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1 Introduction

These notes give a quick introduction to the Verilog Hardware Description Language (HDL). There are
many texts on Verilog (e.g. [Smith00], [Ciletti99], etc.) providing a more in-depth treatment and the IEEE
standard itself is quite readable as well as authoritative [ EEE1364-01]. Many bookstreat Verilog as a
programming language, which is not the best way of viewing it. Instead, Verilog is better understood as a
shorthand for describing digital hardware. In other words, begin your design process by planning, on paper
or in your mind, the hardware you want. For example, the MIPS processor consists of a FSM controller
and a datapath built from registers, adders, multiplexers, etc. Then write Verilog that implies that hardware
to asynthesistool. A common error among beginnersisto instead write a program without thinking about
the hardware that isimplied. If you don’t know what hardware you are implying, you are amost certain to
get something that you didn’t want. Sometimes this means extra latches appearing in your circuit in places
you didn’t expect. Other times, it means that the circuit is much slower than required or takes far more
gates than it would if more carefully described.

The Verilog language was devel oped by Gateway Design Automation as a proprietary language for logic
simulation in 1984. Gateway was acquired by Cadence in 1989 and V erilog was made an open standard in
1990 under the control of Open Verilog International. The language, with some revisions, became an |EEE
standard in 1995 and was updated in 2001. This appendix describes a style compatible with both the 1995
and 2001 standards.

There are two general styles of description: behavioral and structural. Structural Verilog describes how a
module is composed of simpler modules or of basic primitives such as gates or transistors. Behavioral
Verilog describes how the outputs are computed as functions of the inputs. There are two genera types of
statements used in behavioral Verilog. Continuous assignment statements always imply combinational
logic. Always blocks can imply combinational logic or sequential logic, depending how they are used. It is
critical to partition your design into combinational and sequential components and write Verilog in such a
way that you get what you want. If you don’t know whether a block of logic is combinational or
sequential, you are very likely to get the wrong thing. .

2 Modeling with Continuous Assignments

With schematics, a 32-bit adder is a complex design. It can be constructed from 32 full adder cells, each of
which in turn requires about six 2-input gates. Verilog provides a much more compact description:

modul e adder(a, b, y);
i nput [31:0] a, b;
out put [31: 0] Yy,

assigny = a + b;
endnodul e

A Verilog moduleislikea“cell” or “macro” in schematics. It begins with a description of the inputs and
outputs, which in this case are 32 bit busses. In the structural description style, the module may contain
assi gn statements, al ways blocks, or callsto other modules.

During simulation, an assi gn statement causes the left hand side (y) to be updated any time the right side
(a/b) changes. This necessarily implies combinational logic; the output on the left sideis afunction of the
current inputs given on theright side. A 32-bit adder is a good example of combinational logic.

2.1 Bitwise Operators

Verilog has a number of bitwise operators that act on busses. For example, the following module describes
four inverters.



nodul e inv(a, y);
i nput [3:0] a;
out put [3:0] v;

assign y = ~a;
endnodul e

Similar bitwise operations are available for the other basic logic functions:
modul e gates(a, b, y1, y2, y3, y4, y5);
i nput [3:0] a, b;
out put [3:0] y1, y2, y3, y4, y5;

/* Five different two-input logic gates acting on 4 bit busses */

assign yl = a &b; // AND

assigny2 =a | b; /] OR

assign y3 = a ™ b; // XOR

assign y4 = ~(a & b); // NAND

assign y5 = ~(a | b); // NOR
endnodul e

2.2 Comments & White Space

The previous examples showed two styles of comments, just like those used in C or Java. Comments
beginning with /* continue, possibly across multiple lines, to the next */. Comments beginning with

/I continue to the end of the line. It isimportant to properly comment complex logic so you can understand
what you did six months from now or so that some poor slob assigned to fix your buggy code will be able
to figure it out rather than calling you at 2 am with a question.

Verilog is not picky about the use of white space. Nevertheless, proper indenting and spacing is very
helpful to make nontrivial designsreadable. Verilog is case-sensitive. Be consistent in your use of
capitalization and underscores in signal and module names.

2.3 Reduction Operators

Reduction operators imply a multiple-input gate acting on asingle bus. For example, the following module
describes an 8-input AND gate with inputs A[0], A[1], A[2], ..., A[7].

nodul e and8(a, Yy);
i nput [7:0] a;
out put Y

assign y = &a;
endnodul e

As one would expect, |, *, ~&, and ~| reduction operators are available for OR, XOR, NAND, and NOR as
well. Recall that a multi-bit XOR performs parity, returning true if an odd number of inputs are true.

2.4 Other Operators

The conditional operator ?: works like the same operator in C or Javaand is very useful for describing
multiplexers. It iscaled aternary operator because it takes threeinputs. If the first input is nonzero, the
result is the expression in the second input. Otherwise, the result is the expression in the third input.



nodul e nux2(d0, di, s, y);
i nput [3:0] do, di;
i nput S;
out put [3:0] v;

assigny =s ?2dl1: do; // if s=1, y=dl, else y=d0
endnodul e

A number of arithmetic functions are supported including +, -, *, <, >, <=, >=, = =, 1=, <<, >>, [ and %.
Recall from other languages that % is the modul o operator: a%b equals the remainder of a when divided
by b. These operationsimply avast amount of hardware. = = and != (equality / inequality) on N-bit inputs
require N 2-input XNORs to determine equality of each bit and an N-input AND or NAND to combine all
the bits. Addition, subtraction, and comparison all require an adder, which is very expensive in hardware.
Variable left and right shifts << and >> imply a barrel shifter. Multipliers are even more costly. Do not use
these statements without contemplating the number of gates you are generating. Moreover, the
implementations are not always particularly efficient for your problem. You'll probably be disappointed
with the speed and gate count of a multiplier your synthesistool produces from when it sees*. You'll be
better off writing your own Booth-encoded multiplier if these constraints matter. Many synthesis tools
choke on / and % because these are nontrivial functions to implement in combinational logic.

3 Useful Constructs

3.1 Internal Signals

Often it is convenient to break a complex calculation into intermediate variables. For example, in afull
adder, we sometimes define the propagate signal as the XOR of the two inputs A and B. The sum from the
adder isthe XOR of the propagate signal and the carry in. We can name the propagate signal usingawi r e
statement, in much the same way we use local variablesin a programming language.

nmodul e ful | adder(a, b, cin, s, cout);
i nput a, b, cin;
out put s, cout;

wre prop;

assign prop = a ™ b;

assign s = prop ™ cin;

assign cout = (a &b) | (cin & (a | b));
endnodul e

Technically, it is not necessary to declare single-bit wires. However, it is necessary to declare multi-bit
busses. It isgood practiceto declare all signals. Some Verilog simulation and synthesis tools give errors
that are difficult to decipher when awireis not declared.

3.2 Precedence

Notice that we fully parenthesized the cout computation. We could take advantage of operator precedence
to use fewer parentheses:

assign cout = a&b | cin&(alb)

The operator precedence from highest to lowest is much as you would expect in other languages. AND has
precedence over OR.



3.3 Constants

Constants may be specified in binary, octal, decimal, or hexadecimal. For example:

Highest

Lowest

Number # bits Base Decimal Stored
Equivalent

3'b101 3 Binary 5 101

‘b1l unsized Binary 3 000000..00011

8'bll 8 Binary 3 00000011

8'b1010 1011 8 binary 171 10101011

3'd6 3 Decima 6 110

6’042 6 Octal 34 100010

8 hAB 8 Hexadecimal 171 10101011

42 unsized Decima 42 0000...00101010

It is good practice to specify the length of the number in bits, even though the second row shows that thisis
not strictly necessary. If you don’t specify the length, one day you'll get bitten when Verilog assumes the

constant has additional leading 0’sthat you didn’t intend. Underscores in numbers are ignored and may be
helpful in breaking long numbers into more readable chunks. If the base is omitted, the number is assumed

to be decimal.

3.4 Hierarchy

Nontrivial designs are developed in ahierarchical form, in which complex modules are composed of
submodules. For example, a4-input MUX can be constructed from three 2-input multiplexers:

nodul e mux4(d0, di, d2, d3, s, y);
[3:0] dO, di, d2, d3;

i nput
i nput
out put

Wre

mux2 | owrux(d0, di,
mux2 hi ghmux(d2, d3,
mux2 fi nal mux(l ow, high,

endnodul e

3.5 Tristates

[1: 0] s;
[3:0] v;

[3:0]

| ow, hi gh;

s[0], low;
s[0], high);
s[1], vy);

It is possible to leave a bus floating rather than driveit to 0 or 1. Thisfloating valueiscalled’zin Verilog.

For example, atri-state buffer produces a floating output when the enable isfalse.




nodul e tristate(a, en, y);
i nput [3:0] a;
i nput en;
out put [3:0] v;

assigny =en ? a: 4 bz
endnodul e

Floating inputs to gates cause undefined outputs, displayed as’x in Verilog. At startup, state nodes such as
the internal node of flip-flops are also usualy initialized to 'x, as we will see later.

We could define amultiplexer using two tristates so that the output is always driven by exactly one tristate.
This guarantees there are no floating nodes.

nodul e nmux2(d0, di, s, y);
i nput [3:0] do, di;
i nput S;
out put [3:0] v;

tristate t0(d0, ~s, y);
tristate t1(d1, s, y);
endnodul e

3.6 Bit Swizzling

Often it is necessary to work on parts of a bus or to concatenate (join together) signals to construct busses.
The previous example showed using the least significant bit §0] of a 2-bit select signal for some muxes and
the most significant bit 1] for the final mux. Use ranges to select subsets of abus. For example, an 8-bit
wide 2-input mux can be constructed from two 4-bit wide 2-input muxes:

nodul e nux2_8(d0, di, s, y);
i nput [7:0] doO, di;
i nput S;
out put [7:0] v;

nmux2 | sbmux(dO[3:0], di1[3:0], s, y[3:0]);
mux2 nsbnux(dO[7:4], di[7:4], s, y[7:4]);
endrmodul e

The {} notation is used to concatenate busses. For example, the following 8x8 multiplier produces a 16-bit
result, which is, placed on the upper and lower 8-bit result busses.

nodul e mul (a, b, upper, |ower);
i nput [7:0] a, b;
out put [7: 0] upper, |ower;

assign {upper, lower} = a*b;
endnodul e

A 16-bit 2's complement number is sign-extended to 32-bits by copying the most significant bit to each of
the upper 16 positions. The Verilog syntax concatenates 16 copies of a[15] to the 16-bit g/ 15:0] bus. You
will get awarning from synthesisthat ais a“feedthrough net.” This means that the input “feeds through”
to the output. y[15:0] should have the same value as a[15:0], so thisis what we intended. If you get a
feedthrough net warning where you did not intend a feedthrough, check for a mistake in your Verilog.



nodul e signextend(a, y);
i nput [15: 0] a,;
out put [31: 0] y;

assign y = {16{a[15]}, a[15:0]};
endnodul e

The next statement generates a bizarre combination of two busses. Don’'t confuse the 3-bit binary constant
3'b101 with busb. Note that it was important to specify the length of 3 bits in the constant; otherwise
many additional 0’s might have appeared in the middle of y.

assigny = {a[2:1], 3{b[0]}, a[0], 3" bl0ol, b[1:3]}

y= | a[2] | a[l] | b[o] | b[o] | bo] | a0] | 1 0 1 | b[l] | bl2] | b[3]

4 Modeling with Al ways Blocks

Assi gn statements are reevaluated every time any term on the right hand side changes. Therefore, they
must describe combinational logic. Al ways blocks are reevaluated only when signals in the header
change. Depending on the form, al ways blocks may imply sequential or combinational circuits.

4.1 Flip-Flops
Flip-flops are described with an al ways @ posedge cl k) statement:

nmodul e flop(clk, d, q);
i nput cl k;
i nput [3:0] d;
out put [3:0] q;

reg [3:0] q;
al ways @ posedge cl k)
q <= d;
endnodul e

The body of theal ways statement is only evaluated on the rising (positive) edge of the clock. At this
time, the output g is copied from the input d. The <=is called a nonblocking assignment. Think of it asa
regular equals sign for now; we'll return to the subtle points later. Noticethat it is used instead of assi gn
insidethe al ways block.

All the signals on the left hand side of assignmentsin al ways blocks must be declared asr eg. Thisisa
confusing point for new Verilog users. Inthiscircuit, qisalso the output. Declaring asignal as reg does
not mean the signal is actually aregister! All it meansisit appears on the left sidein an al ways block.
We will see examples of combinational signals later that are declared r eg but have no flip-flops.

At startup, the g output isinitialized to 'x. Generally, it is good practice to use flip-flops with reset inputs so
that on power-up you can put your system in aknown state. The reset may be either asynchronous or
synchronous. Asynchronous resets occur immediately. Synchronous resets only change the output on the
rising edge of the clock. Xilinx FPGAs have dedicated internal hardware to support initializing
asynchronously resettable flip-flops on startup, so such flops are preferred.



modul e flopr(clk, reset, d, q); // asynchronous reset
i nput cl k;
i nput reset;
i nput [3:0] d;
out put [3:0] q;

reg [3:0] q;

al ways @ posedge cl k or posedge reset)
if (reset) g <= 4’ b0;
el se q <= d;
endnodul e

nmodul e flopr(clk, reset, d, q); // synchronous reset
i nput cl k;
i nput reset;
i nput [3:0] d;
out put [3:0] q;

reg [3:0] q;

al ways @ posedge cl k)
if (reset) g <= 4’ b0;
el se q <= d;
endnodul e

Note that the asynchronously resettable flop evaluates the al ways block when either clk or reset rise so
that it immediately respondsto reset. The synchronously reset flop is not sensitized to reset in the @ list,
so it waits for the next clock edge before clearing the output.

One could aso consider flip-flops with enables that only load the input when the enableistrue. The
following flip-flop retainsits old value if bothr eset and en arefalse.

nodul e fl openr(clk, reset, en, d, q); // asynchronous reset

i nput cl k;
i nput reset;
i nput en;

i nput [3:0] d;
out put [3:0] q;

reg [3:0] q;

al ways @ posedge cl k or posedge reset)
if (reset) g <= 4’ b0;
else if (en) g <= d;
endnodul e

4.2 Latches

Al ways blocks can also be used to model transparent latches, also known as D latches. When the clock is
high, the latch is transparent and the data input flows to the output. When the clock islow, the latch goes
opague and the output remains constant.



nodul e latch(clk, d, q);
i nput cl k;
i nput [3:0] d;
out put [3:0] q;

reg [3:0] q;

al ways @cl k or d)
if (clk) g <= d;
endnodul e

The latch evaluates the al ways block any time either clk or d change. If the clock is high, the output gets
theinput. Notice that even though q is alatch node, not aregister node, it is still declared as r eg because
it ison the left hand side of a<=inan al ways block.

Most Xilinx FPGAs do not support latches very well. If your code includes latches either intentionally or
by accident, you will get awarning about “latch inferred in design” and should remove them.

4.3 Counters

Consider two ways of describing afour-bit counter with asynchronousreset. The first scheme impliesa
sequential circuit containing both the 4-bit flip-flop and an adder. The second scheme explicitly declares
modules for the flip-flop and adder.

Either scheme is good for asimple circuit such asacounter. Asyou develop more complex finite state
machines, it is agood idea to separate the next state logic from the flip-flopsin your Verilog code. Verilog
does not protect you from yourself here and there are many simple errors that lead to circuits very different
than you intended.

nodul e counter(clk, reset, q);
i nput cl k;
i nput reset;
out put [3:0] q;

reg [3:0] q;
/1 counter using al ways bl ock

al ways @ posedge cl k)
if (reset) g <= 4’ b0;
el se q <= q+1;
endnodul e

nodul e counter(clk, reset, q);
i nput cl k;
i nput reset;
out put [3:0] a;

wre [3: 0] nextaq;
/1 counter using nodule calls

flopr qgflop(clk, reset, nextq, q);
adder inc(qg, 4 b0001, nextq); // assunmes a 4-bit adder
endnodul e



4.4 Combinational Logic

Al ways blocksimply sequential logic when some of the inputs do not appear in the @ stimulus list or
might not cause the output to change. For example, in the flop module, disnot in the @ list, so the flop
does not immediately respond to changes of d. Inthelatch, disinthe @ list, but changesin d areignored
unlessclk ishigh. Al ways blocks can also be used to imply combinational logic if they are written in
such away that the output al ways is reevaluated given changesin any of the inputs.

The following code shows how to define abank of inverterswith an al ways block.
nmodul e inv(a, y);

i nput [3:0] a;
out put [3:0] v;

reg [3:0] vy;
al ways @ a)
y <= ~a;
endnodul e

Similarly, the next example defines a5 banks of different kinds of gates. Notice that thebegi n/end
construct is necessary because multiple commands appear in the al ways block. Thisisanalogousto { }
block structurein C or Java. Thebegi n / end was not needed in the flopr example becauseani f /el se
command counts as a single statement.

modul e gates(a, b, y1, y2, y3, y4, y5);
i nput [3:0] a, b;
out put [3:0] y1, y2, y3, y4, y5;

reg [3:0] y1, y2, y3, y4, y5;

al ways @a or b)

begi n
yl <= a & b; // AND
y2 <=a | b; /]l OR
y3 <= a ™ b; /] XOR
y4 <= ~(a & b); // NAND
y5 <= ~(a | b); // NOR

end

endnodul e

These two examples are poor applications of al ways blocks for modeling combinational |ogic because
they require more lines than the equivalent approach with assi gn statements as well as posing the risk of
inadvertently implying sequential logic (see the bad circuit examples later). A better application of the

al ways block is a decoder, which takes advantage of the case statement that may only appear inside an
al ways block.
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modul e decoder _al ways(a, y);
i nput [2:0] a;
out put [7:0] v;

reg [7:0] v;
// a 3:8 decoder
al ways @ a)
case (a)
3' b000: y <= 8 b00000001
3' b001: y <= 8 b00000010;
3' b010: y <= 8 b00000100;
3'b011: y <= 8 b00001000;
3' b100: y <= 8 b00010000;
3’ b101: y <= 8 b00100000;
3’ b110: y <= 8 b01000000;
3'b1l11l: y <= 8 b10000000;
endcase
endnodul e

Using the case statement is probably clearer than a description of the same decoder using Boolean
equationsin an assi gn statement:

modul e decoder _assign(a, y);
input [2:0] a;
output [7:0] v;

assign y[0] = ~a[0] & ~a[l] & ~a[2];
assign y[1] = a[0] & ~a[l] & ~a[2];
assign y[2] = ~a[0] & a[l] & ~a[2];
assign y[3] = a[0] & a[l] & ~a[2];
assign y[4] = ~a[0] & ~a[l] & a[2];
assign y[5] = a[0] & ~a[l] & a[2];
assign y[6] = ~a[0] & a[l] & a[2];
assign y[7] = a[0] & a[l] & a[2];
endnodul e

Another even better exampleisthe logic for a 7-segment display decoder, taken from Ciletti’s Verilog
book. The equivalent logic with assign statements describing the detailed logic for each bit would be very
tedious. This more abstract approach is faster to write, clearer to read, and can be automatically
synthesized down to an efficient logic implementation.
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nodul e seven_seg di spl ay_decoder (data, segnents);
i nput [3:0] data;
out put [6: 0] segments;

reg [6: 0] segments;

/1l Segment # abc_defg hex equi val ent
par amet er BLANK = 7' b111 1111; // h7F
par amet er ZERO 7’ b000_0001; // hOo1
par anet er ONE 7' b100_1111; // h4F
par anet er TWO 7' b001_0010; // hi2
par anet er THREE = 7’ b000_0110; // hO06
par amet er FOUR 7’ b100_1100; // h4C
par amet er FI VE 7' b010_0100; // h24
par anet er SI X 7' b010_0000; // h20
par aret er SEVEN = 7' b000_1111; // hOF
par anet er El GHT = 7' b000_0000; // h0O
par amet er NI NE 7' b000_0100; // hoO4

al ways @ dat a)
case (data)

0: segnments <= ZERG
1: segments <= ONE;
2: segnments <= TWO
3: segnents <= THREE;
4. segnents <= FOUR
5. segnments <= FI VE;
6: segnents <= Sl X;
7: segments <= SEVEN;
8: segnents <= El GHT;
9: segnents <= N NE;
defaul t: segnents <= BLANK;
endcase
endnodul e

This example shows the use of parameters to define constants to make the code more readable. The case
statement has a default to display a blank output when the input is outside the range of decimal digits.

Finally, compare three descriptions of a priority encoder that sets one output true corresponding to the most
significant input that istrue. Thei f statement can appear in al ways blocks and makes the logic very
natural. Thecasez statement also appearsin al ways blocks and allows don't care'sin the case logic,
indicated with the ? symbol. Theassi gn statements synthesize to the same results, but are perhaps less
clear to read. Note that a[3] is another example of a feedthrough net because y[3] = a[3]. Of these three
styles, the if-then-else approach is recommended for describing priority encoders because it is the easiest
for most other engineers to recognize. Case statements are best reserved for functions specified by truth
tables and casez statements for functions specified by truth tables with don’t cares.
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nodul e priority_alwaysif(a, y);
i nput [3:0] a;
out put [3:0] v;

reg [3:0] vy;

al ways @ a)
i f (a[3]) y <= 4’ bl000;
else if (a[2]) y <= 4’ b0100;
else if (a[l]) y <= 4" b0010;
else if (a[0]) y <= 4" b0001;
el se y <= 4’ b0000;

endnodul e

nmodul e priority_al wayscasez(a, V);
i nput [3:0] a;
out put [3:0] v;

reg [3:0] v;
al ways @ a)
casez(a)
4’ b1???: y <= 4’ b1000;
4’ b01??: y <= 4’ b0100;
4’ b001?: y <= 4’ b0010;
4’ b0001: y <= 4’ b0001;
default: y <= 4’ b0000;
endcase
endrodul e

nmodul e priority_assign(a, y);
i nput [3:0] a;
out put [3:0] v;

assign y[3] = a[3];

assign y[2] = a[2] & ~a[3];

assign y[1] = a[1] & ~|a[3:2];

assign y[0] = a[0] & ~|a[3:1];
endnodul e

It isvery easy to accidentally imply sequential logic with al ways blocks when combinational logic is
intended. The resulting bugs can be difficult to track down. Therefore, it is safer to useassi gn
statements than al ways blocks to imply combinational logic. Nevertheless, the convenience of constructs
suchasi f or case that must appear in al ways blocks justifies the modeling style aslong as you
thoroughly understand what you are doing.

45 Memories

Verilog has an array construct used to describe memories. The following module describes a 64 word x 16
bit RAM that iswritten when wrb islow and otherwise read.
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nodul e ram(addr, whb, din, dout);
i nput [ 5:0] addr ;
i nput wr b;
i nput [15: 0] di n;
out put [15: 0] dout ;

reg [15: 0] men{ 63: 0]; // the nenory
reg [15: 0] dout ;

al ways @addr or wb or din)
if (~wrb) nen{faddr] <= din;
el se dout <= nenfaddr];

endnodul e

FPGAs have alimited number of bits of RAM on board. Large memories are extremely expensive. Inthe
Xilinx Foundation tools, it is more efficient to specify a RAM or ROM using the LogiBLOX tool.

4.6 Blocking and Nonblocking Assignment

Verilog supports two types of assignmentsinside an al ways block. Blocking assignments use the =
statement. Nonblocking assignments use the <= statement. Do not confuse either type with theassi gn
statement, which cannot appear inside al ways blocks at all.

A group of blocking assignments inside a begin/end block are evaluated sequentially, just as one would
expect in a standard programming language. A group of nonblocking assignments are evaluated in parallel;
all of the statements are evaluated before any of the left hand sides are updated. Thisiswhat one would
expect in hardware because real logic gates all operate independently rather than waiting for the completion
of other gates.

For example, consider two attempts to describe a shift register. On each clock edge, the data at sin should
be shifted into the first flop. Thefirst flop shifts to the second flop. The datain the second flop shiftsto
the third flop, and so on until the last element drops off the end.

clk

Sin—» i > i > i > l
a0l aqll] a2l  q3]
Intended Shift Register
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nodul e shiftreg(clk, sin, Qq);
i nput cl k;
i nput sin;
out put [3:0] q;

/1 This is a correct inplenentation using nonbl ocking assi gnnent

reg [3:0] q;
al ways @ posedge cl k)
begi n
g[0] <= sin; // <= indicates nonbl ocki ng assi gnnment
a[1] <= q[0];
al2] <= q[1];
q[3] <= q[2];
/1 it would be even nore better to wite q <= {q[2:0], sin};
end
endnodul e

The nonblocking assignments mean that all of the values on the right hand sides are assigned
simultaneously. Therefore, g[1] will get the original value of g[0Q], not the value of sin that gets loaded into
g[0]. Thisiswhat we would expect from real hardware. Of course all of this could be written on one line
for brevity.

Blocking assignments are more familiar from traditional programming languages, but inaccurately model
hardware. Consider the same module using blocking assignments. When clk rises, the Verilog says that
g[0] should be copied from sin. Then q[1] should be copied from the new value of g[0] and so forth. All
four registersimmediately get the sin value.

nmodul e shiftreg(clk, sin, g[3:0]);
i nput cl k;
i nput sin;
out put [3:0] q;

/1 This is a bad inplementation using bl ocki ng assi gnnment

reg [3:0] a;
al ways @ posedge cl k)
begi n
g[0] = sin; // = indicates blocking assi gnment
q(1] = q[O];
al2] = q[1];
al3] = af2];
end
endnodul e

The moral of thisillustration isto always use nonblocking assignment in al ways blocks when writing
structural Verilog. With sufficient cleverness, such as reversing the orders of the four commands, one
might make blocking assignments work correctly, but they offer no advantages and great risks.

Finally, note that each al ways block implies a separate block of logic. Therefore, a given reg may be

assigned in only one al ways block. Otherwise, two pieces of hardware with shorted outputs would be
implied.
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5 Finite State Machines

There are two styles of designing finite state machines. In Mealy machines, the output is a function of the
current state and inputs. 1n Moore machines, the output is a function of only the current state. The styles
areillustrated below.

c!k

next
state| state

inputs

Next State
Logic

outputs

Moore Machine

clk
|

next
State state

inputs
Mealy Machine

FSMs are modeled in Verilog with an al ways block defining the state registers and combinational logic
defining the next state and output logic.

outputs

Next State
Logic

Output
Logic

Let usfirst consider a very simple finite state machine with one output and no inputs, a divide by 3 counter.
The output should be asserted every three clock cycles. A state transition diagram for a Moore state

machineis given below. The output value islabeled in each state because the output is only a function of
the state.

reset

Divide-by-3 Counter State Transition Diagram
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nodul e divi deby3FSM cl k, reset, out);

i nput cl k;

i nput reset;

out put out;

reg [1: 0] state;

reg [1: 0] nextstate;
par anet er SO = 2’ b0O;
par anet er S1 = 2’ b01;
par anet er S2 = 2’ b10;

/] State Register

al ways @ posedge cl k or posedge reset)
if (reset) state <= S0;
el se state <= nextstate;

/1 Next State Logic

al ways @ st ate)
case (state)
SO: nextstate <= Sli;
S1: nextstate <= S2;
S2: nextstate <= S0;
default: nextstate <= S0;
endcase

/1 Qutput Logic
assign out = (state == S2);
endnodul e

The FSM model is divided into three portions: the state register, next state logic, and output logic. The
state logic describes an asynchronously resettable flip-flop that resetsto an initial state and otherwise
advances to the computed next state. Defining states with parameters allows the easy modification of state
encodings and makes the code easier to read. The next state logic computes the next state as a function of
the current state and inputs; in this example there are no inputs. A case statement in an al ways

@ state or inputs) block isaconvenient way to define the next state. It isimportant to have a
default if not all cases are enumerated; otherwise the nextstate would not be assigned in the undefined
cases. Thisimpliesthat nextstate should keep its old value, which would require the existence of latches.
Finally, the output logic may be a function of the current state alone in a Moore machine or of the current
state and inputs in a Mealy machine. Depending on the complexity of the design, assi gn statements, i f
statements, or case statements may be most readable and efficient.

The next example shows a finite state machine with an input A and two outputs. Output X is true when the
input is the same now asit was last cycle. Output Y istrue when the input is the same now asit was for the
past two cycles. ThisisaMealy machine because the output depends on the current inputs as well as the
state. The outputs are labeled on each transition after the input. The state transition diagram is shown
below:
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AlX=1,Y=1  A/X=1,Y=1
History Finite State Machine
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nodul e historyFSM cl k, reset, a, X, y);

i nput cl k;

i nput reset;

i nput a;

out put X, Y;

reg [2:0] state;

reg [2: 0] nextstate;
par anet er SO = 3’ b0O0O;
par anet er S1 = 3’ b010;
par amet er S2 = 3’ b011;
par amet er S3 = 3’ b100;
par anet er S4 = 3’ b1l01;

/1 State Register

al ways @ posedge cl k or posedge reset)
if (reset) state <= S0;
el se state <= nextstate;

/1 Next State Logic

al ways @state or a)
case (state)

SO: if (a) nextstate <= S3;
el se nextstate <= S1;
S1: if (a) nextstate <= S3;
el se nextstate <= S2;
S2: if (a) nextstate <= S3;
el se nextstate <= S2;
S3: if (a) nextstate <= S4;
el se nextstate <= S1;
S4: if (a) nextstate <= $4;

el se nextstate <= S1;
default: nextstate <= S0;
endcase

/1 Qutput Logic

assign x = (state[l] & ~a) | (state[2] & a);
assign y = (state[1l] & state[0] & ~a) | (state[2] & state[0] & a);
endnodul e

The output logic equations depend on the specific state encoding and were worked out by hand. A more
general approach isindependent of the encodings and requires less thinking, but might require more gates
and code:
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/1 Qutput Logic

al ways @state or a)
case (state)

SO: begi n
X <=0; y <= 0;
end
S1: if (A begin

X <= 0; y <= 0;
end el se begin
x<:1;y<:o;
end
S2: if (A begin
X <= 0; y <= 0;
end el se begin
x<:1;y<:1;
end
S3: if (A begin
X <=1; y <= 0;
end el se begin
X <=0; y <= 0;
end
S4: if (A begin
X <=1; y <= 1;
end el se begin
X <= 0; y <= 0;
end
endcase

One might be tempted so simplify the case statement. For example, case S4 might be reduced to:

/1 bad sinplification of S4
S4. if (A begin
y <= 1;
end el se begin
X <=0; y <=0
end

The designer reasons that to get to state S4, we must have passed through state S3 with A high, setting x
high. Therefore, the assignment of x is optimized out of S4 when A is high. Thisisincorrect reasoning.
The modified approach implies sequential logic. Specifically, alatch isimplied that holds the old value of
x when x is not assigned. The latch holdsits output under a very peculiar set of circumstances; A and the
state must be used to compute the latch clock signal. Thisis undoubtedly not what you want, but was very
easy toimply. The moral of this exampleisthat if any signal gets assigned in any branch of ani f or
case statement, it must be assigned in all branches lest alatch be implied.

6 Test Benches

Verilog models are tested through simulation. For very small designs, it may be practical to manually
apply inputs to a simulator and visually check for the correct outputs. For larger designs, this procedureis
usually automated with atest bench.

The following code shows an adder and its associated test bench. The test bench uses nonsynthesizable
system callsto read afile, apply the test vectors to the device under test (DUT) check the results, and report
any discrepancies. Thei ni ti al statement defines ablock that is executed only on startup of simulation.
Init, the $r eadmenh reads afile (in hexadecimal form) into an array in memory. The testvector.tv
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example file shows four test vectors, each consisting of two 32-hit inputs and an expected 32-hit output.
Asthe array is much larger than the number of test vectors, the remaining entries are filled with x’s. The
next al ways block defines a clock that repeats forever, being low for 50 units of time, then high for 50.
On each positive edge of the clock, the next test vector is applied to the inputs and the expected output is
saved. The actual output is sampled on the negative edge of the clock to permit some time for it to settle.
It is not uncommon for bad logic to generate z and x values. The! = and == comparison operations return
x if either argument has z or X, so they are not reliable. The ! == and === commands check for an exact
match, including z or x values. If thereisamismatch, the $di spl ay command is used to print the
discrepancy. Eachtimevect or numisincremented, the testbench checks to seeif the test is complete. It
terminates testing with the $f i ni sh command after 100 vectors have been applied or the test vector
consists of x’s; for our testvector.tv file, it will end after the four vectors are applied.
nodul e adder(a, b, y);
i nput [31:0] a, b;
out put [31:0] y;

assigny = a + b;
endnodul e

nodul e testbench();

reg [31:0] t est vect or s[ 1000: 0] ;
reg cl k;

reg [10: 0] vectornum errors;
reg [31:0] a, b, expectedy;

W re [31:0] y;

/!l instantiate devi ce under test
adder dut(a, b, y);

/] read the test vector file and initialize test
initial
begi n
$readnemh("testvectors.tv", testvectors);
vectornum= 0; errors = O;
end

/1 generate a clock to sequence tests
al ways
begi n
clk = 0; #50; clk = 1; #50;
end

/1 on each clock step, apply next test
al ways @ posedge cl k)
begi n
a = testvectors[vectornunt3];
b = testvectors[vectornunt3 + 1];
expectedy = testvectors[vectornum3 + 2];
end

/] then check for correct results
al ways @ negedge cl k)

begi n
vect ornum = vect ornum + 1;
if (y !'== expectedy) begin

$di splay("Inputs were %, %", a, b);
$di spl ay("Expected % but actual %", expectedy, y);
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errors = errors + 1;
end
end

/1 halt at the end of file
al ways @ vect ornun

begi n
if (vectornum == 100 || testvectors[vectornunt3] === 32’ bx)
begi n
$di spl ay("Conpleted %l tests with % errors. ",
vectornum errors);
$f i ni sh;
end
end
endnodul e

testvectors.tv file:
00000000
00000000
00000000

00000001
00000000
00000001

FEFfffff
00000003
00000002

12345678
12345678
2468acf 0

7 Verilog Style Guidelines

If you follow these style guidelines, you will avoid many of the common Verilog pitfalls and will produce
code that is easier for you or others to modify in the future.

7.1 General Guidelines

1.
2.

© N>

Use only nonblocking assignmentsinside al ways blocks.

Define your combinational logic using assi gn statements when practical. Only use al ways blocks
to define combinational logic if constructslikei f or case make your logic much clearer or more
compact.

When modeling combinational logic with an al ways block, if asignal isassigned in any branch of an
i f or case statement, it must be assigned in all branches.

Partition your design into leaf cells and non-leaf cells. Leaf cells contain assi gn statements or

al ways blocks but do not instantiate other cells. Non-leaf cells instantiate other cells but contain no
logic. Minor exceptions to this guideline may be made to keep the code readable.

Use a design style with positive edge-triggered flip-flops as your only sequential elements. Avoid SR
latches, negative edge-triggered flops, and transparent latches.

Use parameters to define state names and constants.

Properly indent your code, as shown in the examplesin this guide.

Use comments liberally.

Use meaningful signal names. Usea, b, ¢, ... for generic logic gateinputs. UseX, y, z for generic
combinational outputs and q for a generic state element output. Use descriptive names for nongeneric
cells. Do not usef 0o, bar, or baz!
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10. Beconsistent in your use of capitalization and underscores.
7.2 Xilinx Hints

1. Useonly positive edge-triggered flip-flops. Avoid @(negedge clk) and latches.

2. Becertain not to inadvertently imply latches. If you do and are targeting the Spartan family of FPGAS,
which do not have built-in latches, you will get the following warning, which you should fix. The
warning will not appear when targeting the 4000X L or SpartanXL families that have latches, but you
should still be careful not to inadvertently create logic that implies latches.

Warning: Latchinferredindesign’...’ read with ‘hdlin_check no_latch’. (HDL-307)

3. Provide an asynchronous reset to al of your flip-flops with acommon signal name. If you do, Xilinx
will automatically tie this reset to the chip’s global reset and reset your flip-flops on power-up. If not,
Xilinx will give you the following warnings. Fix the warning by providing a proper reset to all
elements.

Warning: No net is connected to the set/reset pin of Cell ‘/” q_reg<0>"/Q_reg’. (FPGA-GSRMAP-16)
Warning: No global set/reset (GSR) net could be used in the design because there is not a unique net
that sets or resets all the sequential cells. (FPGA-GSRMAP-5)

4. Provide acommon clock to all of your flip-flops whenever possible.
5. If you get any “Bus Conflict” messages or X’sin your simulation, be sure to find their cause and fix
the problem.

8 Bad Circuit Examples
This section includes examples of a number of bad circuits produced by common Verilog coding errors.

Some examples include the results of synthesis using Synopsys Design Analyzer and/or the Xilinx
Foundation tools.

8.1 Incorrect stimulus list

The following circuit was intended to be a transparent latch, but the d input was omitted from the stimulus
list. When synthesized with Synopsys or Xilinx, it still produces a transparent latch, but with the warning:

Warning: Variable'd' is being read
in routine notquitealatch line 8 in file 'J:/Classes/E155/Fall 2000/synopsys/notquiteal atch.v',
but does not occur in the timing control of the block which begins
there. (HDL-180)

nmodul e notquiteal atch(clk, d, q);
i nput cl k;
i nput [3:0] d;
out put [3:0] q;

reg [3:0] q;
al ways @clk) // left out ‘or d
if (clk) g <= d;

endnodul e

Similarly, the b input in the following combinational logic was omitted from the stimulus list of the
al ways block. Synopsis successfully created the intended logic, but gave the warning:
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Warning: Variable'b' is being read
inroutine gates line 7 in file 'J:/Classes/E155/Fal| 2000/synopsys/gates.v',
but does not occur in the timing control of the block which begins
there. (HDL-180)

nmodul e gates(a, b, yl, y2, y3, y4, y5);
i nput [3:0] a;
output  [3:0] yl1, y2, y3, y4, y5;

reg [3:0] yi, y2, y3, y4, y5;

always @a) // mssing ‘or b’
begi n
yl <= a &b; // AND
y2 <=a | b; /] OR
y3 <= a " b; /] XOR
y4 <= ~(a & b); // NAND
y5 <= ~(a | b); // NOR
end
endrodul e

Don't depend on your synthesizer doing the right thing when an input is omitted. If you see such a
warning, correct your code.

The next example is supposed to model a multiplexer, but the author incorrectly wrote @ posedge s)
rather than @ s) . Thiswould result in meaningless logic because s must be high immediately after the
positive edge of s. The Xilinx tools give the following error message:

Error: clock variable sisbeing used as data. (HDL-175)
nodul e badnmux(dO0, di, s, y);

i nput [3:0] dO, di;

i nput S;

out put [3:0] v;

reg [3:0] v;

al ways @ posedge s)

if (s) y <= di;

el se y <= doO;

endnodul e
8.2 Missing begin/end block

In the following example, two variables are supposed to be assigned in the al ways block. The begin/end
block is missing.

Synopsys gives the following error trying to read the design. Xilinx gives the same error.

Error: syntax error at or near token '[' (File: J:/Classes/E155/Fall2000/synopsys/flop2.v Line: 10) (VE-0)
Error: Can't read 'verilog' file 'J:/Classes/E155/Fall2000/synopsys/flop2.v'. (UID-59)
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nodul e notquiteatwobitflop(clk, d, q);
i nput cl k;
i nput [1: 0] d;
out put [1: 0] q;

reg [1:0] a;
al ways @ posedge cl k)
ql1] = d[1];
q[0] = d[O];
endnodul e

8.3 Undefined Outputs

In the next example of afinite state machine, the user intended outl to be high when the state is 0 and out2
to be high when the stateis 1. However, the code neglects to ever set the outputs low.

nodul e FSMoad(cl k, a, outl, out2);

i nput cl k;

i nput a;

out put outl, out2;
reg state;

reg outl, out2;

al ways @ posedge cl k)
if (state == 0) begin
if (a) state <= 1;
end el se begin
if (~a) state <= 0;
end

al ways @state) // neglect to set outl/out2 to O
if (state == 0) outl <= 1;
el se out2 <= 1;

endnodul e

The FSM synthesizesinto a circuit with an SR latch and a transparent latch that can set the output high but
never reset the output low, as shown below:
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A fixed version of the code eliminates the latches from the synthesized resullt.

nodul e FSMyood(cl k, a, outl, out2);

i nput cl k;

i nput a;

out put outl, out2;
reg st at e;

reg outl, out2;

al ways @ posedge cl k)
if (state == 0) begin
if (a) state <= 1;
end el se begin
if (~a) state <= 0;
end

al ways @ st ate)
if (state == 0) begin

outl <= 1,
out2 <= 0;
end el se begin
out2 <= 1;
outl <= 0;
end
endnodul e

8.4 Incomplete Specification of Cases

The next examples show an incomplete specification of input possibilities. The priority encoder failsto
check for the possibility of no true inputs. It therefore incorrectly implies latches to hold the previous
output when all four inputs arefalse! The four-input OR gate controls the latch. There is arace condition
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between the latch control and the latch data that might lead to incorrect results even if this were the
intended operation.

Synopsys gives the following message during synthesis. The astute designer will detect the problem by
knowing that a priority encoder should be a combinational circuit and therefore have no memory devices.

Inferred memory devicesin process in routine priority_alwaysline 7 in file
'J:/Classes/E155/Fall2000/synopsys/priority.v'.

modul e priority_always(a, y);
i nput [3:0] a;
out put [3:0] v;

reg [3:0] v;
al ways @ a)
i f (a[3]) y <= 4’ bl000;
else if (a[2]) y <= 4" b0100;
else if (a[l]) y <= 4" b0010;
else if (a[0]) y <= 4" b0001;
/1 else y <= 4’ b0000;
endnodul e
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Priority encoder with implied latches because of missing else

The next example of a seven-segment display decoder shows the same type of probleminacase
statement.
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nodul e seven_seg di spl ay_decoder (data, segnents);
i nput [3:0] data;
out put [6: 0] segments;

reg [6:0] segments;

/1 Segnent # abc_defg hex equi val ent
par amet er BLANK = 7' b111 1111; // h7F
par anet er ZERO 7’ b000_0001; // ho1
par anet er ONE 7' b100_1111; // h4F
par anet er TWO 7' b001_0010; // hi2
par amet er THREE = 7' b000_0110; // hO06
par amet er FOUR 7’ b100_1100; // h4C
par anet er FI VE 7' b010_0100; // h24
par aret er SI X 7’ b010_0000; // h20
par anet er SEVEN = 7' b000_1111; // hOF
par amet er El GHT = 7' b000_0000; // h0O
par amet er NI NE 7' b000_0100; // hoO4

al ways @ dat a)
case (data)

: segments <= ZERQ
segnments <= ONE
segnments <= TWO,
segnents <= THREE
segnments <= FOUR;
segnents <= FI VE
segnments <= Sl X;
segnments <= SEVEN
segment s <= El GHT;
: segnents <= NI NE

/1 default: segments <= BLANK;
endcase
endnodul e

CONTRWNRO

Similarly, it is acommon mistake to forget the def aul t in next-state or output logic in a FSM.
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nodul e divi deby3FSM cl k, reset, out);

i nput cl k;

i nput reset;

out put out;

reg [1: 0] state;

W re [1: 0] nextstate;
par anet er SO = 2’ b0O;
par anet er S1 = 2’ b01;
par anet er S2 = 2’ b10;

/] State Register

al ways @ posedge cl k or posedge reset)
if (reset) state <= S0;
el se state <= nextstate;

/1 Next State Logic

al ways @ st ate)
case (state)
SO: nextstate <= Sli;
S1: nextstate <= S2;
S2: nextstate <= S0;
//default: nextstate <= S0;
endcase

/1 Qutput Logic
assign out = (state == S2);

endnodul e

8.5 Shorted Outputs

Bad code may sometimes lead to shorted outputs of gates. For example, the tristate driversin the following
multiplexer should have mutually exclusive enable signals, but instead are both active simultaneously and
produce a conflict when dO and d1 are not equal.

Synthesis may not report any errors. However, during simulation, you will observe X’s rather than O’'s or
1'swhen the bus is simultaneously being driven high and low. Y ou may also get a“Bus Conflict” warning

message.

nodul e mux2(d0, di, s, y);
i nput [3:0] do, di;
i nput S;
out put [3:0] v;

tristate t0(d0O, s, y); // should have been ~s
tristate t1(d1, s, y);
endnodul e

Another cause of shorted outputsiswhen ar eg isassigned in two different al ways blocks. For example,
the following code trys to model a flip-flop with asynchronous reset and asynchronous set. Thefirst
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al ways block models the reset and ordinary operation. The second al ways block attemptsto
incorporate the asynchronous set. Synthesis infers a separate piece of hardware for each al ways block,
with a shorted output. Xilinx reports the following error:

Error: the net '/ver1/q' has more than one driver (FPGA-CHECK-5)
The module also produces a warning because the second al ways block implies alatch.

nodul e floprs(clk, reset, set, d, Qq);

i nput cl k;

i nput reset;

i nput set; // force q true
i nput d;

out put a;

reg q;

al ways @ posedge cl k or posedge reset)
if (reset) q <= 0;
el se q <= d;

al ways @ set)

if (set) q <= 1;
endnodul e
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