

#### Profs. David Money Harris & Sarah Harris Fall 2011

# Outline

- Voltage, Current, Resistance
- Ohm's Law
- Kirchoff's Current Law
- Resistor Combinations
- Power
- Multimeters
- Ideal and Real Power Supplies

# Voltage

- The electric force to drive electricity between two points
- Units: Volts (V)
- Technically:
  - energy / unit charge (Volt = Joule / Coulomb; V = J/C)
- Informally:
  - how hard the circuit wants to push electrons...
- Voltage is always measured between two points
  - Meaningless without a reference point
  - We typically call the reference point ground
  - If the ground is connected well across the system, we can treat it as OV

## Allesandro Volta

- **1745-1827**
- Invented the first battery
- Granted title as Count by
   Napoleon in 1810 in honor of
   his work



en.wikipedia.org/wiki/File:Volta\_A.jpg

### Current

 The amount of electric charge flowing through a circuit per time.

Unit: Amperes
(Amperes = Coulombs / Sec, A = C/s)

Technically:
I = dQ/dt

## **Andre-Marie Ampere**

- **1775-1836**
- French physicist and mathematician
- A main discoverer of electromagnetism



en.wikipedia.org/wiki/File:Ampere\_Andre\_1825.jpg

### Resistance

- A measure of the opposition to the flow of electric current
- Units: Ohm (Ω)
  - $\Omega = V/A$
- A material with high resistance is called an *insulαtor*
- A material with low resistance is called a *conductor*

## Georg Ohm

- **)** 1789 1854
- German high school teacher
- Later joined Jesuit College in Colonge
- Determined relationship between
   voltage and current in a conductor
- College unsatisfied with his research and he resigned



en.wikipedia.org/wiki/File:Ohm3.gif

### "Resistance is Useless"

#### Prostetnic Vogon Jeltz, Hitchhiker's Guide to the Galaxy



# Circuits

- Circuits consist of nodes and elements
- Nodes:
  - Wires, at a particular voltage relative to ground
- Elements
  - Voltage sources
  - Resistors, capacitors, inductors
  - Diodes, transistors
  - Motors
  - Other sensors ...

## Example

This circuit has two nodes
n1, gnd

Two elements
 A 5V voltage source
 A 100 Ω resistor



#### Ohm's Law

Voltage = Current × Resistance (V = IR)
 Or I = V / R

## Example

A 5 V power supply is connected to a 100 Ω resistor. How much current flows?

- A) 500 A
- B) 20 A
- C) 50 mA
- D) 5 mA



# Kirchoff's Current Law (KCL)

- Charge is conserved
- It doesn't accumulate on circuit nodes
- Hence, the current flowing into a circuit node equals the current out of the node.

## **KCL Example**

- Current flowing out of 5V supply into n1: 50 mA
- Current flowing out of n1 into resistor: 50 mA
- KCL: 50 mA = 50 mA 🙂



# Voltage Divider



• Solve for x:

$$\frac{5-x}{R_1} = \frac{x}{R_2} \Longrightarrow x = 5\left(\frac{R_2}{R_1 + R_2}\right)$$

## Example

- What is the voltage at x if  $R_1 = R_2 = 100 \Omega$ ?
- A) 100 V
- B) 5 V
- C) 2.5 V
- D) 0.5 V

#### **Ex: Potentiometer**

- A potentiometer (pot) is a variable resistor with an adjustable tap
- Can be used as a voltage divider
  As tap slides from top to bottom, Vout varies from 5V to oV.



#### **Series Resistors**

#### Two resistors in series are equivalent to one larger one

• Ohm's Law:

$$I_1 = \frac{a - x}{R_1}$$
$$I_2 = \frac{x - b}{R_2}$$

• KCL:  $I = I_1 = I_2$ 

• Solve for I:  $I = \frac{a-b}{R_1 + R_2}$ 

$$a \xrightarrow{I_1} x \xrightarrow{I_2} b = a \xrightarrow{I} b$$
  

$$R_1 R_2 R_{eq}$$

### **Series Resistors**

 In general, any collection of resistors in series is equivalent to a single resistor with a value equal to the sum of the resistances.

## Example

• What is the equivalent resistance of the circuit below?

- A) 300 Ω
- B) 200 Ω
- C) 100 Ω
- D) 33 Ω

\$100 Ω
\$100 Ω
\$100 Ω

#### **Parallel Resistors**

#### • Two resistors in parallel are equivalent to one smaller one

• Ohm's Law:

• KCL:  $I = I_1 + I_2$ 

$$I_1 = \frac{a - b}{R_1}$$
$$I_2 = \frac{a - b}{R_2}$$



• Solve for I:  

$$I = \frac{a-b}{R_1} + \frac{a-b}{R_2} = \frac{a-b}{\frac{R_1R_2}{R_1 + R_2}}$$

• Hence,  $R_{eq} = R_1 R_2 / (R_1 + R_2) = R_1 || R_2$ 

## Example

• What is the equivalent resistance of the circuit below?

- Α) 200 Ω
- B) 100 Ω
- C) 50 Ω



D) 33 Ω

## Example

You have a large drawer of 100 Ω resistors, but you need a 250 Ω resistor. Invent a circuit with the required resistance.

#### Power

The amount of energy flowing through a circuit per time.

Unit: Watts
(Watts= Joules / Sec, W = J/s)

Technically:
 P = dE/dt

#### **James Watt**

- **1736-1819**
- Scottish engineer and inventor
- Home schooled
- Revolutionized steam engines
  - Condenser improved power generation



en.wikipedia.org/wiki/File:Watt\_James\_von\_Breda.jpg

#### Power

The power dissipated in a component is P = IV

- Derivation:
  - E = QV
  - dE/dt = (dQ/dt) V
  - P = IV

because Volts = Joules / Coulomb differentiate both sides, assuming V const dE/dt is power, dQ/dt is current

#### • E = QV

- For a resistor, V and I are related by Ohm's law, V = IR
- Hence,  $P_{resistor} = I^2 R = V^2/R$

Is this a paradox that P is directly and inversely proportional to R?

## Example

- How much power is delivered to the resistor?
- A) 2500 W
- B) 0.25 W
- C) 0.04 W
- **D) 0.01 W**



# **Open Circuit**

An open circuit is a circuit with no connection
 Usually where a connection was intended

• Resistance =  $\infty$ 

No current flows

## **Short Circuit**

- An short circuit is a circuit where two nodes are connected
   Usually where a connection was NOT intended
- Resistance = o
- Ex: short circuit across a power supply causes huge amounts of current to flow, might blow a fuse or start a fire!

## Multimeter

- Multimeters measure:
  - Voltage (voltmeter)
  - Current (ammeter)
  - Resistance (ohmmeter)

 Some do autoscaling while cheaper ones require that you choose the right scale



fluke.com

### Voltmeter

Place meter in parallel with circuit

- Meters may be digital or analog
  - Most today are digital for cost, accuracy
- Digital:
  - A/D converter
- Analog:
  - Galvanometer
    - Resistor in series with a coil of wire in a fixed magnetic field
    - Current through coil creates a torque that rotates the coil and deflects a needle

#### Ammeter

Place meter in series with circuit

- Meter includes small precision internal resistor
  - Measure voltage across the resistor
  - Deduce current
- Most multimeters have a separate terminal for measuring current
- Fuse in meter will blow if the current is too large

#### Ohmmeter

- Place in parallel with the resistor being measured
- Apply a small known voltage or current to the resistor
- Measure the current or voltage that flows
- Deduce resistance from Ohm's Law
- Unreliable if the resistor is in situ in a live circuit that distorts the measurements

#### **Power Demo**

Resistors are rated for a certain amount of power
 Typical small resistors are ¼ Watt
 Resistors can overheat and change if power is exceeded
 Ex: 5 Ω resistor connected to a variable power supply
 Use ammeter to measure current

Plot I vs. V; compute P and R



## A Caution about Modeling

We have assumed that our components are ideal.

- This is not a bad approximation for electrical components in their usual operating range.
- If you push them too hard, they violate the assumptions.
- Mechanical and chemical systems rarely match ideal models as electrical systems.

## **Power Supply Model**

A typical power supply is not an ideal voltage source
 Can provide a finite amount of output current
 Voltage droops as you pull more current

Examples: fuel cell, solar cell, battery



Figure from http://www.fuelcell.no/principle\_fctheory\_end.htm

# **Power Supply Model**

 Model power supply as ideal voltage source in series with nonzero output resistance.



## Loaded Nonideal Supply

 Suppose the load on the supply is varied. How does current and voltage change? How does power supplied to the load resistor change?





### Matched Load

What load resistance draws maximum power? How much power?

$$P_{load} = \frac{V_{out}^2}{R_{load}} = V^2 \frac{R_{load}}{\left(R_{supply} + R_{load}\right)^2}$$

$$\frac{dP_{load}}{R_{load}} = \frac{\left(R_{supply} + R_{load}\right)^2 - R_{load} 2\left(R_{supply} + R_{load}\right)}{\left(R_{supply} + R_{load}\right)^4} = 0$$

$$R_{supply}^2 + 2R_{supply} R_{load} + R_{load}^2 - 2R_{supply} R_{load} - 2R_{load}^2 = 0$$

$$R_{load} = R_{supply}$$

$$V_{out} = V / 2$$

$$P_{load} = \frac{V^2}{4R_{load}}$$

# **Open and Short Loads**



Short Circuit Load
 R<sub>load</sub> = O
 V<sub>out</sub> = O
 I = V / R<sub>supply</sub>
 P = O

## Example

- A fuel cell has an open circuit voltage of 0.9 V and an effective output resistance of 2 Ω. How much power can it deliver to a matched load?
- A) 101 mW
- B) 810 mW
- C) 405 mW
- D) 1620 mW

#### **Fuel Cell Model Predictions**



## **Nonlinear Circuits**

- In a nonlinear circuit, voltage and current are not proportional
- But nevertheless P = IV
- Ex: Fuel cell



