

E11: Autonomous Vehicles
 Fall 2011
 Harris \& Harris
 Problem Set 4: Volts and Amps and Ohms, Oh My!

1. Resistor Circuits

Find the voltage at node x in each of the following circuit. (Hint: series and parallel combinations and the voltage divider equation can make this doable by inspection.)

2. Solar Panel

You are considering replacing the pesky battery on your autonomous vehicle with a solar panel so that it can undertake a lengthy foray to raid the Caltech cannon. The solar cell has the nonlinear current-voltage profile given in the following figure. Assume that you can model the rest of your autonomous vehicle as an equivalent resistance, $R_{\text {bot }}$.
a) If the robot looks like a short circuit $\left(\mathrm{R}_{\mathrm{bot}}=0\right)$, how much current, $\mathrm{I}_{\mathrm{bot}}$, will it draw from the solar cell? How much voltage, $\mathrm{V}_{\mathrm{bot}}$, will it receive? How much power, $\mathrm{P}_{\mathrm{bot}}$, will it obtain from the solar cell?
b) If the robot looks like an open circuit $\left(\mathrm{R}_{\mathrm{bot}}=\infty\right)$, compute $\mathrm{I}_{\mathrm{bot}}, \mathrm{V}_{\text {bot }}$, and $\mathrm{P}_{\mathrm{bot}}$.
c) What is equivalent resistance, $\mathrm{R}_{\mathrm{bot}}$, that maximizes the power delivered to the robot? What is $\mathrm{I}_{\mathrm{bot}}, \mathrm{V}_{\mathrm{bot}}, \mathrm{P}_{\mathrm{bot}}$?

Solar Cell (source: sparkfun.com)

