

MicroToys Guide: Motors N. Pinckney April 2005

1

Introduction

Three types of motors are applicable to small projects: DC brushed motors, stepper
motors, and servo motors. DC brushed motors simply rotate in a direction dependent on
the flow of current. Servo motors move to an angular location dependent on the duty
cycle of a pulse width modulated (PWM) input signal. Stepper motors rotate in discreet
steps. Motors require large currents to operate, exceeding the drive of most digital logic;
therefore, H-bridges are used to supply the high currents under the control of digital
signals. Motor design and torque/speed considerations are beyond the scope of this
documentation.

Pulse Width Modulation

Torque of most electrical motors is dependent on the power (P = I * V) being used to
drive the motor. The easiest solution to vary the power of a digital signal is by using a
method called Pulse Width Modulation (PWM). A pulse width modulated signal is a
square wave, which, when sufficiently fast, creates an effective average voltage on the
line. The ratio of high pulse length to period of the signal is called the duty cycle. By
varying the duty cycle you can vary the average voltage. Hence, to give the motor more
power, you should increase the duty cycle, as shown in Figure 1.

Figure 1: Pulse Width Modulation

The PIC18F452 includes a built-in PWM module that supports a period up to 819.2 µs
(see page 122 of the PIC datasheet for how this is calculated) using a 20 MHz oscillator
(409.6 µs with a 40 MHz oscillator). Sometimes the period for a PWM you wish to
generate is too long for the PWM module. To work around this limitation you can use
the PIC18F452’s interrupt system to generate the PWM signal. An interrupt request
handler (a procedure executed when an interrupt occurs) is called when a timer
overflows, giving a predictable delay between calls to the handler. The interrupt request
handler would then compare a “count” with a maximum period length variable and a high
pulse length variable. A pin would be driven high when count is less than the high pulse

MicroToys Guide: Motors N. Pinckney April 2005

2

length variable and the count is reset when it exceeds the maximum period length. Both
methods free the majority of processor time for other tasks. The PWM module drives a
single pin, PORTC<2>. With the interrupt driven method you can drive any pin, as well
as do more complex tasks beyond generating a simple PWM signal. Examples of both
methods are given in the sample code section.

H-Bridges

The PIC output drivers are only rated for 25 mA, and most other digital chips provide
less than 20mA. Motors draw more current than a PIC can provide. One exception is the
servo, which has separate control and power inputs, so current draw is not an issue. Also,
motors may operate at different voltage levels than a PIC. A common drive circuit,
called an H-bridge, can be used to provide higher current and isolate voltage levels. An
H-bridge consists of four switches/transistors/relays/etc: two switches go to VCC and two
go to ground, as shown in Figure 2. By closing switches 1 and 4, current flows through
the motor from left to right in the figure, hence the motor will turn one direction. By
closing switches 2 and 3, the motor will turn the other direction. To apply braking to the
motor, by induction, close switches 2 and 4. To allow the motor shaft to rotate freely, do
not close any switches. The voltage VCC of the h-bridge may be larger than the logic
levels of the control device you are using.

Figure 2: H-Bridge

H-bridges are often packaged in an IC form. Some come in half-h driver form, which is
one side of an h-bridge (i.e. will drive a lead high, low, or high-impedance). The
SN754410NE has four half-h drivers, which can be paired, so it can drive two motors
with two separate H-bridges. It is rated for 1.1A continuous output at up to 36V.
Although the input pins are specified for 4.5V control, they are also specified for TTL
levels, and so appear to work at 3.3V. The SN754410NE has four input pins and two
enable pins. When an enable pin is high, the two corresponding drivers are high or low
depending on their input pins (when input pin is high, driver is high. Otherwise driver is
low). When the enable pin is low, both drivers controlled by the enable pin are high-
impedance.

MicroToys Guide: Motors N. Pinckney April 2005

3

DC Brushed Motors

Many motors use coils at fixed symmetrical angles to attract magnets on a motor shaft to
different positions. When current is applied to the coils in the correct sequence, rotation
occurs. A DC brushed motor automatically supplies current to the correct coils, often by
using spring-loaded “brushes” which touch a contact, on the shaft, connected to a coil.
As the shaft rotates, the contact the brush touches changes, keeping the shaft rotating
without the need for more complex control circuitry. All that is needed to drive a
brushed motor is current flow through the leads of the motor, as shown in Figure 3.
Brushed motors are ideal for situations where high-speed/torque rotation is needed.
However, the motor does not directly indicate velocity or shaft position. (A device called
a shaft encoder may be used to optically determine the amount of rotation of the motor
shaft, to determine the shaft position or velocity, but it is beyond the scope of this
documentation.)

Figure 3: Driving a DC Brushed Motor

The speed/torque of the motor is determined by the electrical power (I*V) supplied and
the direction of rotation is determined by the direction that current flows through the
motor. To control the speed using the PIC, pulse width modulation is used. One motor
lead is connected to PORTC<2>, which is the output for the PIC’s built-in PWM
generation module. The duty cycle determines the average voltage delivered to the
motor and hence the speed of the motor. If speed control is not needed, or interrupt-
based PWM is used, you do not need to use the PIC’s built-in PWM and another pin may
be used to control the motor.

To control directions, an arbitrary port, in the example code PORTC<1>, is connected to
the other lead of the motor. Normally PORTC<1> is low, causing current to flow
through the motor from PORTC<2> (when high) to PORTC<1>. When PORTC<1>
goes high, current instead flows from PORTC<1> to PORTC<2> (when low), effectively
reversing the direction of the shaft rotation.

Since the RS-550PF motor draws up to 29.1 A at 5VDC to 12VDC, more current than the
PIC can provide, it is connected to a quadruple half-h driver, as shown in Schematic 1 on
page 7 in the example schematic section. It is often desirable to give the motor more
current than a single H-bridge can provide, so you may use multiple H-bridges attached
to the same lead, or, of course, use a more powerful H-bridge.

Stepper Motors

Stepper motors have coils, connected directly to the external motor leads, which align the
motor shaft to discreet positions or “steps”. To rotate the motor shaft in a direction,

MicroToys Guide: Motors N. Pinckney April 2005

4

current must be sent through the motor leads in proper sequence. The stepper motor
demonstrated in this paper is a bipolar stepper motor, which has two coils, perpendicular
to each other, and multiple permanent magnets on the shaft. The Airpax LB82773-M1
stepper motor rotates 7.5 degrees per step. Stepper motors are ideal when precise control
over amount of rotation is needed, but provide less speed and torque than a DC brushed
motor would.

The sequence in which the motor leads are driven is called the stepping sequence. There
are different stepping sequences depending on different factors such as power
consumption, torque, and granularity of angle. For example, with a half-step stepping
sequence, two leads could be driven simultaneously, which provides more torque than a
simple one-phase sequence, which is discussed below, but requires more power to
operate. The speed of rotation is determined by the delay between changing steps in the
sequence. When starting at maximum speed the shaft will not rotate into position before
the sequence progresses a step, causing the shaft to jitter but not rotate, therefore you
should not start the sequence at maximum speed but instead gradually increase the
stepping speed. To reverse direction of rotation just reverse the sequence. For this
documentation we implement a simple one-phase (only one coil has current at a time)
sequence. The stepping sequence as implemented in the sample code is shown in Table
1. As power is switched from one coil to another coil the motor moves a step. The
process repeats causing continuous rotation in the direction indicated.

 Counter-Clockwise Clockwise
 1 2 3 4
Grey ON OFF OFF OFF
Black OFF OFF ON OFF
Red OFF ON OFF OFF
Yellow OFF OFF OFF ON

Table 1: Sample Airpax LB82773-M1 Stepping Sequence

Controlling a stepper motor using the 18F452 PIC is achieved using interrupts. First an
initial bit-pattern is loaded onto PORTD. After a specific delay, which in the sample
code is determined by the speed register, PORTD is rotated right or left depending on the
direction desired of the motor shaft. For more complex stepping sequences, as discussed
earlier, either modify the bit pattern on PORTD or implement an algorithm to determine
which leads should be driven.

Servos

Servos are motor devices which can be positioned to a specific absolute angle. The servo
can be viewed as a DC motor with a built-in controller. Internally servos use a device
such as a potentiometer to measure the angle of the shaft, by using the voltage from the
potentiometer. The servo’s circuitry internally generates a signal from the voltage of the
potentiometer, and then compares it to the input signal and matches the two by moving
the DC motor accordingly. The speed at which the servo moves to the new position is
proportional to the distance it needs to travel, so as the servo becomes closer to the target
angle it will gradually slow. Servos are similar to stepper motors in that a specific
amount of rotation can be achieved, but servos allow you to control an absolute angular

MicroToys Guide: Motors N. Pinckney April 2005

5

position instead of a relative amount of angular rotation. Additionally, servos often have
finer granularity of amount of rotation than stepper motors, but are limited to a maximum
angle of rotation, often not exceeding 360 degrees. Servos are ideal when absolute
positioning of a shaft is desired.

The HS-322HD servo has three pins: VCC (Red), GND (Black), and SIGNAL (Yellow).
Typically servos require a PWM signal with a 20ms period of a pulse length between
0.9ms and 2.1ms. 0.9ms corresponds to zero angle and 2.1ms corresponds to the
maximum angle, as shown in Figure 4. Therefore, middle position is 1.5ms (the average
of the pulse lengths). The HS-322HD has a maximum angle of 180 degrees. Servos only
move a finite angular amount per cycle of the signal, so multiple cycles must be sent
before the servo arrives at the correct angle. The number of cycles needed is dependent
on the distance it must move. The servo will resist change away from the designated
angle as long as signal is applied. The servo draws its power from VCC and the signal
needs no more than 20 mA of current while running at 3VDC to 5VDC. Hence, it can be
driven directly by the PIC without the need of an H-bridge. The voltage of the signal
appears to not affect the angular position of the servo, as long as the voltage is within the
3VDC to 5VDC range. The HS-322HD specifications define VCC to be between
4.8VDC and 6VDC (though the servo appears to work at 3.3VDC). In the sample code
the PWM is generated using interrupts, therefore the signal input on the servo can be
connected to any arbitrary output pin on the PIC.

Figure 4: Controlling a HS-322HD Servo with PWM

MicroToys Guide: Motors N. Pinckney April 2005

6

Specifications

PIC18CXX2 Data Sheet

http://ww1.microchip.com/downloads/en/DeviceDoc/39026c.pdf

Mabuchi RS-550PF VDC Motor

http://cvhsrobotics.org/files/2003/mabuchi.pdf

Hitec HS-322HD Servo Motor

http://www.hitecrcd.com/Servos/spec_sheets/HS322HD.pdf

Airpax LB82773-M1 Stepper Motor

http://www.allelectronics.com/pdf/32.pdf

Texas Instruments SN754410NE Quadruple Half-H Driver

http://www-s.ti.com/sc/ds/sn754410.pdf

Supplier

Part Vendor Part # Price
Mabuchi RS-550PF All Electronics DCM-104 $3.50
Airpax LB82773-M1 All Electronics SMT-75 $2.75
SN754410NE H-Bridge Digi-Key 296-9911-5-ND $1.88
Hitec HS-322HD Servo Hitec RCD USA HS-322HD $11.49

www.allelectronics.com
www.digikey.com
www.hitecrcd.com

Additional Resources

PICmicro® DC Motor Control Tips ‘n Tricks

http://ww1.microchip.com/downloads/en/DeviceDoc/41233A.pdf

Brushed DC Motor Fundamentals

http://ww1.microchip.com/downloads/en/AppNotes/00905a.pdf

Stepper Motor Theory – Haydon Switch and Instrument

http://www.hsimotors.com/technical-data/theory.htm

Jones on Stepping Motor
 http://www.cs.uiowa.edu/~jones/step/

What’s a servo: A quick tutorial

http://www.seattlerobotics.org/guide/servos.html

MicroToys Guide: Motors N. Pinckney April 2005

7

Schematics

Schematic 1: Brushed DC Motor

Schematic 2: Stepper Motor

Schematic 3: Servo

MicroToys Guide: Motors N. Pinckney April 2005

8

Sample Code

Listing 1: brushed.asm

; brushed.asm: Demonstrates how to drive a dc brushed motor.
; 2005 Nathaniel Pinckney <npinckney@hmc.edu>
; Takes advantage of 18F452's builtin PWM module. Assumes 20Mhz clock.
;
; PORTC<1> is always 0 or 1, which will set direction by flipping polarity.
; PORTC<2> is controlled by PWM module.

 LIST p=18F452
 include "p18f452.inc"

 org 0x0

start:
 clrf TRISC ; PORTC as output

 call init_pwm
 movlw b'01100100' ; Speed. MSB is direction.
 btfss WREG,7 ; Check direction.
 bcf PORTC,1 ; Set direction.
 btfsc WREG,7
 bsf PORTC,1
 btfsc WREG,7 ; Also, if opposite direction,
 negf WREG ; negate speed so pulse length is the same
 rlcf WREG ; Multiply by 2, since speed is really on 7-bits.
 movwf CCPR1L ; Move into PWM module’s pulse length reg.
 goto $; $ is current address. Loop endlessly.
 ; (Your code would replace goto loop.)

; Initializes the PWM module for DC Brushed motor control.
init_pwm:
 setf PR2 ; Give us a period of (255+1)*4 cycles.
 clrf CCPR1L ; MSB of duty cycle, initially 0.
 movlw b'00000100' ; 0 postscale, PWM on, 0 prescale
 movwf T2CON
 movlw b'00001100' ; LSB of duty cycle, PWM Mode
 movwf CCP1CON
 return

end

MicroToys Guide: Motors N. Pinckney April 2005

9

Listing 2: stepper.asm

; stepper.asm: Control a stepper motor.
; 2005 Nathaniel Pinckney <npinckney@hmc.edu>
; Assumes 20Mhz clock.
; Overview:
; * Configure interrupt on TMR0 overflow. This slows us down some.
; * Configure and enable TMR0.
; * Move a bit pattern of wires activated to PORTD. To cycle through
; wires in sequence all we must do is rotate PORTD.
; * Interrupt handler counts number of overflows in ‘count’ register and
; compares to ‘speed’ register. If count > speed then rotate
; our PORTD which will activate correct wires in sequence. Also,
; count is then reset.
; * Speed’s MSB is the direction. Rest of the bits are multiplied by 2
; to determine delay.

 LIST p=18F452
 include "p18f452.inc"

; Registers
W_TEMP equ 0x01 ; Save state, used in ISR.
STATUS_TEMP equ 0x02 ; Save state, used in ISR.
count equ 0x03 ; Keeps track for timing/speed.
speed equ 0x04 ; Speed/delay of stepper motor.

 org 0x0 ; Reset vector.
 goto start
 org 0x08 ; Interrupt vector.
 goto TMR0_ISR ; goto TMR0 ISR (Interrupt Service Request)

start:
 clrf TRISD ; PORTD is output.
 movlw b'11100000' ; Set our speed/delay. MSB is direction.
 movwf speed

 movlw b'10100000' ; Enable all interrupts, and TMR0 overflow as

; an interrupt.
 movwf INTCON
 movlw b'11000000' ; Setup TMR0, 8-bit mode, no prescaler.
 movwf T0CON

 movlw b'00010001' ; Stepping sequence pattern.
 movwf PORTD

 goto $; $ is current address. Loop endlessly.

; (Your code would replace goto loop.)

TMR0_ISR: ; TMR0 ISR Handler.
 movwf W_TEMP ; Save WREG
 movff STATUS,STATUS_TEMP ; Save Status
 incf count ; Increment count.
 movf speed,w
 rlcf WREG ; Shift speed by 1 (multiply by two)
 cpfsgt count ; Check if we hit our upper-bound of count.
 goto _then
 clrf count ; Reset count
 btfsc speed,7 ; Rotate our output in direction
 rlncf PORTD ; determined by MSB of speed.
 btfss speed,7
 rrncf PORTD

_then:
 bcf INTCON,TMR0IF ; We handled the interrupt.
 movf W_TEMP,w ; Restore WREG
 movff STATUS_TEMP,STATUS ; Restore Status
 retfie ; Return from interrupt handler.

end

MicroToys Guide: Motors N. Pinckney April 2005

10

Listing 3: servo.asm

; servo.asm: Control a servo.
; 2005 Nathaniel Pinckney <npinckney@hmc.edu>
; Assume 20Mhz clock.
; Overview:
; * Configure interrupt to trigger on TMR0 overflow.
; Interrupt will trigger approximately every 0.1ms.
; * Configure TMR0.
; * On interrupt check if pwm >= pwm_count, if true turn PORTD<7> on,
; else turn PORTD<7> off.
; * Check if we reach 20ms by comparing pwm_count to 200.
; If so reset to 0.

 LIST p=18F452
 include "p18f452.inc"

; Constants to test with.
ANGLE equ .15 ; This is really pulse length in 0.1 ms, which
 ; translates to angle. 15 (1.5 ms) is center position,
 ; 9 (0.9 ms) is ~0 degrees, and 21 (2.1 ms) is ~180

; degrees.
; Registers
W_TEMP equ 0x01 ; Save state, used in ISR.
pwm_count equ 0x02 ; Keeps track if TMR0 overflows, for pwm generation.
pwm equ 0x03 ; Pulse length of pwm.

 org 0x0 ; Reset vector.
 goto start
 org 0x08 ; Interrupt vector.
 goto TMR0_ISR ; (goto TMR0 ISR)

start:
 clrf TRISD ; PORTD is output.
 movlw ANGLE ; Pulse length (/ a period of 200)
 movwf pwm

 movlw b'10100000' ; Enable all interrupts, and TMR0 overflow as an
 ; interrupt.
 movwf INTCON
 movlw b'11000000' ; Setup TMR0, 8-bit mode, no prescaler.
 movwf T0CON

 goto $; $ is current address. Loop endlessly.
 ; (Your code would replace goto loop.)

TMR0_ISR: ; TMR0 ISR (Interrupt Service Request) Handler.
 movwf W_TEMP ; Save WREG

 movf pwm_count,w
 cpfslt pwm ; Compare pwm to pwm_count.
 bsf PORTD,7 ; >= PORTD<7> = 1
 cpfsgt pwm
 bcf PORTD,7 ; <= PORTD<7> = 0

 incfsz pwm_count ; infsz does not modify STATUS (unlike incf)
 movlw .200 ; and since we don’t save STATUS...
 cpfslt pwm_count ; 200 is selected because TMR0 overflows
 clrf pwm_count ; once every 0.1ms, and we want a 20ms period.

 bcf INTCON,TMR0IF ; We handled the interrupt.
 movf W_TEMP,w ; Restore WREG
 retfie ; Return from interrupt handler.

end

