
1-1

Introduction
 As the first lab for E155 - Microprocessors, this assignment will be an
introduction to what we will be doing throughout the semester. It will teach you how to
use the Xilinx Foundation Series software to design circuits. In doing so, it will review
knowledge acquired in Introduction to Computer Engineering. This handout will walk
you step-by-step throughout this first lab, so that you can get used to the tools. This walk-
through will also be done in the second lab, but from then on you will be mostly on your
own.

Objectives

§ To introduce the Xilinx Foundation Series software
§ To review digital design;
§ To construct a hexadecimal seven-segment display driver.
§ To prepare a circuit that will test the FPGA board to be use throughout the

course. This circuit should test the 8 LEDs, the DIP switches and the clock of
the FPGA board.

Requirements
 Design and simulate a circuit with 4 input bits (representing the hex numbers 0
through F) that outputs 7 bits to show that number on a 7-segment display. The circuit
should also display the inputs and the clock on the 8 LEDs that will be provided on the
FPGA board. Refer to Tables 1 and 2 for details on the input/output requirements.
Remember: No physical circuit will be designed in this lab; this will be only a simulation.
In lab 2 you will assemble your FPGA board and test it with your circuit from this lab.

Background
 The purpose of this first laboratory assignment is to introduce the Xilinx software
and its tools. The Xilinx software allows the user to enter a design, simulate it, and then
program it into a chip.
 This year we will be using the Xilinx 4.2i Integrated Software Environment (ISE)
tools, which are the leading tools used for commercial FPGA design. FPGA design
consists of several stages: design entry, simulation, (possibly synthesis), implementation,
and chip burning. Some of these stages are supported directly by Xilinx, while others use
third-party tools. Specifically, we will use the ModelSim tool from Mentor Graphics for
simulation and the Synplify tool from Synplicity for Verilog synthesis.
 Two methods of design entry include schematics and hardware description
languages (HDLs). In E85 you used a schematic editor. In this class you will use the

Microprocessor-Based Systems (E155)
 Harris Fall 2004

Lab 1: Hexadecimal Display Driver Due: Week of Sept 13

1-2

Verilog hardware description language to describe digital functions in a textual form.
HDL code must be synthesized to convert it to a “netlist” before it can be programmed
into an FPGA.
 The Simulation in the Xilinx software allows the user to verify the design by
assigning values to the inputs of the design and checking that the outputs correspond to
what is expected. This way the user can save precious time before having to physically
set up the circuit. Most digital systems are complex enough that it is a safe assumption
they have bugs until proven correct.
 The user has several options to program the design into a chip. In our case, we
will use the PROM Programmer of the Xilinx tools. The FPGA is configured by loading
static RAM within the chip. The RAM must be reloaded on powerup. The FPGA can
automatically load its RAM on powerup from an external nonvolatile memory such as an
electrically erasable programmable read-only memory (EEPROM). With a PROM,
EPROM, or EEPROM, we can use a “chip burner” to record a data stream. The nice
thing about EEPROMs is that they are reprogrammable. You will be using the same
EEPROM throughout the course.

Discussion
 Now that you have an idea of what the Xilinx software can do, let’s look at our
requirement for this lab. This discussion will walk you through half of the lab, but then
you will be on your own.
 In order to check the 8 LEDs that we will have during the semester, we’ll use
them in the following way:
 Let S4, S3, S2 and S1 represent the 4 input bits and let CLK represent the clock.
LED1 through LED8 will represent the 8 LEDs available. Table 1 shows the LED
outputs. Note that building this table requires 3 inverters (for LEDs 2, 4, and 6) and an
AND gate (for LED7).

S1 LED1 LED2
0 OFF ON
1 ON OFF

S4 S3 LED7
0 0 OFF
0 1 OFF
1 0 OFF
1 1 ON

S2 LED3 LED4
0 OFF ON
1 ON OFF

CLK LED8
0 OFF
1 ON

Table 1 – I/O requirements

S3 LED5 LED6
0 OFF ON
1 ON OFF

 You are responsible for designing the 7-segment display decoder that reads the
four-bit number specified by the switches and illuminates the appropriate segments on the
display. To understand the relationship between the 4-bit input and the output to the 7-
segment display, you should complete Table 2 with the necessary information. Again,
the 4-bit input will be represented by S4 through S1, and the output to the display will be
signals A through G in the following fashion:

1-3

Figure 1 – Definition of outputs A through G for the 7-segment display

You should come up with the shape of the hexadecimal numbers based on the above
standard for the outputs. Hint: Be careful to distinguish between the numbers 6 and 8 and
the letter b.

Hex Number Input bits Output bits to display
 S4 S3 S2 S1 A B C D E F G

0 0 0 0 0 1 1 1 1 1 1 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1 1 0 1 1 0 1 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
A 1 0 1 0
B 1 0 1 1
C 1 1 0 0
D 1 1 0 1
E 1 1 1 0
F 1 1 1 1

Table 2 – Requirements for output to the display

 Now that you know the inputs and outputs for the design let’s create the
schematic file for it. To do this, you will need to run the Xilinx 4.1i software, which is
available on the workstations in the Microprocessor Lab. Enter the Xilinx software by
invoking the Project Navigator.
 Begin by creating a new project. Name it lab1_xx (where xx are your initials) and
store it in your Kato directory. Set the device family, device, and flow to Spartan,

1-4

XCS10-3PC84, and Synplify Pro Verilog, respectively. This configures the Project
Navigator to target the Xilinx 84-pin Spartan 10 FPGA that you will be using in the class
and to use the 3rd party Synplify Pro tool to synthesize your Verilog code.
 The Project Navigator window will come up with four panes. The Sources pane
lists all the source files associated with your lab. To start with the design, create a new
source file with the Project • New Source menu to invoke the New Source Wizard.
Choose Verilog Module as the type and led as the file name, then choose next. Another
window will appear to define the input/output (I/O) ports. Create 3 ports:

clk input
s input 3 0
led output 7 0

 This defines a single-bit clock input, a 4-bit bus of switch inputs, and an 8-bit bus
of led outputs. When you finish the wizard, the led.v file will appear selected in the
sources pane. Below it, a set of processes are available for design entry, synthesis,
implementation, and programming. At the bottom, the log pane should say “completed
successfully.” Watch the log window and learn what the normal messages are. If you
encounter difficulties using Xilinx, look in the log for warnings and clues about your
problem. To the right, the fourth pane should contain a skeleton of your led.v Verilog
module.
 Add the following bold lines of Verilog code so you module should read as shown
below. Note that in Verilog busses usually start at 0 instead of 1 so the numbering is
shifted by one. Use File • Save to save your code when you are done

module led(clk,s,led);
 input clk;
 input [3:0] s;
 output [7:0] led;

 assign led[0] = s[0];
 assign led[1] = ~s[0];
 assign led[2] = s[1];
 assign led[3] = ~s[1];
 assign led[4] = s[2];
 assign led[5] = ~s[2];
 assign led[6] = s[2] & s[3];
 assign led[7] = clk;

endmodule

 This example shows how to express combinational logic in Verilog. Common
operators include ~ (NOT), & (AND), | (OR), and ^ (XOR). For example, to express

 () ()Y A B C D E= + ⊕ +

write

assign y = (~(a|b))^(c&(d|~e));

 To simulate your led module, be sure the led.v source is selected in the sources
pane and click on the + symbol beside the Design Entry Utilities in the Processes window

1-5

to view the utilities. Double-click on the Launch ModelSim Simulator to invoke
ModelSim, a 3rd-party simulator. Look through the log in the ModelSim window for any
errors. One common error is the inability to open library aim; this may be ignored. If
there are serious problems, the bottom of the window will say <No Design Loaded> and
messages in the window may give a clue about your typo. Close ModelSim, fix your
Verilog, and launch ModelSim again. Once ModelSim launches correctly, a number of
windows will appear; the most interesting are the main ModelSim command window and
the wave window. In the command window, type the following commands:

force s 0000
force clk 0
run 100
force clk 1
run 100
force s 1111
run 100

 Look at the waveform window and verify that the led waveforms match your
expectations. Close the ModelSim command window when you are done.
 Now you are ready to synthesize your led module. Being sure the led.v source is
selected in the sources pane, double-click on Synthesize in the processes pane. This
launches Synplify Pro to synthesize your Verilog into hardware. Look at the log pane
and check that synthesis completed successfully. The Synthesize process should also be
marked with a green check if it was successful. If you encounter errors, look through
your led.v file for any typos. You may also click on the + symbol to expand the
Synthesize options and Compile suboptions, then double-click the View Compile Report
item to view a report listing the synthesis errors.
 Synplify Pro has a helpful capability of showing you how your Verilog compiles
into gates and maps onto the FPGA. Under the Compile suboption, double-click Launch
RTL Viewer. Look at the window where you should see the input and output terminals
and the AND gate and inverters. See how the bus labeling is illustrated and how the
inverter is marked [2:0] to indicate that there are actually 3 inverters. When you
understand this view, close the Synplify window. Then choose Launch Technology
Viewer from under the Mapping suboption. This shows how the Verilog code will map
onto hardware within your FPGA. You should see IBUF and OBUF cells corresponding
to the input and output buffers attached to pins on an FPGA. There are also three INV
cells and an AND gate. Again look at the bus labeling and explore the diagram until you
understand it. By looking at the schematics produced by synthesis, you may be able to
debug some errors you make in your Verilog in later labs. Close the window when you
are done.
 The last step is to implement your project, which maps the gates onto an FPGA.
Double-click Implement Design in the Processes pane and look at the messages in the log
window. You should see warning #69 that an option overrides the effects of another
option. To interpret this warning, right-click on the yellow web box next to the warning
and choose Goto Solution Record. A web browser will pop up explaining that this is a
rather dopey warning that should be ignored; remember that for future reference. Don’t
take warnings lightly unless you understand them enough to know they can be ignored;

1-6

many engineers have lost countless hours of sleep chasing problems that the CAD tools
had warned them about.
 The log has a number of other interesting tidbits of information. It tells you that
13 of the 61 Input/Output blocks (IOBs) are used, corresponding to your thirteen signals.
The IOBs include inverters, so the only hardware required is the AND gate. This
occupies one of the 196 Configurable Logic Blocks (CLBs). Each CLB contains two
lookup tables (LUTs); only one is needed for the AND gate. Under the Place & Route
suboption of Implement, double-click the View/Edit Placed Design (FloorPlanner). This
brings up a floorplan showing the IOBs around the periphery of the chip and the 14x14
matrix of CLBs in the core. Clicking on IOBs or CLBs shows how they are connected.
You should see the 13 IOBs and one CLB in use. Click on the CLB and determine the
three IOBs attached. Click on each one and observe that they correspond to s_pad[2],
s_pad[3], and led_pad[6], as one would expect. Close the FloorPlanner and double-click
View/Edit Routed Design (FPGA Editor). This shows the routing of the entire FPGA.
Enjoy, then close the window. Another interesting report is the Pad Report under the
Place & Route suboption. It tells you which signals are connected to which pins, which
will be useful in the next lab as you attempt to wire pins to other circuits.

You have now been through the basic steps of entering a design, simulating it, and
synthesizing and implementing. More documentation for the Xilinx tools is available by
choosing Online Documentation from the Help menu.

Now you must go on and finish the lab. Create another Verilog module named
sevenseg that has four inputs s[3:0] and seven outputs seg[6:0] corresponding to the
switches and LEDs. Develop logic equations for each output and write the appropriate
Verilog. You may use any logic gates you want for the design. There are many ways to
consider generating and optimizing your design. The Verilog book and references in
your lab notes may be helpful. Simulate the circuit to see that it operates correctly and
print a copy of your simulation waveforms. Paste or tape the Verilog and waveforms into
your lab notebook and properly label your results. Do not staple a big pile onto one page;
this is difficult to read and grade.

Look at the RTL Viewer and Technology Viewer schematics. Do they match
what you would expect? How do they differ? How many CLBs does your hardware use?
How many LUTs? Does the number match your expectations? (Hint: look at the Spartan
FPGA datasheet for more information on CLBs and LUTs). Look at the floorplan. Can
you relate the hardware appearing in the floorplan to that in the technology schematic?

What to turn in

§ Your lab manual documenting your design, including:
§ Your design process for the hexadecimal display driver;
§ The Verilog for your hex display driver;
§ Simulation waveforms of the hex display driver;
§ Schematics of the synthesized hex display driver;
§ A discussion of the synthesis and implementation results.
§ How many hours did you spend on the lab? This will not count toward your

grade.

1-7

Acknowledgments
An earlier version of this lab was developed by Fernando Mattos, Fall 1999.

