
4-1

Requirement

1) Get acquainted with the MPLAB IDE software.

2) Get acquainted with the PIC32MX675F512H and its assembly language.

Discussion

You will be using the PIC32MX675F512H for Labs 4-7. In this lab you will get

acquainted with the chip, learn how to use its accompanying software and programmer,

and write simple assembly language programs.

PIC Assembly Language

To familiarize yourself with the PIC32, do the following steps:

a) Read Sections 4.0-4.1 from the PIC datasheet on the PIC‟s memory organization, and

skim the PDF on the MIPS instruction set.

b) Read the “Getting to Know your PIC32” in Appendix A of this lab manual and try the

examples to test that your PIC is working properly.

c) Write a program that, given five 32-bit signed numbers on the stack, will find the

largest number and write it to Port D (to display the bottom 8 bits on the LEDs).

d) Write a program that will sort 12 32-bit signed numbers found on the stack. The sorted

results should be stored in the same block of memory with the smallest number at the

lowest position on the stack (largest address). Download your compiled code to the PIC

and run it.

Hints

 You can define multiple labels within the .ent main / end block rather than

defining separate functions for each place your program can jump to. This is helpful

in creating loops within a function. See code in the appendix for an example.

Microprocessor-Based Systems (E155)

 D. Money Harris and K. Wang Fall 2011

Lab 4: Microcontroller Trainer

LABORATORY #4: The PIC32MX675F512H Trainer

4-2

 Be sure you understand how branch and jump instructions are executed. When in

doubt, put a nop in the branch delay slot.

 The latest version of the MPLAB development environment appears to corrupt

projects fairly often, but does not damage the source files. If your project gets

corrupted, make a new one and include the .S file and bootloader scripts again.

What to Turn In

You may turn in an abbreviated lab report for this lab. Well commented code is

extremely important when writing assembly and will play an important role in the lab

grading. Your lab write-up should include:

 A listing of your program that finds the greatest number.

 A listing of your program that sorts numbers.

 Explicitly state the test cases you used and the output of the tests on each program.

Be sure your tests would convince a skeptic that your algorithm works.

 How many hours did you spend on the lab? Any comments, suggestions, or

complaints about the assignment? This will not count toward your grade.

LABORATORY #4: The PIC32MX675F512H Trainer

4-3

Appendix A: Getting to Know your PIC32

A Few Bits of Background

The PIC32 series of microcontrollers implement an instruction set compliant with the

MIPS32 Release 2 standard. The assembly language should look familiar to anyone who

has taken E85. Like other MIPS processors, the PIC32 has working registers designated

for specific purposes. The functionality of these registers is summarized below.

Register Purpose

$zero Constant value 0

$at Temporary register reserved for multi-cycle instructions

$v0-$v1 Values returned from functions

$a0-$a3 Arguments passed to functions

$t0-$t9 Temporary working registers

$s0-$s7 Saved temporary registers

$k0-$k1 Reserved for OS kernel

$gp Global pointer

$sp Stack pointer

$fp Frame pointer

$ra Return address

Look through the MIPS32 Instruction Set document on the course website to get a sense

for the instructions at your disposal. Note that the Core Extend and Coprocessor 1 / 2

instructions are not implemented by the PIC.

Software

We will be using the MicroChip MPLAB Integrated Development Environment (IDE)

software for writing assembly code and programming the PIC. This software includes an

assembler, a simulator, and a hardware debugger. The simulator and hardware debugger

have a very similar interface, so be sure you know when you are simulating a program

and when you are actually executing it on the physical hardware.

Start the MPLAB software using the “MPLAB IDE” shortcut. Create a new project by

selecting Project  New. Name your project “leds_xx” and put it in a folder on your

Charlie account such as H:\e155\lab4_xx. (Be sure to use backslashes rather than forward

slashes in the path name.) This will create a “leds_xx.mcp” file in that folder.

First make sure the software knows which PIC you are working with by selecting

“PIC32MX675F512H” from the Configure  Select Device menu. The box has a list of

LABORATORY #4: The PIC32MX675F512H Trainer

4-4

programming tools that are compatible with the PIC chips. Check that MPLAB ICD3 has

a green light and MPLAB SIM has a yellow or green light before clicking OK.

Also, set the tools for the PIC32. Under Project  Select Language Toolsuite…, be sure

Microchip PIC32 C-Compiler Toolsuite is selected.

Next you need to enter some code to run. Select File  New to create a new source file,

and enter the following lines of code:

/* leds.S

Written <date> by <your_name>@hmc.edu

Test PIC by turning on LEDs */

#include <P32xxxx.h>

Define constants

#define LEDS 0xA5

Define functions

.global main

Compiler instructions

.text # store the code in the main program section of RAM

.set noreorder # do not let the compiler reorganize your code

Main program

.ent main # Start function block

main:

 la $t0, TRISD # Load the address of TRISD into $t0

 addi $t1, $0, 0xFF00

 sw $t1, 0($t0) # TRISD = 0xF00 (bottom 8 bits outputs)

 addi $t1, $zero, LEDS # $t1 = LEDS (LEDS + 0)

write: # This is a label you can jump to

 la $t0, PORTD # Load the address of PORTD into $t0

 sw $t1, 0($t0) # PORTD = $t0

 j write # Jump back to write

 nop

.end main # End function block

MIPS assembly supports two types of code comments. A # character will comment out

any text after it on the same line, and /* block comments */ can be defined that span

multiple lines. Be careful not to confuse line comments with preprocessor directives.

Statements like #define and #include are not comments, but instructions interpreted by

the compiler used to simplify programming. The line

#define LEDS 0xA5

defines a constant symbol, LEDS, that can be used elsewhere in the program. At build

time, the compier‟s preprocessor will replace every instance of LEDS with 0xA5. Use

LABORATORY #4: The PIC32MX675F512H Trainer

4-5

this feature to avoid magic numbers in your code. The #include statement includes a file

at compile time, in this case a file that defines names for the hardware on the PIC

(PORTD, TRISE, etc).

Every PIC program must contain at least one function, named main. The .global

main instruction tells the compiler that a function named main exists. The .ent

main / .end main lines contain the actual code of the function. Additionally, a

code label main: is placed at the beginning of the function. Labels can be used as the

target of jump and branch instructions and can be placed anywhere in your code. A label

write: is used later on to form a simple loop.

Save the file as “leds_xx.S” in the project directory. Note the capital „S‟ extension,

which tells the compiler to interpret preprocessor directives like #define in assembly code

(such directives are generally used with C). Insert the source file into your project by

using Project  Add Files to Project and selecting leds_xx.S. You can save your changes

to the project by selecting Project  Save Project.

By default, the PIC32 compiler loads a lengthy startup routine into boot flash memory.

This code initializes the stack and global pointers, clears sections of memory, sets up

customized interrupt vectors and RAM functions. Some parts of this code take many

iterations to complete, making stepping through it a long and tedious process. For

assembly programming, all we need the startup routine to do is initialize the stack pointer

and jump to the main function. Copy the given crt0.S file, containing a shortened

startup routine, and elf32pic32mx.ld, a modified linker script, into your lab4 directory

and add the files to the project. Next, select Project  Build Options…  Project and

open the „PIC32 Suite‟ tab. Check the box for „Don‟t link startup code‟ under „Target

Type‟ so the default startup code does not conflict with our modified version. Be sure to

read through the original crt0.S initialization code at C:\Program Files

(x86)\Microchip\MPLAB C32 Suite\pic32-libs\libc\startup and understand what it does,

as it is useful to use when running compiled C code.

Now we are ready to translate the assembly code into machine code. You can either

select Project  Build All, or you can use Ctrl+F10. A window will pop up and a couple

green bars will scroll, but they will probably be gone before you can read what they say.

When the code has finished with assembly, a window labeled Output will appear, and

you should see the message BUILD SUCCEEDED at the bottom of the compiler output.

If you get any warning or error messages, go back and fix your code. When you are

working with more complicated assembly language code, error or warning messages will

appear in this box. Double-clicking on an error message will take you to the offending

line of code.

If for some reason MPLAB can‟t find its assembler (the paths seem to occasionally get

messed up), select Project  Set Language Tool Locations… Under the Microchip

PIC32 C-Compiler Toolsuite, select Executables. Then click on MPLAB ASM32

Assembler (pic32-as.exe). Click the browse button and browse to C:\Program Files

LABORATORY #4: The PIC32MX675F512H Trainer

4-6

(x86)\Microchip\MPLAB C32 Suite\bin\pic32-as.exe. Similarly, set the paths for pic32-

gcc.exe, pic32-ar.exe and pic32-ld.exe (all in the same directory).

Now we are ready to start debugging. Chose MPLAB SIM from the Debugger  Select

Tool menu. This will simulate your code and allow you to debug it before actually

running the code on the PIC.

While you are simulating, it is helpful to see what is going on going on in the chip‟s

memory. The View menu lists a number of windows to watch the activity. The Memory

window displays the contents of all memory addresses on the PIC. This is useful to see

the instructions the machine is actually running, and to see the contents of RAM. You

can change the contents of memory simply by editing the values in the „Opcode‟ field.

You may also find the Special Function Registers window helpful, and the Watch

window is convenient for monitoring only the registers you want to look at.

Bring up the Watch and Memory windows. Add TRISD, PORTD, t0, and t1 as registers

in the Watch window. At the top of the window will be two buttons and two pulldown

menus. Click on the first pulldown menu and type in “TRISD”. Use the ADD SFR button

to the left of the menu to display its value. Do the same for PORTD.

Now we are ready to debug some code. Chose Debugger  Reset  Processor Reset or

press F6. A green arrow will appear in your Memory window, pointing to an instruction

in Boot Flash Memory. This green arrow tells you where you are in your program. Chose

Debugger  Step Into or press F7. The green arrow will move to the next line. After a

value is changed in memory, whether in the Memory window or Watch window, the

value will appear in red. This is helpful for pinpointing the effect of commands on

particular registers while you are stepping through assembly code. Watch the register

values change as you step through the program. Finally, the value 0xA5 will be written

to PORTD.

Reset the processor and repeat these steps until you are comfortable with what you are

observing and can relate it back to the crt0 startup code and to your program. Remember

that the la pseudoinstruction in your program assembles into two real instructions: lui and

addiu.

Once you have verified that your code works, you are ready to run it on the PIC.

Hardware

Apply power to your board from the bench power supply. The PIC receives the same

clock as the FPGA. This is a great time to erase your PROM for the FPGA (using the

Quartus programmer and the directions from Lab 1) to ensure that FPGA outputs don‟t

contend with PIC outputs in this or future labs.

Next, go to Configure  Configuration Bits. This sets some of the hardware options on

your PIC microprocessor. You may have to drag some of the columns to make them large

LABORATORY #4: The PIC32MX675F512H Trainer

4-7

enough to read. Uncheck the box labeled Configuration Bits set in code. The clock

source is the external clock coming from the oscillator to PIC pin OSC1. Therefore, set

the Oscillator Selection Bits configuration option to “Primary Osc (XT,HS,EC).” The

PIC supports several different types of external clock sources. Set the Primary

Oscillator Configuration to “External Clock Mode.” This tells the PIC to expect a

clock signal input on OSC1, rather than attempting to excite a crystal or other type of

passive resonator. Also check that the secondary oscillator is disabled. Most peripherals

on the PIC32, such as the UART, run on the peripheral clock. For simplicity, set

Peripheral Clock Divisor to “Sys_Clk/2” to run the peripherals at 40 MHz / 2 = 20

MHz. The PIC32 can be programmed through multiple sets of pins depending on

application. For the debugger to talk to the PIC on this board, ensure the ICE/ICD

Comm Channel Select is set to use pins PGC1/PCG1. Configuration bits are saved in

each project file, so you will have to set them for each new project you create.

Once these options have been set, switch to running your hardware on the chip itself by

selecting “MPLAB ICD3” from the Debugger  Select Tool menu. If the Setup Wizard

comes up, select USB for the Com Port and “Target has its own power supply.” Also

check the boxes to automatically connect with MPLAB ICD3 and download the

firmware. Otherwise check these options under the Debugger  Settings dialog.

In the Output window, a new tab labeled MPLAB ICD3 will appear. You should see the

following messages:

MPLAB ICD 3 detected

Connecting to MPLAB ICD 3...

Firmware Suite Version...... 01.26.05

Firmware type......................PIC32MX

MPLAB ICD 3 Connected.

Target Detected

Device ID Revision = 04300053

If you see a “ICD3Err0040: The target device is not ready for debugging” error, double-

check your configuration bits settings, in particular the ICD Comm Channel selection.

MPLAB sometimes forgets your configuration bits settings, which can lead to this error.

If you get a “ICD3Err0045: You must connect to a target device to use MPLAB ICD3”

message, you probably forgot to turn on the power supply or connect the board to the

debugger. Turn on power and choose Debugger  Connect to try again. If that doesn‟t

work, check the solder joints on the ICD connector. If you see “ICD3Err0086: Target

Device ID does not match expected Device ID,” check under Configuration  Select

Device… that you have selectd PIC32MX675F512H. If it still doesn‟t work, you may

have damaged your PIC. If there are still issues, the ICD hocky puck is probably

damaged. Several get blown out each year for no obvious reason; please treat them with

care. Try a different computer. If that works, you‟ve confirmed the bad ICD. Label it

“Bad” with a piece of tape and put it in the supply cabinet so nobody else has the

problem. Let the instructor know.

NOTE: On Windows XP, if you unplug the USB cable for the ICD and then plug the

same or a different one back in, you may confuse the USB driver. You will then have to

LABORATORY #4: The PIC32MX675F512H Trainer

4-8

log out and back in before MPLab will recognize the ICD again. We do not yet know

how robust the drivers are under Windows 7.

You are finally ready to run your code on the PIC. Choose “Program” from the Debugger

menu. After you have downloaded your code, you will be able to step through it just as

you did with the simulator. View the Program Memory to watch the program counter step

through the machine language as well. While you are in debug mode, you can change

values in the PIC‟s data memory by changing the values in Memory or Watch. Modify

the instruction that specifies the value to write to PORTD and change the value. Verify

that the new value is written to the LEDs after stepping through the next loop iteration. If

something goes wrong, re-program the PIC.

As you step through your program, MPLAB will highlight values in red that it has

changed in the last step. Stepping is fairly slow because the ICD sends a large amount of

information back and forth after each step. Having many windows open from the View

menu slows stepping even more. If you step to the end of the code, you may get a bunch

of spurious “stepping target” messages and have to quit MPLAB.

If you want to run your entire program without stepping through it, choose Run (F9) and

your code will run at full speed. You need to Halt the program (F5) before you can reset

or re-program the PIC.

