

1

E11: Autonomous Vehicles
Fall 2011

Harris & Harris

PS 2: Music and Memory

Game

In this problem set you will write two programs: one will play music on your Mudduino

and the other will play a memory game. Important: keep track of how long it takes for

each program by placing the following comment on the first line of each program file

(where xx is the number of hours that it took you):

// Time to complete program = xx hours

Part 1: Playing a Song on the Mudduino

Program your Mudduino to play the sequence of notes – specified as a frequency and

duration – shown in Table 1. Your program should include a 30 ms delay between each

note (frequency) that is played. Name this sketch ps2_1.

Frequency Duration (ms)

294 220

294 220

392 970

587 470

523 135

494 135

440 135

784 970

587 470

523 135

494 135

440 135

784 970

587 470

523 135

494 135

523 135

440 1470

Table 1. Notes to play on your Mudduino

2

You may find these two arrays useful:

int frequency[18] = {294, 294, 392, 587, 523, 494, 440,

784, 587, 523, 494, 440, 784, 587, 523, 494, 523, 440};

int duration[18] = {220, 220, 970, 470, 135, 135, 135, 970,

470, 135, 135, 135, 970, 470, 135, 135, 135, 1470};

Can you name the song? After you have successfully programmed and played the song,

include the name of the song at the top of the program you submit.

Part 2: Memory Game

In the final part of this assignment, you will implement a Memory Game similar in spirit

to Simon (see http://en.wikipedia.org/wiki/Simon_(game)) – call this Arduino sketch

ps2_2.

The game should be played as follows:

1. First, your Mudduino should create 8 random LED flashes, some of them green

and some of them red.

2. Then, the user should enter 8 keypresses into the Mudduino – this should be an

attempt to replicate the LED flashes. For convention, let’s let 1 represent green

LED flashes and let 0 represent red LED flashes.

3. Then, the Mudduino should compute the user’s score and print it out to the user.

The program should compute the score by comparing the record of the correct

LED flashes (1s and 0s) with the keypresses the user entered (1s and 0s). The

score will be the correlation between the two sequences: for each keypress that is

correct, the user gets 1 point; for each incorrect keypress, the user gets -1 point.

The score is the sum of the 8 keypress scores. For example, for the following 8-

bit binary sequences, the total score is 4:

LED sequence: 0 1 1 0 0 1 1 0

User keypresses: 0 1 0 0 0 1 1 1

 +1 +1 -1 +1 +1 +1 +1 -1 = 4

4. Finally, the Mudduino should ask the user to hit a key before playing again.

Write the following four functions for each of the four steps, respectively:

void generateLEDFlashes();

void getUserResponse();

void correlate();

void promptUser();

3

Note: Make sure that in your final version, the sequence is truly random using the

randomSeed() command. Have fun!

Deliverables

Please submit the following files to the Program Submission Website (see the E11 course

website for the link).

You are responsible for turning in 2 Arduino files:

• ps2_1.pde

• ps2_2.pde

Grading

Your score is based on a 5 point scale for each problem, with 5 being the highest score:

5: Your program runs as expected; the code is clear and well commented.

4: Your program runs as expected; the code is mostly clear and well commented.

3: Your program runs as expected; more clarity and/or comments are needed.

2: Your program mostly runs as expected; clarity and comments are missing.

1: Your program does not run as expected; but the code is mostly clear and commented.

0: Your program does not run as expected; clarity and comments are lacking.

