
6-1

Requirement

Design a traffic light sequence simulator using the PIC microcontroller and glue
logic on your FPGA board. The traffic lights are to be built with colored LEDs. Light
patterns and delay times are to be read from a table, while the output is to be sent to six
LEDs by the:

 a) Parallel I/O Port D

 b) Serial Peripheral Interface (SPI)

Discussion

Microcontrollers are often used for logic-timer control. A traffic light controller is a
simple example. The light patterns are flashed on for a specified time using the parallel
or serial port. The time delays can be generated using either software (delay loops) or
hardware (timer facilities). For this particular example, the software method is quite
appropriate.

During lunchtime, there has been excessive congestion in front of Platt Dining Hall.
Students headed north and south bound in front of Platt have nearly collided with
unicyclists headed east or west reading books or juggling swords. No serious injuries
have yet occurred, but parents have been calling the President demanding action. He has
directed Physical Plant to install a system of traffic lights at the intersection controlling
east/west traffic and north/south traffic.1

1Unfortunately, this system is doomed to fail because nobody in Southern California obeys traffic lights.

Microprocessor-Based Systems (E155)
Harris

Lab 6: Traffic Light Controller

LABORATORY #6: Traffuc Light Controller

6-2

Platt

Your controller should be built with a sequence descriptor and an interpreter. In this way
the control sequence may be changed at any time to better accommodate traffic
conditions.

The sequence descriptor is an entry in a table containing the light pattern and duration.
In order to have a variable length table, a null entry (pattern of 0 and duration of 0 sec)
can be designated as the end of the table, for this will never be part of the sequence.

The interpreter is a program that reads values from the sequence descriptor table. The
interpreter sends light patterns for the specified durations. The interpreter should have a
delay subroutine to waste exactly 1 second. The delay time read from the table is used to
count out the number of times the “1 second delay” subroutine is executed. Your delays
should meet a +/- 5% tolerance. When the interpreter reads the null pattern, it should
loop back to the beginning of the table.

For the experiment, the following sequence descriptor is suggested:

Pattern

North-South East-West

Duration

red green 15

red yellow 3

green red 10

yellow red 2

null null 0

You are free to choose exactly how the sequence discriptor table will be implemented in
the PIC’s memory.

Write your code in assembly language, debug it, and run it on the PIC.

LABORATORY #6: Traffuc Light Controller

6-3

Use good coding practice on your assembly language programs. Comment your code
thoroughly. Use EQU statements to define constants and reserve memory using EQU or
RES statements.

Control the North-South lights with data coming over Port D and control the East-WEst
lights with data coming over the SPI. When the SPI is used, you will need an 8-bit serial-
in parallel-out shift register to capture the data. You can build such a shift register on
your FPGA. You are free to use either Verilog or schematic entry.

The programming ritual for the SPI is reviewed below. You may find section 15.3 of the
PIC datasheet helpful, or you can look at some of the examples in the PIC18F452
Microcontroller book.

1) Configure the data direction register for port C (TRISC/PORTC)

2) Configure the control register (SSPCON1)

3) Configure the status register (SSPSTAT)

4) Write a pattern to the data I/O register (SSPBUF)

5) Repeat step 4 as needed

Hints

• You may use nested delay loops or the built-in timer on the PIC to create your delays.
If you use a loop to measure time, refer to the PIC datasheet to see how many cycles
each instruction takes. It may be helpful to start by writing a 1-second delay
subroutine that you can call multiple times.

• You can enter a table in the program memory using the .db directive. For example, to
put a table of AA BB CC starting at memory location 100, use

org 0x0100

db 0xAA, 0xBB, 0xCC

• You can debug basic functionality by tracing through your program. However, you’ll
need to run at full speed to debug timing issues. If your program hangs, it is hard to
see where things went wrong. You can gain extra visibility into your program in
several ways. You can write different values to a particular memory location at
different points in your program so when you stop the program you can see how far it

LABORATORY #6: Traffuc Light Controller

6-4

got. You can send values over port A or port E and check the values on the logic
analyzer.

• The PIC produces CMOS voltage levels with Vol = 0.6, Voh = 4.3 that could pick up a
fair amount of noise. The FPGA defaults to TTL voltage levels with Vil = 0.8v, Vih =
2.0v. This means there is very little noise margin for any coupled or radiated noise
onto low signals from the PIC to the FPGA. Some people have discovered certain
FPGA inputs are too noisy or only work when loaded with a resistor or capacitor that
filters the noise. To reduce noise problems, set the FPGA implementation options to
use CMOS voltage levels (Vil = 1.0v, Vih = 3.5v) rather than TTL levels on the input
pins. This may be set by right-clicking on the Generate Programming File flow,
selecting Properties, and examining the Config Options tab.

• When you map the SDO and SCK pins as inputs on your FPGA, you need to have a
dedicated clock I/O pad as the SCK input. Check the Spartan data sheet; any primary
global clock (PGCK) input should work.

What to Turn In

Demonstrate your traffic light controller. Be prepared to change the sequence descriptor
and to answer fault-tolerance questions about your software, breadboard, or FPGA
designs. Know how to bring up the serial waveforms on the logic analyzer. Your lab
writeup should include:

• Your design approach
• A listing of your assembly language code
• Verilog or schematics of your FPGA circuits along with simulation waveforms
• A schematic of your breadboarded circuits
• How many hours did you spend on the lab? This will not count toward your grade.

