

E11 Lecture 9-10:

 CircuitsProfs. David Money Harris \& Sarah Harris

Fall 2011

Outline

O Voltage, Current, Resistance
Ohm's Law

- Kirchoffis Curfent Law
- Resistor Combinations
- Power
- Multimeters
- Ideal and Real Power Supplies

Voltage

- The electric force to drive electricity between two points

Units: Volts (V)

- Technically:
energy / unit charge (Volt = Joule / Coulomb; V = J/C)
- Informally:
how hard the circuit wants to push electrons...
- Voltage is always measured between two points

Meaningless without a reference point
We typically call the reference point ground
If the ground is connected well across the system, we can treat it as OV

Allesandro Volta

1745-1827
Invented the first battery
Granted title as Count by
Napoleon in 1810 in honor of his work

en.wikipedia.org/wiki/File:Volta_A.jpg

Current

The amount of electric charge flowing through a circuit per time.

Onit: Amperes
(Amperes = Coulombs $/ \mathrm{Sec}, \mathrm{A}=\mathrm{C} / \mathrm{s}$)
Technically:

$$
I=d Q / d t
$$

Andre-Marie Ampere

1775-1836

- French physicist and mathematician

A main discoverer of electromagnetism

en.wikipedia.org/wiki/File:Ampere_Andre_1825.jpg

Resistance

A measure of the opposition to the flow of electric current
Units: Ohm (Ω)

$$
\Omega=\mathrm{V} / \mathrm{A}
$$

A material with high resistance is called an insulator

- A material with low resistance is called a conductor

Georg Ohm

1789-1854
German high school teacher
Later joined Jesuit College in Colonge

- Determined relationship between voltage and current in a conductor

College unsatisfied with his research and he resigned

en.wikipedia.org/wiki/File:Ohm3.gif

"Resistance is Useless"

Prostetnic Vogon Jeltz, Hitchhiker's Guide to the Galaxy

Circuits

Circuits consist of nodes and elements

- Nodes:

Wires, at a particular voltage relative to ground

- Elements

Voltage sources
Resistors, capacitors, inductors
Diodes, transistors
Motors
Other sensors ...

Example

This circuit has two nodes
n1, gnd

Two elements
A 5 V voltage source
A 100Ω resistor

Ohm's Law

Voltage $=$ Current \times Resistance $(V=I R)$ Or $I=V / R$

Example

A 5 V power supply is connected to a 100Ω resistor. How much current flows?
A) 500 A
(B) 20 A
C) 50 mA
D) 5 mA

Kirchoff's Current Law (KCL)

Charge is conserved
It doesn't accumulate on circuit nodes

- Hence, the current flowing into a circuit node equals the

KCL Example

Current flowing out of 5 V supply into n1: 50 mA

- Current flowing out of n1 into resistor: 50 mA

KCL: $50 \mathrm{~mA}=50 \mathrm{~mA}$

Voltage Divider

Compute voltage at x :
Ohm's Law: $I_{1}=\frac{5-x}{R_{1}}$
$I_{2}=\frac{x-0}{R_{2}}$
KCL: $\mathrm{I}_{1}=\mathrm{I}_{2}$

- Solve for x :

$$
\frac{5-x}{R_{1}}=\frac{x}{R_{2}} \Rightarrow x=5\left(\frac{R_{2}}{R_{1}+R_{2}}\right)
$$

Example

What is the voltage at x if $R_{1}=R_{2}=100 \Omega ?$
A) 100 V
B) 5 V
C) 2.5 V
D) 0.5 V

Ex: Potentiometer

A potentiometer (pot) is a variable resistor with an adjustable tap

- Can be used as a voltage divider As tap slides from top to bottom, Vout varies from 5 V to oV .

Series Resistors

- Two resistors in series are equivalent to one larger one
$\begin{array}{ll}\text { Ohm's Law: } & I_{1}=\frac{a-x}{R_{1}} \\ & I_{2}=\frac{x-b}{R_{2}}\end{array}$

Solve for l:

$$
I=\frac{a-b}{R_{1}+R_{2}}
$$

- Hence, $R_{\text {eq }}=R_{1}+R_{2}$

Series Resistors

In general, any collection of resistors in series is equivalent to a single resistor with a value equal to the sum of the resistances.

Example

What is the equivalent resistance of the circuit below?
A) 300Ω
B) 200Ω
C) 100Ω

- D) 33Ω

Parallel Resistors

Two resistors in parallel are equivalent to one smaller one
$\begin{array}{ll}\text { Ohm's Law: } & I_{1}=\frac{a-b}{R_{1}} \\ I_{2}=\frac{a-b}{R_{2}}\end{array}$

Solve for I: $I=\frac{a-b}{R_{1}}+\frac{a-b}{R_{2}}=\frac{a-b}{\frac{R_{1} R_{2}}{R_{1}+R_{2}}}$

- Hence, $R_{\text {eq }}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)=\frac{=}{22} R_{1} \| R_{\mathbf{2}}$

Example

What is the equivalent resistance of the circuit below?
A) 200Ω

- B) 100Ω
C) 50Ω
- D) 33Ω

Example

You have a large drawer of 100Ω resistors, but you need a 250Ω resistor. Invent a circuit with the required resistance.

Power

The amount of energy flowing through a circuit per time.

- Unit: Watts
(Watts= Joules / Sec, W = J/s)
Technically:

$$
P=d E / d t
$$

James Watt

1736-1819
Scottish engineer and inventor

- Home schooled
- Revolutionized steam engines

Condenser improved power generation

Power

- The power dissipated in a component is $\mathrm{P}=\mathrm{IV}$ Derivation:
- E = QV
because Volts = Joules / Coulomb
- $\mathrm{dE} / \mathrm{dt}=(\mathrm{dO} / \mathrm{dt}) \mathrm{V}$
- P=IV differentiate both sides, assuming V const
$\mathrm{dE} / \mathrm{dt}$ is power, $\mathrm{dO} / \mathrm{dt}$ is current
O = OV
For a resistor, V and I are related by Ohm's law, $\mathrm{V}=\mathrm{IR}$ Hence, $P_{\text {resistor }}=I^{2} R=V^{2} / R$

Is this a paradox that P is directly and inversely proportional to R?

Example

How much power is delivered to the resistor?
A) 2500 W
B) 0.25 W
C) 0.04 W

D) 0.01 W

Open Circuit

- An open circuit is a circuit with no connection Usually where a connection was intended
- Resistance $=\infty$
- No current flows

Short Circuit

- An short circuit is a circuit where two nodes are connected Usually where a connection was NOT intended
- Resistance $=0$
- Ex: short circuit across a power supply causes huge amounts of current to flow, might blow a fuse or start a fire!

Multimeter

- Multimeters measure:

Voltage (voltmeter)
Current (ammeter)
Resistance (ohmmeter)

- Some do autoscaling while cheaper ones require that you choose the right scale

fluke.com

Voltmeter

Place meter in parallel with circuit
Meters may be digital or analog

- Most today are digital for cost, accuracy

Digital:

- A/D converter

Analog:

- Galvanometer

Resistor in series with a coil of wire in a fixed magnetic field
Current through coil creates a torque that rotates the coil and deflects a needle

Ammeter

Place meter in series with circuit Meter includes small precision internal resistor

- Measure voltage across the resistor
- Deduce current

Most multimeters have a separate terminal for measuring current

Fuse in meter will blow if the current is too large

Ohmmeter

- Place in parallel with the resistor being measured
- Apply a small known voltage or current to the resistor

Measure the current or voltage that flows
Deduce resistance from Ohm's Law

- Unreliable if the resistor is in situ in a live circuit that distorts the measurements

Power Demo

- Resistors are rated for a certain amount of power

Typical small resistors are $1 / 4$ Watt Resistors can overheat and change if power is exceeded

- Ex: 5Ω resistor connected to a variable power supply Use ammeter to measure current
- Plot I vs. V; compute P and R

A Caution about Modeling

- We have assumed that our components are ideal.

This is not a bad approximation for electrical components in their usual operating range.
If you push them too hard, they violate the assumptions.
Mechanical and chemical systems rarely match ideal models as electrical systems.

Power Supply Model

- A typical power supply is not an ideal voltage source Can provide a finite amount of output current Voltage droops as you pull more current Examples: fuel cell, solar cell, battery

Figure from http://www.fuelcell.no/principle_fctheory_e ${ }^{37}$ g.h.htm

Power Supply Model

Model power supply as ideal voltage source in series with nonzero output resistance.

Loaded Nonideal Supply

- Suppose the load on the supply is varied. How does current and voltage change? How does power supplied to the load resistor change?

$$
\begin{aligned}
& I=\frac{V}{R_{\text {supply }}+R_{\text {boad }}} \\
& V_{\text {out }}=V \frac{R_{\text {bodd }}}{R_{\text {supply }}+R_{\text {load }}} \\
& P_{\text {ooad }}=\frac{V_{\text {out }}^{2}}{R_{\text {load }}}=V^{2} \frac{R_{\text {load }}}{\left(R_{\text {supply }}+R_{\text {boad }}\right)^{2}}
\end{aligned}
$$

Matched Load

What load resistance draws maximum power? How much power?

$$
\begin{aligned}
& P_{\text {load }}=\frac{V_{\text {out }}^{2}}{R_{\text {load }}}=V^{2} \frac{R_{\text {load }}}{\left(R_{\text {supply }}+R_{\text {load }}\right)^{2}} \\
& \frac{d P_{\text {load }}}{R_{\text {load }}}=\frac{\left(R_{\text {supply }}+R_{\text {load }}\right)^{2}-R_{\text {load }} 2\left(R_{\text {supply }}+R_{\text {load }}\right)}{\left(R_{\text {supply }}+R_{\text {load }}\right)^{4}}=0 \\
& R_{\text {supply }}{ }^{2}+2 R_{\text {supply }} R_{\text {load }}+R_{\text {load }}{ }^{2}-2 R_{\text {supply }} R_{\text {load }}-2 R_{\text {load }}{ }^{2}=0 \\
& R_{\text {load }}=R_{\text {supply }} \\
& V_{\text {out }}=V / 2 \\
& P_{\text {load }}=\frac{V^{2}}{4 R_{\text {load }}}
\end{aligned}
$$

Open and Short Loads

Open Circuit Load

$$
\begin{aligned}
& R_{\text {load }}=\infty \\
& V_{\text {out }}=V \\
& I=0 \\
& P=0
\end{aligned}
$$

Short Circuit Load

$$
\begin{aligned}
& R_{\text {load }}=0 \\
& V_{\text {out }}=0 \\
& I=V / R_{\text {supply }} \\
& P=0
\end{aligned}
$$

Example

A fuel cell has an open circuit voltage of 0.9 V and an effective output resistance of 2Ω. How much power can it deliver to a matched load?
A) 101 mW
B) 810 mW
C) 405 mW
D) 1620 mW

Fuel Cell Model Predictions

Nonlinear Circuits

- In a nonlinear circuit, voltage and current are not proportional
- But nevertheless P = IV
- Ex: Fuel cell

