
4-1

Requirement

1) Get acquainted with the MPLAB IDE software.

2) Get acquainted with the PIC18F452 and its assembly language.

Discussion

You will be using the PIC18F452 for Labs 4-7. In this lab you will get acquainted with
chip, learn how to use its accompanying software and programmer, and write a simple
assembly language program.
PIC Assembly Language

To familiarize yourself with the PIC18F452, do the following steps:

a) Read Sections 4.0-4.1 from the PIC datasheet on the PIC’s memory organization, and
skim Section 20 on the instruction set.

b) Read the “Getting to Know your PIC18F452” in Appendix A of this lab manual and
try the examples to test that your PIC is working properly.

c) Write a program that, given five 1-byte numbers, will find the largest number and
write it to Port D (to display to the LEDs). Assume that the numbers are in 2’s
complement format.

d) Write a program that will sort 12 numbers. The numbers are given in 2’s complement
and are stored in data memory addresses $0000-$000B. The sorted results should be
stored in the same block of memory with the smallest number in address $0000. The
compiler will have generated a sort_xx.lst listing file in the directory that your project is
stored in. Look at this listing file and print out the relevant section. You do not need to
print out the symbol table, but scroll to the end of the .lst file to see your program’s
memory usage. Download your compiled code to the PIC and run it.

Microprocessor-Based Systems (E155)

 D. Money Harris Fall 2009

Lab 4: Microcontroller Trainer

LABORATORY #4: The PIC18F452 Trainer

4-2

Hints

• Use the ORG directive to set the address of the beginning of your program to some
place like 0.

• Use END to finish your code.

• You can reserve variables using the “NAME RES 0x0n” command at the beginning

of your program (n is the number of bytes to reserve), or using “NAME EQU 0xnn”.
If you use RES, MPLAB will reserve variables starting at address 0x0000 in the data
memory/file registers. If you want to access the file registers in a different manner
(indirect addressing, for example), make sure the memory you are using does not
conflict with the memory that MPLAB earmarks. If you use EQU, note that ‘nn’ is
the address where you want the variable stored. You can also use EQU to define
constants: “NAME EQU b’nn’” where ‘b’ is the base of the constant (binary,
decimal, etc.) and ‘nn’ is the value of the constant.

• The latest version of the PIC development environment appears to corrupt projects

fairly often, but does not damage the .asm file. If your project gets corrupted, make a
new one and include the .asm file again.

What to Turn In

Your lab writeup should include:

• A listing of your program that finds the greatest number.
• A listing of your program that sorts numbers.
• Explicitly state the test cases you used and the output of the tests on each program.

Be sure your tests would convince a skeptic that your algorithm works.
• How many hours did you spend on the lab? This will not count toward your grade.

LABORATORY #4: The PIC18F452 Trainer

4-3

Appendix A: Getting to Know your PIC18F452

Software

We will be using the MPLAB Integrated Development Environment (IDE) software for
writing assembly code and programming the PIC. This software includes an assembler, a
simulator, and a hardware debugger. The simulator and hardware debugger have a very
similar interface, so be sure you know when you are simulating a program and when you
are actually executing it on the physical hardware.

Start the MPLAB software using the “MPLAB IDE” shortcut. Create a new project by
selecting Project New. Name your project “leds_xx” and put it in a folder on your
Charlie account. (Be sure to use backslashes rather than forward slashes in the path
name.) This will create a “leds_xx.mcp” file in that folder. Next you need to enter some
code to run. Select File New to create a new source file, and enter the following lines
of code:

; leds.asm
; Written <date> by <your_name>@hmc.edu
; test PIC by turning off LEDs

; Use the 18F452 PIC microprocessor
 LIST p=18F452
 include "p18f452.inc"

; allocate variables
LEDS EQU 0x00

; begin main program
 org 0

start
 clrf TRISD ; set PortD to output
 movff LEDS, WREG ; LED output pattern
 movwf PORTD ; turn on LEDs

 end

Save the file as “leds_xx.asm” in the same directory. Insert the source file into your
project by using Project Add Files to Project and selecting leds_xx.asm. You can save
your changes to the project by selecting Project Save Project.

Now we are ready to translate the assembly code into machine code. You can either
select Project Build All, or you can use Ctrl+F10. A window will pop up and a couple
green bars will scroll, but they will probably be gone before you can read what they say.
When the code has finished with assembly, a window labeled Output will appear, and
you should see the following messages:

Deleting intermediary files... done.

LABORATORY #4: The PIC18F452 Trainer

4-4

Executing: "C:\Program Files\Microchip\MPSAM Suite\MPASMWIN.exe” /q
/p18F452 "leds_xx.asm" /l"leds_xx.lst" /e"leds_xx.err"

Loaded H:\E155\leds_xx\leds_xx.COD
BUILD SUCCEEDED

If you get any warning or error messages, go back and fix your code. When you are
working with more complicated assembly language code, error or warning messages will
appear in this box. Double-clicking on an error message will take you to the offending
line of code.

If for some reason MPLAB can’t find its assembler (the paths seem to occasionally get
messed up), select Project Set Language Tool Locations… Under the Microchip C18
Toolsuite, select Executables. Then click on MPASM Assembler (mpasmwin.exe).
Click the browse button and browse to C:\Program Files\Microchip\MPASM
Suite\MPASMWIN.EXE. Similarly, set the paths for mplib.exe and mplink.exe (in
C:\mcc18\bin).

When you assembled your leds.asm file, MPLAB created an leds_xx.lst file in the same
directory. Open it up with notepad or wordpad. Your assembled code is listed at the top
of the file. The first column tells you what addresses each line of your code resides in.
The second column gives the machine code. The third column numbers each line of code,
and the fourth column gives the assembly code that you entered. Fill out the following
table:

Address Machine Code Assembly Command
000000
000002
000006

Why does ‘movff’ occupy two words in memory? What is the machine code for the
‘movff’ command?

The next section of the list file contains the symbol table. It is not very interesting; it
simply defines the internal registers used by the PIC. The last part shows the labels
defined by your program and some statistics about the code.

Now we are ready to start debugging. Chose MPLAB SIM from the Debugger Select
Tool menu. This will simulate your code and allow you to debug it before actually
running the code on the PIC. Use the Step Into command from the Debugger menu (this
command will also step you through your code, one line at a time). Play around with a
couple of the commands on this menu, because they will be helpful while debugging
complicated assembly code.

While you are simulating, it is helpful to see what is going on going on in the chip’s
memory. The View menu lists a number of windows to watch the activity. The Program
Memory window displays your assembly translated into machine code and stored in the
PIC’s program memory. Use this if you are ever curious about the instructions the

LABORATORY #4: The PIC18F452 Trainer

4-5

machine is actually running. The File Register window displays the user memory
available to you. You can change this user memory simply by typing new numbers into
the display. You may find the Special Function Registers window helpful, and the Watch
window is convenient for monitoring only the registers you want to look at.

Bring up the Watch and File Registers windows. Double-click on the first memory
address in the File Registers window, 0x00, and type in ‘55’. After you change a value in
memory, whether in the File Registers window or Watch window, the value will appear
in red. This is helpful for pinpointing the effect of commands on particular registers while
you are stepping through assembly code. Next, add TRISD and PORTD as registers in
the Watch window. At the top of the window will be two buttons and two pulldown
menus. Click on the first pulldown menu and type in “TRISD”. Use the ADD SFR button
to the left of the menu to display its value. Next, do the same for PORTD and WREG.

Now we are ready to debug some code. Chose Debugger Reset Processor Reset or
press F6. A green arrow will appear in your code window, pointing to “clrf TRISD”. This
green arrow tells you where you are in your program. Chose Debugger Step Into or
press F7. The green arrow will move to the next line, and the TRISD value in the Watch
window will become ‘00’ and turn red. The next time your press F7, WREG will change
to ‘55’. Finally, the value will be written to PORTD.

Once you have verified that your code works, you are ready to run it on the PIC.

Hardware

Apply power to your board from the bench power supply. The PIC receives the same
clock as the FPGA. Make sure that the clock is on the 20 or 40 MHz setting, not the
manual switch setting. And be sure you don’t have any old code in your FPGA that is
driving the LEDs (if you do, you can either erase the FPGA PROM using the Xilinx tools
or hold the FPGA reset button down to disable the FPGA outputs).

First make sure the software knows which PIC you are working with by selecting
“PIC18F452” from the Configure Select Device menu. The box has a list of seven
programming tools that are compatible with the PIC chips. Check that MPLAB SIM and
MPLAB ICD 2 both have green lights before selecting OK. Next, go to Configure
Configuration Bits. This sets some of the hardware options on your PIC microprocessor.
The clock source is the external clock coming from your jumpers to PIC pin OSC1. PIC
pin OSC2 will be configured as a general purpose I/O port bit RA6. Therefore, set the
Oscillator configuration option to “EC-OSC2 as RA6.” For the ICD to be able to access
the PIC memory and do in circuit debugging, you need to have “Table Read Protect
00200-01FFF” listed as “Disabled”.

Once these options have been set, switch to running your hardware on the chip itself by
selecting “MPLAB ICD2” from the Debugger Select Tool menu. If the Setup Wizard
comes up, select USB for the Com Port and “Target has its own power supply.” Also

LABORATORY #4: The PIC18F452 Trainer

4-6

check the boxes to automatically connect with MPLAB ICD2 and download the opering
system. Otherwise check these options under the Debugger Settings dialog.

In the Output window, a new tab labeled MPLAB ICD2 will appear. You should see the
following messages:

Connecting to MPLAB ICD 2

...Connected
Setting Vdd source to MPLAB ICD 2
Target Device PIC18F452 found, revision = c0
...Reading ICD Product ID
Running ICD Self Test

...Passed
MPLAB ICD 2 Ready

If you get a “ICD0083: Debug: Unable to enter debug mode” message, the ICD is having
trouble talking to your PIC. Check that the clock is set to 20 or 40 MHz (not single step)
and that the solder joints on the PIC and ICD socket are good. Be sure the configuration
bits are set correctly. If you get a “ICDWarn0020: Invalid target device ID
(expected=0x21, read =0x0)” message, you probably forgot to turn on the power supply.
Turn on power and choose Debugger Connect to try again. If that doesn’t work, the
ICD hocky puck is probably damaged. Several get blown out each year for no obvious
reason; please treat them with care. Try a different computer. If that works, you’ve
confirmed the bad ICD. Label it “Bad” with a piece of tape and put it in the supply
cabinet so nobody else has the problem. Let the instructor know.

NOTE: If you unplug the USB cable for the ICD and then plug the same or a different
one back in, you will confuse the USB driver. You will then have to log out and back in
before MPLab will recognize the ICD again.

You are finally ready to run your code on the PIC. Choose “Program” from the Debugger
menu. After you have downloaded your code, you will be able to step through it just as
you did with the simulator. View the Program Memory to watch the program counter step
through the machine language as well. While you are in debug mode, you can change
values in the PIC’s data memory by changing the values in file registers. Put a known
value that you wish to display on the LEDs in memory location 0. As you step through
your program, MPLAB will highlight values in red that it has changed in the last step.
Stepping is fairly slow because the ICD sends a large amount of information back and
forth after each step. Having many windows open from the View menu slows stepping
even more. If you step to the end of the code, you may get a bunch of spurious “stepping
target” messages and have to quit MPLAB.

If you want to run your entire program without stepping through it, choose Run (F9) and
your code will run at full speed. You need to Halt the program (F5) before you can reset
or re-program the PIC.

