this, simply select Run Analysis again. Alternatively, you can select

ToolsAutorun Analysis (F6) to have the analysis immediately resume after a triggering
event. To stop the analysis click on the stop icon (Stop Analysis or <Esc>).

Multiple Trigger Levels
You can setup SignalTap to trigger on a multi-event sequence. For example, sw[0] going high
followed by sw[1] going low.

1. Click the Setup tab.
2. In the Signal Configuration section, set Trigger Conditions to the desired number of

conditions (say 3) under the Trigger section.

3. The Setup tab should now show multiple columns under Trigger Conditions. Setup the

triggers as desired.
4. Recompile the design and load.
5. Back in the SignalTap II window, select the Data tab and then Run Analysis. It will now

wait for the prescribed sequence of events before displaying results.

Advanced Triggering
You can create even more complex triggering options (such as some logical combination of signals)
using the advanced triggering option.

1. Click the Setup tab.
2. If not already done, set Trigger Conditions under Signal Configuration to 1.
3. In the Setup tab, change Trigger Conditions to Advanced.
4. This will bring up the graphical Advanced Trigger tab. This allows you to graphically create

the triggering condition that you desire. You can add signals from the design by dragging
signals from the Node List: into the main editing window. Drag the desired signals into the
editing window.

5. The Object Library pane includes a variety of operations that can be used to condition the
signals, such as comparisons, logical operations, and reductions. Select the desired
components and drag into the window.

6. Connect the inputs and result to the operations. The figure below shows an example of
creating a triggering event that occurs when any of three signals sees an edge.

7. Recompile the design and program. Run as you did in the previous examples.

Segmented Buffer Mode
The segmented buffer mode allows you to subdivide the single buffer into multiple separate buffers
to capture multiple instances of the same triggering event.

1. In the Signal Configuration pane check the Segmented box. Select the desired number of
segments, which is the number of instances to capture.

2. Recompile and program.
3. When you Run Analysis this time, the results will appear after the signaling event occurs

the specified number of times. The results will be shown one after the other in the Data tab.

Other notes
 You have three options on how much data is shown before and after the triggering event.

The options are to 1) mostly show data before an event, 2) mostly show the data after an
event, or 3) show an even split of data before and after an event. This can be set under
Trigger position under the Signal Configuration: pane.

 You can change the number of collected samples by changing Sample depth: within the
Signal Configuration pane. Be aware that the more samples collected the more resources
that will be required on the FPGA. The size of the FPGA and base design may limit the buffer
size you can use.

 SignalTap II can automatically recognize mnemonics associated with FSMs. Right click and
select Add State Machine Nodes….

 If signals are being optimized out of your design, you can place keywords to prevent
optimization of certain signals. Realize that this may increase resource utilization or
decrease speed.

o keep – for combinational signals (ex. (*keep*) wire foo;)
o preserve – for registers (ex. (*preserve*) reg bar;)

