
MicroToys Guide: Motors A. Danowitz, A. Adibi December 2006

Introduction

A rotary shaft encoder is an electromechanical device that can be used to

determine angular position of a shaft. Encoders have numerous applications, since

angular position can be used to determine position or velocity of a mechanical device

connected to a shaft making them ideal for speed control or for precise motor movement.

A common application is in motor feedback and motors are commonly sold with

encoders attached to the end.

There are two general types of shaft encoders, absolute and relative. Absolute

encoders offer the exact angular position of a shaft at any given time, whereas relative

encoders can only measure change in angular position relative to an arbitrary datum (such

as the moment a switch is activated). In the case of relative encoders, more sensors are

required if exact position is desired. This paper documents an absolute shaft encoder,

primarily due to ease of integration and cost.

Construction of both sensors is different; however, the general principle is the

same. Optical sensors detect patterns on a rotating disk, which are directly attached to a

rotating shaft (which can then be connected to the device of interest, such as a motor’s

shaft). Absolute encoders commonly use optical sensors which read graycodes on the

disk (Figure 1). Depending on accuracy, this could be a simple black dot which the

sensor detects on each rotation. For slightly more precision, a basic code can be printed

on a paper disk using a postscript utility, then glued on to a solid disk (see References).

MicroToys Guide: Motors A. Danowitz, A. Adibi December 2006

Figure 1: Sample Encoded Disks

This code must then be decoded in hardware or software to determine the corresponding

angular position. Relative encoders also use optical detectors and disks; the disks have

radial slots which the optical detectors recognizes each time it passes through its field of

view. More sensors can be attached to increase precision, and if direction

(forward/reverse) is desired, then the design requires two sensors at a phase offset (such

encoders are called quadrature encoders).

Although the absolute shaft encoder documented in this paper does not utilize the

above techniques, the background is useful if the reader is designing their own encoder

(there is an excellent link in the References section to a site describing exactly how to do

design your own encoder). The encoder described here, the MA2 miniature absolute

magnetic shaft encoder, uses magnetic techniques to provide 0.35° resolution at 1024

positions per revolution. There are two output options, analog and PWM. The analog

option outputs an analog voltage between 0V and the input voltage (maximum of 5V)

that is proportional to the absolute shaft position. The PWM option outputs a pulse width

modulated digital signal nearly 1000 times per second with a duty cycle that is

proportional to the absolute shaft position. Both encoders offer the same functionality, so

MicroToys Guide: Motors A. Danowitz, A. Adibi December 2006

choosing which to purchase is primarily a function of preference and the capabilities of

the microcontroller. When ordering the encoder, there are a number of other options

including ball bearings and shaft diameter. It is highly recommended the user purchases

the ball bearing option and also buys the connector offered by US Digital, as the non-ball

bearing option has significant resistance in rotation and the encoder requires the

manufacturer’s custom connector. For details, see the US Digital purchase site

(References).

Analog Absolute Shaft Encoder

 A diagram of the absolute encoder is shown in Figure 2. There are inputs for

ground and Vdd (maximum of 5V). The encoder has one output which consists of a

voltage, between 0 and Vdd, which indicates the current shaft angular position relative to

an arbitrary reference position. There is a jump discontinuity in the voltage output as the

shaft completes a revolution and the output drops from Vdd to 0V. Because of this, when

the encoder shaft is spun at a constant speed, the output should take the form of a

sawtooth wave.

MicroToys Guide: Motors A. Danowitz, A. Adibi December 2006

Figure 2: A schematic of the shaft encoder.

Coupling

In order to use the US Digital magnetic shaft encoder, the encoder shaft must first

be coupled to the DC motor shaft. Several of the motors in the Microprocessors’s lab

have a small portion of the motor shaft jutting out of the back of the motor; coupling the

encoder to the motor shaft here is ideal since it will not get in the way of normal shaft

operation. In order to physically couple the two shafts together, US Digital markets a

number of couplers to attach the encoder to various shaft sizes. According to their

applications engineer, however, rubber tubing should work just as well. The rubber

washer-like inserts used in standard screwdriver packaging can also be successfully used

for coupling. For ease of coupling, be sure to purchase the ball bearing option!

Velocity Calculations

 Before the shaft encoder can be used in a digital system, the change in A/D

conversion values between sampling periods must be correlated to an actual angular

MicroToys Guide: Motors A. Danowitz, A. Adibi December 2006

velocity of the encoder shaft. Since the Harrisboard 2.0 provides a regulated 3.3V power

supply for peripherals, 3.3V is used as Vdd for the purposes of these calculations.

The encoder works by varying an analog output from GND at the zero degrees

shaft position to Vdd at roughly one full rotation. Thus, the voltage output of the encoder

over any single turn can be represented by the equation:

VbA = (1)

where V is the encoder output voltage, A is the shaft angle (in degrees) and b is a scaling

factor. Given V = 3.3V at A = 360°, b = 0.009167.

 Given a desired shaft speed of X rpm, to find the change in A/D values between

sampling, first convert to revolutions per second by dividing by 60:

60
XZ = rps (2)

where Z is the speed in revolutions per second and X is the shaft speed as defined above.

Next, use the sampling encoder sampling rate S to determine the desired change in angle

A∆ between measurements:

360*
S
ZA =∆ (3)

This can be converted into a desired encoder V∆ by plugging A∆ into equation (1).

 Once V∆ has been found, the desired change in A/D readout between samples can

be determined. Since the PIC is based on an 8-bit architecture, it is common for only the

upper 8 bits of the 10 bit A/D value to be used. Assuming an 8 bit A/D value, the input

voltage range of 0 to 3.3V is essentially divided into 256 discrete voltage steps of

ADval
VV 012890624.0

256
3.3

= . Thus, the desired difference between any two successive

values is:

MicroToys Guide: Motors A. Danowitz, A. Adibi December 2006

VAD ∆=∆ 012890625.0 (4)

 Since the encoder essentially produces a sawtooth waveform, whenever the shaft

completes a revolution, equation (4) no longer holds true and AD∆ becomes a relatively

large negative number. If the shaft is guaranteed to always be traveling in the forward

direction, then if AD∆ is negative, the shaft must have completed a revolution. In order

to get the change in position out of this, merely subtract the AD∆ value from 0x100

which should account for the shaft “overflow.” If the shaft is expected to travel both

forwards and backwards, “overflow” can essentially be estimated by comparing the last

two AD∆ values. If the latest AD∆ is negative and the previous value is positive,

assuming that the motor changes direction relatively infrequently compared to the

number of revolutions made by the shaft, it is safe to assume that the shaft has

“overflowed” and 0x100 should be added to the AD∆ value.

Cost

Part Number Details Price

MA-2-A
Analog Absolute Shaft
Encoder $29.00

B8 (1/8" ball bearing option) $6.00

CA-7941-1FT
Connector with cables
attached $5.00

References

Application of Absolute Shaft Encoder in PID Motor Controller:
<Prof Harris, please include hyperlink to our PID motor contoller Microp’s Project>

MA2 Absolute Shaft Encoder Purchase Site:
http://www.usdigital.com/products/ma2/

Useful sight on designing your own encoder:
http://www.geology.smu.edu/~dpa-www/robo/Encoder/pitt_html/encoders.html

MicroToys Guide: Motors A. Danowitz, A. Adibi December 2006

Appendix A: Final C code

/* Encoder_Reader.c: Sample code for reading and
 * calculating velocity from an analog
 * output absolute shaft encoder.
 * Authors: Andrew Danowitz, Amir Adibi
 * Date: December 2006
*/

#include <p18f452.h>
#include <timers.h>

short ADLast[2] = {0,0}; //previous AD values
short ADPres; //latest AD value

/* Function Prototypes */
void main(void);
void isr(void);

#pragma code low_vector = 0x18
void low_interrupt(void)
{
 _asm
 GOTO isr
 _endasm
}

#pragma code
void main(void)
{
 TRISA = 0xFF; //Set A/D converter port for input

 //Set up timer 1 to interrupt roughly once every 10ms
 INTCON = 0xF0; //enable interrups
 TMR0H = 0x00; //set timer initial values
 TMR0L = 0x3D;
 T0CON = 0xC7; //start the timer

 //wait for timer interrupt
 while(1)
 {

 }

}

MicroToys Guide: Motors A. Danowitz, A. Adibi December 2006

#pragma interruptlow isr
void isr(void)
{
 //reset the timer
 INTCON = 0xF0; //enable interrups
 TMR0H = 0x00; //set timer initial values
 TMR0L = 0x3D;
 T0CON = 0xC7; //start the timer

 //Configure the A/D converter to read from encoder
 ADCON1 = 0x00;
 ADCON0 = 0x8D;

 //Wait for valid A/D data
 while(ADCON0bits.GO==1)
 {
 }

 //Read A/D value
 ADPres = ADRESH;

//if the voltage has only decreased this last round,
//then we assume that the shaft has just completed a
//rotation and is still moving forward.

 if (ADPres>=0x00F0 && ADLast[1]<=0x0010)
 {

//If the shaft did overflow, then the difference
//between the new and old angle values is 0x100
//plus the new eight bit angle value minus the
//old angle value

 dAD = 0x0100+ADLast[1] - ADPres;
 }

//If the shaft hasn't completed a revolution, the
//change in angle is just new minus old

 else
 {
 dAD = ADLast[1]-ADPres;
 }

 //Push the latest AD value into the stack
 ADLast[0] = ADLast[1];
 ADLast[1] = ADPres;
}

